Search results for: condenser heat transfer coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6555

Search results for: condenser heat transfer coefficient

6465 The Mainspring of Controlling of Low Pressure Steam Drum at Lower Pressure than Its Design for Adjusting the Urea Synthesis Pressure

Authors: Reza Behtash, Enayat Enayati

Abstract:

The pool condenser is in principal a horizontal reactor, containing a bundle of U-tubes for heat exchange, coupling to low pressure steam drum. Condensation of gas takes place in a condensed pool around the tubes of the condenser. The heat of condensation is removed by the generation of low pressure steam on the inner tube side of the bundle. A circulation pump transfers ample boiler feed water to these tubes. The pressure of the steam generated influenced the heat flux. Changing the steam pressure means changing the steam condensate temperature and therefore the temperature difference between the tube side and the shell side. 2NH3 + CO2 ↔ NH2COONH4 + Heat. This reaction is exothermic and according to Le Chatelier's Principle if the heat is not removed enough, it will come back to left side and generate of the gas and so the Urea synthesis pressure will rise. The most principal reasons for high Urea synthesis pressure are non proportional of Ammonia/Dioxide Carbon ratio and too high a pressure in low pressure steam drum. Proportional of Ammonia/Dioxide Carbon ratio is 3.0 and normal pressure for low pressure steam drum is 4.5 bar. As regards these conditions were proportional but we could not control the synthesis pressure the plant endangered, therefore we had to control the steam drum pressure at about 3.5 bar. While we opened the pool condenser, we found the partition plate used to divide inlet and outlet boiler feed water to tubes, was broken partially and so amount of boiler feed water bypass the tubes and the heat was not removed totally and it resulted in the generation of gases and high pressure in synthesis.

Keywords: boiler, pressure, pool condenser, partition plate

Procedia PDF Downloads 352
6464 Experimental Study of Heat Transfer and Pressure Drop in Serpentine Channel Water Cooler Heat Sink

Authors: Hao Xiaohong, Wu Zongxiang, Chen Xuefeng

Abstract:

With the high power density and high integration of electronic devices, their heat flux has been increasing rapidly. Therefore, an effective cooling technology is essential for the reliability and efficient operation of electronic devices. Liquid cooling is studied increasingly widely for its higher heat transfer efficiency. Serpentine channels are superior in the augmentation of single-phase convective heat transfer because of their better channel velocity distribution. In this paper, eight different frame sizes water-cooled serpentine channel heat sinks are designed to study the heat transfer and pressure drop characteristics. With water as the working fluid, experiment setup is established and the results showed the effect of different channel width, fin thickness and number of channels on thermal resistance and pressure drop.

Keywords: heat transfer, experiment, serpentine heat sink, pressure drop

Procedia PDF Downloads 427
6463 Heat Transfer Enhancement Using Aluminium Oxide Nanofluid: Effect of the Base Fluid

Authors: M. Amoura, M. Benmoussa, N. Zeraibi

Abstract:

The flow and heat transfer is an important phenomenon in engineering systems due to its wide application in electronic cooling, heat exchangers, double pane windows etc.. The enhancement of heat transfer in these systems is an essential topic from an energy saving perspective. Lower heat transfer performance when conventional fluids, such as water, engine oil and ethylene glycol are used hinders improvements in performance and causes a consequent reduction in the size of such systems. The use of solid particles as an additive suspended into the base fluid is a technique for heat transfer enhancement. Therefore, the heat transfer enhancement in a horizontal circular tube that is maintained at a constant temperature under laminar regime has been investigated numerically. A computational code applied to the problem by use of the finite volume method was developed. Nanofluid was made by dispersion of Al2O3 nanoparticles in pure water and ethylene glycol. Results illustrate that the suspended nanoparticles increase the heat transfer with an increase in the nanoparticles volume fraction and for a considered range of Reynolds numbers. On the other hand, the heat transfer is very sensitive to the base fluid.

Keywords: Al2O3 nanoparticles, circular tube, heat transfert enhancement, numerical simulation

Procedia PDF Downloads 294
6462 Mixed Convection Heat Transfer of Copper Oxide-Heat Transfer Oil Nanofluid in Vertical Tube

Authors: Farhad Hekmatipour, M. A. Akhavan-Behabadi, Farzad Hekmatipour

Abstract:

In this paper, experiments were conducted to investigate the heat transfer of Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid laminar flow in vertical smooth and microfin tubes as the surface temperature is constant. The effect of adding the nanoparticle to base fluid and Richardson number on the heat transfer enhancement is investigated as Richardson number increases from 0.1 to 0.7. The experimental results demonstrate that the combined forced-natural convection heat transfer rate may be improved significantly with an increment of mass nanoparticle concentration from 0% to 1.5%. In this experiment, a correlation is also proposed to predict the mixed convection heat transfer rate of CuO-HTO nanofluid flow. The maximum deviation of both correlations is less than 14%. Moreover, a correlation is presented to estimate the Nusselt number inside vertical smooth and microfin tubes as Rayleigh number is between 2´105 and 6.8´106 with the maximum deviation of 12%.

Keywords: mixed convection, heat transfer, nanofluid, vertical tube, microfin tube

Procedia PDF Downloads 353
6461 A Comparative Study between Ionic Wind and Conventional Fan

Authors: J. R. Lee, E. V. Lau

Abstract:

Ionic wind is developed when high voltage is supplied to an anode and a grounded cathode in a gaseous medium. This paper studies the ionic wind profile with different anode configurations, the relationship between electrode gap against the voltage supplied and finally a comparison of the heat transfer coefficient of ionic wind over a horizontal flat plate against a conventional fan experimentally. It is observed that increase in the distance between electrodes decreases at a rate of 1-e-0.0206x as the voltage supply is increased until a distance of 3.1536cm. It is also observed that the wind speed produced by ionic wind is stronger, 2.7ms-1 at 2W compared to conventional fan, 2.5ms-1 at 2W but the wind produced decays at a fast exponential rate and is more localized as compared to conventional fan wind that decays at a slower exponential rate and is less localized. Next, it is found out that the ionic wind profile is the same regardless of the position of the anode relative to the cathode. Lastly, it is discovered that ionic wind produced a heat transfer coefficient that is almost 1.6 times higher compared to a conventional fan with Nusselt number reaching 164 compared to 102 for conventional fan.

Keywords: conventional fan, heat transfer, ionic wind, wind profile

Procedia PDF Downloads 294
6460 Intensification of Heat Transfer in Magnetically Assisted Reactor

Authors: Dawid Sołoducha, Tomasz Borowski, Marian Kordas, Rafał Rakoczy

Abstract:

The magnetic field in the past few years became an important part of many studies. Magnetic field (MF) may be used to affect the process in many ways; for example, it can be used as a factor to stabilize the system. We can use MF to steer the operation, to activate or inhibit the process, or even to affect the vital activity of microorganisms. Using various types of magnetic field generators is always connected with the delivery of some heat to the system. Heat transfer is a very important phenomenon; it can influence the process positively and negatively, so it’s necessary to measure heat stream transferred from the place of generation and prevent negative influence on the operation. The aim of the presented work was to apply various types of magnetic fields and to measure heat transfer phenomena. The results were obtained by continuous measurement at several measuring points with temperature probes. Results were compilated in the form of temperature profiles. The study investigated the undetermined heat transfer in a custom system equipped with a magnetic field generator. Experimental investigations are provided for the explanation of the influence of the various type of magnetic fields on the heat transfer process. The tested processes are described by means of the criteria which defined heat transfer intensification under the action of magnetic field.

Keywords: heat transfer, magnetic field, undetermined heat transfer, temperature profile

Procedia PDF Downloads 164
6459 A Review of the Relation between Thermofludic Properties of the Fluid in Micro Channel Based Cooling Solutions and the Shape of Microchannel

Authors: Gurjit Singh, Gurmail Singh

Abstract:

The shape of microchannels in microchannel heat sinks can have a significant impact on both heat transfer and fluid flow properties. Heat Transfer, pressure drop, and Some effects of microchannel shape on these properties. The shape of microchannels can affect the heat transfer performance of microchannel heat sinks. Channels with rectangular or square cross-sections typically have higher heat transfer coefficients compared to circular channels. This is because rectangular or square channels have a larger wetted perimeter per unit cross-sectional area, which enhances the heat transfer from the fluid to the channel walls. The shape of microchannels can also affect the pressure drop across the heat sink. Channels with a rectangular cross-section usually have higher pressure drop than circular channels. This is because the corners of rectangular channels create additional flow resistance, which leads to a higher pressure drop. Overall, the shape of microchannels in microchannel heat sinks can have a significant impact on the heat transfer and fluid flow properties of the heat sink. The optimal shape of microchannels depends on the specific application and the desired balance between heat transfer performance and pressure drop.

Keywords: heat transfer, microchannel heat sink, pressure drop, chape of microchannel

Procedia PDF Downloads 55
6458 Heat Transfer Characteristics on Blade Tip with Unsteady Wake

Authors: Minho Bang, Seok Min Choi, Jun Su Park, Hokyu Moon, Hyung Hee Cho

Abstract:

Present study investigates the effect of unsteady wakes on heat transfer in blade tip. Heat/mass transfer was measured in blade tip region depending on a variety of strouhal number by naphthalene sublimation technique. Naphthalene sublimation technique measures heat transfer using a heat/mass transfer analogy. Experiments are performed in linear cascade which is composed of five turbine blades and rotating rods. Strouhal number of inlet flow are changed ranging from 0 to 0.22. Reynolds number is 100,000 based on 11.4 m/s of outlet flow and axial chord length. Three different squealer tip geometries such as base squealer tip, vertical rib squealer tip, and camber line squealer tip are used to study how unsteady wakes affect heat transfer on a blade tip. Depending on squealer tip geometry, different flow patterns occur on a blade tip. Also, unsteady wakes cause reduced tip leakage flow and turbulent flow. As a result, as strouhal number increases, heat/mass transfer coefficients decrease due to the reduced leakage flow. As strouhal number increases, heat/ mass transfer coefficients on a blade tip increase in vertical rib squealer tip.

Keywords: gas turbine, blade tip, heat transfer, unsteady wakes

Procedia PDF Downloads 341
6457 Fouling Mitigation Using Helical Baffle Heat Exchangers and Comparative Analysis Using HTRI Xchanger Suite® Educational Software

Authors: Kiran P. Chadayamuri, Saransh Bagdi

Abstract:

Heat exchangers are devices used to transfer heat from one fluid to another via convection and conduction. The need for effective heat transfer has made their presence vital in hundreds of industries including petroleum refineries, petrochemical plants, fertiliser plants and pharmaceutical companies. Fouling has been one of the major problems hindering efficient transfer of thermal energy in heat exchangers. Several design changes have been coined for fighting fouling. A recent development involves using helical baffles in place of conventional segmented baffles in shell and tube heat exchangers. The aim of this paper is to understand the advantages of helical baffle exchangers, how they aid in fouling mitigation and its corresponding limitations. A comparative analysis was conducted between a helical baffle heat exchanger and a conventional segmented baffle heat exchanger using HTRI Xchanger Suite® Educational software and conclusions were drawn to study how the heat transfer process differs in the two cases.

Keywords: heat transfer, heat exchangers, fouling mitigation, helical baffles

Procedia PDF Downloads 285
6456 Effect of Surfactant on Thermal Conductivity of Ethylene Glycol/Silver Nanofluid

Authors: E. C. Muhammed Irshad

Abstract:

Nanofluids are a new class of solid-liquid colloidal mixture consisting of nanometer sized (< 100nm) solid particles suspended in heat transfer fluids such as water, ethylene/propylene glycol etc. Nanofluids offer excellent scope of enhancing thermal conductivity of common heat transfer fluids and it leads to enhancement of the heat transfer coefficient. In the present study, silver nanoparticles are dispersed in ethylene glycol water mixture. Low volume concentrations (0.05%, 0.1% and 0.15%) of silver nanofluids were synthesized. The thermal conductivity of these nanofluids was determined with thermal property analyzer (KD2 pro apparatus) and heat transfer coefficient was found experimentally. Initially, the thermal conductivity and viscosity of nanofluids were calculated with various correlations at different concentrations and were compared. Thermal conductivity of silver nanofluid at 0.02% and 0.1% concentration of silver nanoparticle increased to 23.3% and 27.7% for Sodium Dodecyl Sulfate (SDS) and to 33.6% and 36.7% for Poly Vinyl Pyrrolidone (PVP), respectively. The nanofluid maintains the stability for two days and it starts to settle down due to high density of silver. But it shows good improvement in the thermal conductivity for low volume concentration and it also shows better improvement with Poly Vinyl Pyrrolidone (PVP) surfactant than Sodium Dodecyl Sulfate (SDS).

Keywords: k-thermal conductivity, sodium dodecyl sulfate, vinyl pyrrolidone, mechatronics engineering

Procedia PDF Downloads 271
6455 Heat Transfer from Block Heat Sources Mounted on the Wall of a 3-D Cabinet to Ambient Natural Convective Air Stream

Authors: J. C. Cheng, Y. L. Tsay, Z. D. Chan, C. H. Yang

Abstract:

In this study the physical system under consideration is a three-dimensional (3-D) cabinet with arrays of block heat sources mounted on one of the walls of the cabinet. The block heat sources dissipate heat to the cabinet surrounding through the conjugate conduction and natural convection. The results illustrate that the difference in hot spot temperatures of the system (θH) for the situations with and without consideration of thermal interaction is higher for smaller Rayleigh number (Ra), and can be up to 94.73% as Ra=10^5. In addition, the heat transfer characteristics depends strongly on the dimensionless heat conductivity of cabinet wall (Kwf), heat conductivity of block (Kpf) and length of cabinet (Ax). The maximum reduction in θH is 70.01% when Kwf varies from 10 to 1000, and it is 30.07% for Ax from 0.5 to 1. While the hot spot temperature of system is not sensitive to the cabinet angle (Φ).

Keywords: block heat sources, 3-D cabinet, thermal interaction, heat transfer

Procedia PDF Downloads 526
6454 CFD simulation of Near Wall Turbulence and Heat Transfer of Molten Salts

Authors: C. S. Sona, Makrand A. Khanwale, Channamallikarjun S. Mathpati

Abstract:

New generation nuclear power plants are currently being developed to be highly economical, to be passive safe, to produce hydrogen. An important feature of these reactors will be the use of coolants at temperature higher than that being used in current nuclear reactors. The molten fluoride salt with a eutectic composition of 46.5% LiF - 11.5% NaF - 42% KF (mol %) commonly known as FLiNaK is a leading candidate for heat transfer coolant for these nuclear reactors. CFD simulations were carried out using large eddy simulations to investigate the flow characteristics of molten FLiNaK at 850°C at a Reynolds number of 10,500 in a cylindrical pipe. Simulation results have been validated with the help of mean velocity profile using direct numerical simulation data. Transient velocity information was used to identify and characterise turbulent structures which are important for transfer of heat across solid-fluid interface. A wavelet transform based methodology called wavelet transform modulus maxima was used to identify and characterise the singularities. This analysis was also used for flow visualisation, and also to calculate the heat transfer coefficient using small eddy model. The predicted Nusselt number showed good agreement with the available experimental data.

Keywords: FLiNaK, heat transfer, molten salt, turbulent structures

Procedia PDF Downloads 424
6453 Experimental Investigation of Heat Transfer and Scale Growth Characteristics of Crystallisation Scale in Agitation Tank

Authors: Prasanjit Das, M .M. K. Khan, M. G. Rasul, Jie Wu, I. Youn

Abstract:

Crystallisation scale occurs when dissolved minerals precipitate from an aqueous solution. To investigate the crystallisation scale growth of normal solubility salt, a lab-scale agitation tank with and without baffles were used as a benchmark using potassium nitrate as the test fluid. Potassium nitrate (KNO3) solution in this test leads to crystallisation scale on heat transfer surfaces. This experimental investigation has focused on the effect of surface crystallisation of potassium nitrate on the low-temperature heat exchange surfaces on the wall of the agitation tank. The impeller agitation rate affects the scaling rate at the low-temperature agitation wall and it shows a decreasing scaling rate with an increasing agitation rate. It was observed that there was a significant variation of heat transfer coefficients and scaling resistance coefficients with different agitation rate as well as with varying impeller size, tank with and without baffles and solution concentration.

Keywords: crystallisation, heat transfer coefficient, scale, resistance

Procedia PDF Downloads 153
6452 Investigation of Cascade Loop Heat Pipes

Authors: Nandy Putra, Atrialdipa Duanovsah, Kristofer Haliansyah

Abstract:

The aim of this research is to design a LHP with low thermal resistance and low condenser temperature. A Self-designed cascade LHP was tested by using biomaterial, sintered copper powder, and aluminum screen mesh as the wick. Using pure water as the working fluid for the first level of the LHP and 96% alcohol as the working fluid for the second level of LHP, the experiments were run with 10W, 20W, and 30W heat input. Experimental result shows that the usage of biomaterial as wick could reduce more temperature at evaporator than by using sintered copper powder and screen mesh up to 22.63% and 37.41% respectively. The lowest thermal resistance occurred during the usage of biomaterial as wick of heat pipe, which is 2.06 oC/W. The usage of cascade system could be applied to LHP to reduce the temperature at condenser and reduced thermal resistance up to 17.6%.

Keywords: biomaterial, cascade loop heat pipe, screen mesh, sintered Cu

Procedia PDF Downloads 234
6451 Analyzing the Effect of Design of Pipe in Shell and Tube Type Heat Exchanger by Measuring Its Heat Transfer Rate by Computation Fluid Dynamics and Thermal Approach

Authors: Dhawal Ladani

Abstract:

Shell and tube type heat exchangers are predominantly used in heat exchange between two fluids and other applications. This paper projects the optimal design of the pipe used in the heat exchanger in such a way to minimize the vibration occurring in the pipe. Paper also consists of the comparison of the different design of the pipe to get the maximize the heat transfer rate by converting laminar flow into the turbulent flow. By the updated design the vibration in the pipe due to the flow is also decreased. Computational Fluid Dynamics and Thermal Heat Transfer analysis are done to justifying the result. Currently, the straight pipe is used in the shell and tube type of heat exchanger where as per the paper the pipe consists of the curvature along with the pipe. Hence, the heat transfer area is also increased and result in the increasing in heat transfer rate. Curvature type design is useful to create turbulence and minimizing the vibration, also. The result will give the output comparison of the effect of laminar flow and the turbulent flow in the heat exchange mechanism, as well as, inverse effect of the boundary layer in heat exchanger is also justified.

Keywords: heat exchanger, heat transfer rate, laminar and turbulent effect, shell and tube

Procedia PDF Downloads 281
6450 Effects of Heat Source Position on Heat Transfer in an Inclined Square Enclosure Filled with Nanofluids

Authors: Khamis Al Kalbani

Abstract:

The effects of a uniform heat source position on the heat transfer flow inside an inclined square enclosure filled with different types of nanofluids having various shapes of the nanoparticles are investigated numerically following one component thermal equilibrium model. The effects of the Brownian diffusion of the nanoparticles, magnetic field intensity and orientation are taken into consideration in nanofluid modeling. The heat source is placed in the middle of a wall of the enclosure while the opposite wall of it is kept at different temperature. The other walls of the enclosure are kept insulated. The results indicate that the heat source position significantly controls the heat transfer rates of the nanofluids. The distributions of the average heat transfer rates varying the position of the heat source with respect to the geometry inclination angle are calculated for the first time. The outcomes of the present research may be helpful for designing solar thermal collectors, radiators, building insulators and advanced cooling of a nuclear system.

Keywords: heat source, inclined, square enclosure, nanofluids

Procedia PDF Downloads 276
6449 Numerical Analysis of Heat and Mass Transfer in an Adsorbent Bed for Different Working Pairs

Authors: N. Allouache, O. Rahli

Abstract:

Solar radiation is by far the largest and the most world’s abundant, clean, and permanent energy source. In recent years, many promising technologies have been developed to harness the sun's energy. These technologies help in environmental protection, economizing energy, and sustainable development, which are the major issues of the world. One of these important technologies is the solar refrigerating machines that make use of either absorption or adsorption technologies. In this present work, the adsorbent bed is modelized and optimized using different working pairs, such as zeolite-water, silica gel-water, activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol. The results show that the enhancement of the heat and mass transfer depends on the properties of the working pair; the performances of the adsorption cycle are essentially influenced by the choice of the adsorbent-adsorbate pair. The system can operate successfully for optimal parameters such as the evaporator, condenser, and generating temperatures. The activated carbon is the best adsorbent due to its high surface area and micropore volume.

Keywords: adsorbent bed, heat and mass transfer, numerical analysis, working pairs

Procedia PDF Downloads 126
6448 Analyses of Natural Convection Heat Transfer from a Heated Cylinder Mounted in Vertical Duct

Authors: H. Bhowmik, A. Faisal, Ahmed Al Yaarubi, Nabil Al Alawi

Abstract:

Experiments are conducted to analyze the steady-state and the power-on transient natural convection heat transfer from a horizontal cylinder mounted in a vertical up flow circular duct. The heat flux ranges from 177 W/m2 to 2426 W/m2 and the Rayleigh number ranges from 1×104 to 4.35×104. For natural air flow and constant heat flux condition, the effects of heat transfer around the cylinder under steady-state condition are investigated. The steady-state results compare favorably with that of the available data. The effects of transient heat transfer data on different angular position of the thermocouple (0o, 90o, 180o) are also reported. It is observed that the transient heat transfer around the cylinder is strongly affected by the position of thermocouples. In the transient region, the rate of heat transfer obtained at 90o and 180o are higher than that of stagnation point (0o). Finally, the dependence of the average Nusselt number on Rayleigh number for steady and transient natural convection heat transfer are analyzed, and a correlation equation is presented.

Keywords: Fourier number, Nusselt number, Rayleigh number, steady state, transient

Procedia PDF Downloads 327
6447 Effect of the Fluid Temperature on the Crude Oil Fouling in the Heat Exchangers of Algiers Refinery

Authors: Rima Harche, Abdelkader Mouheb

Abstract:

The Algiers refinery as all the other refineries always suffers from the problem of stopping of the tubes of heat exchanger. For that a study experimental of this phenomenon was undertaken in site on the cell of heat exchangers E101 (E101 CBA and E101 EDF) intended for the heating of the crude before its fractionation, which are exposed to the problem of the fouling on the side tubes exchangers. It is of tube-calenders type with head floating. Each cell is made up of three heat exchangers, laid out in series.

Keywords: fouling, fluid temperatue , oil, tubular heat exchanger, fouling resistance, modeling, heat transfer coefficient

Procedia PDF Downloads 398
6446 Effect of Flow Holes on Heat Release Performance of Extruded-Type Heat Sink

Authors: Jung Hyun Kim, Gyo Woo Lee

Abstract:

In this study, the enhancement of the heat release performance of an extruded-type heat sink to prepare the large-capacity solar inverter thru the flow holes in the base plate near the heat sources was investigated. Optimal location and number of the holes in the baseplate were determined by using a commercial computation program. The heat release performance of the shape-modified heat sink was measured experimentally and compared with that of the simulation. The heat sink with 12 flow holes in the 18-mm-thick base plate has a 8.1% wider heat transfer area, a 2.5% more mass flow of air, and a 2.7% higher heat release rate than those of the original heat sink. Also, the surface temperature of the base plate was lowered 1.5°C by the holes.

Keywords: heat sink, forced convection, heat transfer, performance evaluation, flow holes

Procedia PDF Downloads 501
6445 Optimisation of Pin Fin Heat Sink Using Taguchi Method

Authors: N. K. Chougule, G. V. Parishwad

Abstract:

The pin fin heat sink is a novel heat transfer device to transfer large amount of heat through with very small temperature differences and it also possesses large uniform cooling characteristics. Pin fins are widely used as elements that provide increased cooling for electronic devices. Increasing demands regarding the performance of such devices can be observed due to the increasing heat production density of electronic components. For this reason, extensive work is being carried out to select and optimize pin fin elements for increased heat transfer. In this paper, the effects of design parameters and the optimum design parameters for a Pin-Fin heat sink (PFHS) under multi-jet impingement case with thermal performance characteristics have been investigated by using Taguchi methodology based on the L9 orthogonal arrays. Various design parameters, such as pin-fin array size, gap between nozzle exit to impingement target surface (Z/d) and air velocity are explored by numerical experiment. The average convective heat transfer coefficient is considered as the thermal performance characteristics. The analysis of variance (ANOVA) is applied to find the effect of each design parameter on the thermal performance characteristics. Then the results of confirmation test with the optimal level constitution of design parameters have obviously shown that this logic approach can effective in optimizing the PFHS with the thermal performance characteristics. The analysis of the Taguchi method reveals that, all the parameters mentioned above have equal contributions in the performance of heat sink efficiency. Experimental results are provided to validate the suitability of the proposed approach.

Keywords: Pin Fin Heat Sink (PFHS), Taguchi method, CFD, thermal performance

Procedia PDF Downloads 218
6444 Boiling Heat Transfer Enhancement Using Hydrophilic Millimeter Copper Free Particles

Authors: Abbasali Abouei Mehrizi, Hao Wang, Leping Zhou

Abstract:

Modification of surface wettability is one of the conventional approaches to manipulate the boiling heat transfer. Instead of direct surface modification, in the present study, the surface is decorated with free copper particles with different hydrophobicity. We used millimeter-sized copper particles with two different hydrophobicity. The surface is covered with untreated, hydrophilic, and a combination of hydrophobic and hydrophilic copper particles separately, and the heat flux and wall superheat temperature was measured experimentally and compared with the bare polished copper surface. The results show that the untreated copper particles can slightly improve the boiling heat transfer when the hydrophilic copper particles have better performance. Combining hydrophilic and hydrophobic copper particles reduces boiling heat transfer.

Keywords: boiling heat transfer, copper balls, hydrophobic, hydrophilic

Procedia PDF Downloads 45
6443 Empirical Heat Transfer Correlations of Finned-Tube Heat Exchangers in Pulsatile Flow

Authors: Jason P. Michaud, Connor P. Speer, David A. Miller, David S. Nobes

Abstract:

An experimental study on finned-tube radiators has been conducted. Three radiators found in desktop computers sized for 120 mm fans were tested in steady and pulsatile flows of ambient air over a Reynolds number range of  50 < Re < 900. Water at 60 °C was circulated through the radiators to maintain a constant fin temperature during the tests. For steady flow, it was found that the heat transfer rate increased linearly with the mass flow rate of air. The pulsatile flow experiments showed that frequency of pulsation had a negligible effect on the heat transfer rate for the range of frequencies tested (0.5 Hz – 2.5 Hz). For all three radiators, the heat transfer rate was decreased in the case of pulsatile flow. Linear heat transfer correlations for steady and pulsatile flow were calculated in terms of Reynolds number and Nusselt number.

Keywords: finned-tube heat exchangers, heat transfer correlations, pulsatile flow, computer radiators

Procedia PDF Downloads 480
6442 Numerical Study of Heat Release of the Symmetrically Arranged Extruded-Type Heat Sinks

Authors: Man Young Kim, Gyo Woo Lee

Abstract:

In this numerical study, we want to present the design of highly efficient extruded-type heat sink. The symmetrically arranged extruded-type heat sinks are used instead of a single extruded or swaged-type heat sink. In this parametric study, the maximum temperatures, the base temperatures between heaters, and the heat release rates were investigated with respect to the arrangements of heat sources, air flow rates, and amounts of heat input. Based on the results we believe that the use of both side of heat sink is to be much better for release the heat than the use of single side. Also from the results, it is believed that the symmetric arrangement of heat sources is recommended to achieve a higher heat transfer from the heat sink.

Keywords: heat sink, forced convection, heat transfer, performance evaluation, symmetrical arrangement

Procedia PDF Downloads 375
6441 Experimental Study of Nucleate Pool Boiling Heat Transfer Characteristics on Laser-Processed Copper Surfaces of Different Patterns

Authors: Luvindran Sugumaran, Mohd Nashrul Mohd Zubir, Kazi Md Salim Newaz, Tuan Zaharinie Tuan Zahari, Suazlan Mt Aznam, Aiman Mohd Halil

Abstract:

With the fast growth of integrated circuits and the trend towards making electronic devices smaller, the heat dissipation load of electronic devices has continued to go over the limit. The high heat flux element would not only harm the operation and lifetime of the equipment but would also impede the performance upgrade brought about by the iteration of technological updates, which would have a direct negative impact on the economic and production cost benefits of rising industries. Hence, in high-tech industries like radar, information and communication, electromagnetic power, and aerospace, the development and implementation of effective heat dissipation technologies were urgently required. Pool boiling is favored over other cooling methods because of its capacity to dissipate a high heat flux at a low wall superheat without the usage of mechanical components. Enhancing the pool boiling performance by increasing the heat transfer coefficient via surface modification techniques has received a lot of attention. There are several surface modification methods feasible today, but the stability and durability of surface modification are the greatest priority. Thus, laser machining is an interesting choice for surface modification due to its low production cost, high scalability, and repeatability. In this study, different patterns of laser-processed copper surfaces are fabricated to investigate the nucleate pool boiling heat transfer performance of distilled water. The investigation showed that there is a significant enhancement in the pool boiling heat transfer performance of the laser-processed surface compared to the reference surface due to the notable increase in nucleation frequency and nucleation site density. It was discovered that the heat transfer coefficients increased when both the surface area ratio and the ratio of peak-to-valley height of the microstructure were raised. It is believed that the development of microstructures on the surface as a result of laser processing is the primary factor in the enhancement of heat transfer performance.

Keywords: heat transfer coefficient, laser processing, micro structured surface, pool boiling

Procedia PDF Downloads 58
6440 Designing a Low Speed Wind Tunnel for Investigating Effects of Blockage Ratio on Heat Transfer of a Non-Circular Tube

Authors: Arash Mirabdolah Lavasani, Taher Maarefdoost

Abstract:

Effect of blockage ratio on heat transfer from non-circular tube is studied experimentally. For doing this experiment a suction type low speed wind tunnel with test section dimension of 14×14×40 and velocity in rage of 7-20 m/s was designed. The blockage ratios varied between 1.5 to 7 and Reynolds number based on equivalent diameter varies in range of 7.5×103 to 17.5×103. The results show that by increasing blockage ratio from 1.5 to 7, drag coefficient of the cam shaped tube decreased about 55 percent. By increasing Reynolds number, Nusselt number of the cam shaped tube increases about 40 to 48 percent in all ranges of blockage ratios.

Keywords: wind tunnel, non-circular tube, blockage ratio, experimental heat transfer, cross-flow

Procedia PDF Downloads 318
6439 Heat Transfer and Diffusion Modelling

Authors: R. Whalley

Abstract:

The heat transfer modelling for a diffusion process will be considered. Difficulties in computing the time-distance dynamics of the representation will be addressed. Incomplete and irrational Laplace function will be identified as the computational issue. Alternative approaches to the response evaluation process will be provided. An illustration application problem will be presented. Graphical results confirming the theoretical procedures employed will be provided.

Keywords: heat, transfer, diffusion, modelling, computation

Procedia PDF Downloads 522
6438 A Design of the Organic Rankine Cycle for the Low Temperature Waste Heat

Authors: K. Fraňa, M. Müller

Abstract:

A presentation of the design of the Organic Rankine Cycle (ORC) with heat regeneration and super-heating processes is a subject of this paper. The maximum temperature level in the ORC is considered to be 110°C and the maximum pressure varies up to 2.5MPa. The selection process of the appropriate working fluids, thermal design and calculation of the cycle and its components are described. With respect to the safety, toxicity, flammability, price and thermal cycle efficiency, the working fluid selected is R134a. As a particular example, the thermal design of the condenser used for the ORC engine with a theoretical thermal power of 179 kW was introduced. The minimal heat transfer area for a completed condensation was determined to be approximately 520m2.

Keywords: organic rankine cycle, thermal efficiency, working fluids, environmental engineering

Procedia PDF Downloads 431
6437 Numerical Modeling of Film Cooling of the Surface at Non-Uniform Heat Flux Distributions on the Wall

Authors: M. V. Bartashevich

Abstract:

The problem of heat transfer at thin laminar liquid film is solved numerically. A thin film of liquid flows down an inclined surface under conditions of variable heat flux on the wall. The use of thin films of liquid allows to create the effective technologies for cooling surfaces. However, it is important to investigate the most suitable cooling regimes from a safety point of view, in order, for example, to avoid overheating caused by the ruptures of the liquid film, and also to study the most effective cooling regimes depending on the character of the distribution of the heat flux on the wall, as well as the character of the blowing of the film surface, i.e., the external shear stress on its surface. In the statement of the problem on the film surface, the heat transfer coefficient between the liquid and gas is set, as well as a variable external shear stress - the intensity of blowing. It is shown that the combination of these factors - the degree of uniformity of the distribution of heat flux on the wall and the intensity of blowing, affects the efficiency of heat transfer. In this case, with an increase in the intensity of blowing, the cooling efficiency increases, reaching a maximum, and then decreases. It is also shown that the more uniform the heating of the wall, the more efficient the heat sink. A separate study was made for the flow regime along the horizontal surface when the liquid film moves solely due to external stress influence. For this mode, the analytical solution is used for the temperature at the entrance region for further numerical calculations downstream. Also the influence of the degree of uniformity of the heat flux distribution on the wall and the intensity of blowing of the film surface on the heat transfer efficiency was also studied. This work was carried out at the Kutateladze Institute of Thermophysics SB RAS (Russia) and supported by FASO Russia.

Keywords: Heat Flux, Heat Transfer Enhancement, External Blowing, Thin Liquid Film

Procedia PDF Downloads 117
6436 An Experimental Study on Heat and Flow Characteristics of Water Flow in Microtube

Authors: Zeynep Küçükakça, Nezaket Parlak, Mesut Gür, Tahsin Engin, Hasan Küçük

Abstract:

In the current research, the single phase fluid flow and heat transfer characteristics are experimentally investigated. The experiments are conducted to cover transition zone for the Reynolds numbers ranging from 100 to 4800 by fused silica and stainless steel microtubes having diameters of 103-180 µm. The applicability of the Logarithmic Mean Temperature Difference (LMTD) method is revealed and an experimental method is developed to calculate the heat transfer coefficient. Heat transfer is supplied by a water jacket surrounding the microtubes and heat transfer coefficients are obtained by LMTD method. The results are compared with data obtained by the correlations available in the literature in the study. The experimental results indicate that the Nusselt numbers of microtube flows do not accord with the conventional results when the Reynolds number is lower than 1000. After that, the Nusselt number approaches the conventional theory prediction. Moreover, the scaling effects in micro scale such as axial conduction, viscous heating and entrance effects are discussed. On the aspect of fluid characteristics, the friction factor is well predicted with conventional theory and the conventional friction prediction is valid for water flow through microtube with a relative surface roughness less than about 4 %.

Keywords: microtube, laminar flow, friction factor, heat transfer, LMTD method

Procedia PDF Downloads 434