Search results for: composite slab
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2109

Search results for: composite slab

2079 A Full-Scale Test of Coping-Girder Integrated Bridge

Authors: Heeyoung Lee, Woosung Bin, Kangseog Seo, Hyojeong Yun, Zuog An

Abstract:

Recently, a new continuous bridge system has been proposed to increase the space under the bridge and to improve aesthetic aspect of the urban area. The main feature of the proposed bridge is to connect steel I-girders and coping by means of prestressed high-strength steel bars and steel plate. The proposed bridge is able to lower the height of the bridge to ensure the workability and efficiency through a reduction of the cost of road construction. This study presents the experimental result of the full-scale connection between steel I-girders and coping under the negative bending moment. The composite behavior is thoroughly examined and discussed under the specific load levels such as service load, factored load and crack load. Structural response showed full composite action until the final load level because no relative displacement between coping and girder was observed. It was also found prestressing force into high-strength bars was able to control tensile stresses of deck slab. This indicated that cracks in deck slab can be controlled by above-mentioned prestressing force.

Keywords: coping, crack, integrated bridge, full-scale test

Procedia PDF Downloads 415
2078 Evaluation and Control of Cracking for Bending Rein-forced One-way Concrete Voided Slab with Plastic Hollow Inserts

Authors: Mindaugas Zavalis

Abstract:

Analysis of experimental tests data of bending one-way reinforced concrete slabs from various articles of science revealed that voided slabs with a grid of hollow plastic inserts inside have smaller mechani-cal and physical parameters compared to continuous cross-section slabs (solid slabs). The negative influence of a reinforced concrete slab is impacted by hollow plastic inserts, which make a grid of voids in the middle of the cross-sectional area of the reinforced concrete slab. A formed grid of voids reduces the slab’s stiffness, which influences the slab’s parameters of serviceability, like deflection and cracking. Prima-ry investigation of data established during experiments illustrates that cracks occur faster in the tensile surface of the voided slab under bend-ing compared to bending solid slab. It means that the crack bending moment force for the voided slab is smaller than the solid slab and the reduction can variate in the range of 14 – 40 %. Reduce of resistance to cracking can be controlled by changing a lot of factors: the shape of the plastic hallow insert, plastic insert height, steps between plastic in-serts, usage of prestressed reinforcement, the diameter of reinforcement bar, slab effective depth, the bottom cover thickness of concrete, effec-tive cross-section of the concrete area about reinforcement and etc. Mentioned parameters are used to evaluate crack width and step of cracking, but existing analytical calculation methods for cracking eval-uation of voided slab with plastic inserts are not so exact and the re-sults of cracking evaluation in this paper are higher than the results of analyzed experiments. Therefore, it was made analytically calculations according to experimental bending tests of voided reinforced concrete slabs with hollow plastic inserts to find and propose corrections for the evaluation of cracking for reinforced concrete voided slabs with hollow plastic inserts.

Keywords: voided slab, cracking, hallow plastic insert, bending, one-way reinforced concrete, serviceability

Procedia PDF Downloads 46
2077 Investigating the Influence of the Ferro Alloys Consumption on the Slab Product Standard Cost with Different Grades Using Regression Analysis (A Case Study of Iran's Iron and Steel Industry)

Authors: Iman Fakhrian, Ali Salehi Manzari

Abstract:

Consistent Profitability is one of the most important priorities in manufacturing companies. One of the fundamental factors for increasing the companies profitability is cost management. Isfahan's mobarakeh steel company is one of the largest producers of the slab product grades in the middle east. Raw material cost constitutes about 70% of the company's expenditures. The costs of the ferro alloys have a remarkable contribution of the raw material costs. This research aims to determine the ferro alloys which have significant effect on the variability of the standard cost of the slab product grades. Used data in this study were collected from standard costing system of isfahan's mobarakeh steel company in 2022. The results of conducting the regression analysis model show that expense items: 03020, 03045, 03125, 03130 and 03150 have dominant role in variability of the standard cost of the slab product grades. In other words, the mentioned ferro alloys have noticeable and significant role in variability of the standard cost of the slab product grades.

Keywords: consistent profitability, ferro alloys, slab product grades, regression analysis

Procedia PDF Downloads 44
2076 Seismic Assessment of Flat Slab and Conventional Slab System for Irregular Building Equipped with Shear Wall

Authors: Muhammad Aji Fajari, Ririt Aprilin Sumarsono

Abstract:

Particular instability of structural building under lateral load (e.g earthquake) will rise due to irregularity in vertical and horizontal direction as stated in SNI 03-1762-2012. The conventional slab has been considered for its less contribution in increasing the stability of the structure, except special slab system such as flat slab turned into account. In this paper, the analysis of flat slab system at Sequis Tower located in South Jakarta will be assessed its performance under earthquake. It consists of 6 floors of the basement where the flat slab system is applied. The flat slab system will be the main focus in this paper to be compared for its performance with conventional slab system under earthquake. Regarding the floor plan of Sequis Tower basement, re-entrant corner signed for this building is 43.21% which exceeded the allowable re-entrant corner is 15% as stated in ASCE 7-05 Based on that, the horizontal irregularity will be another concern for analysis, otherwise vertical irregularity does not exist for this building. Flat slab system is a system where the slabs use drop panel with shear head as their support instead of using beams. Major advantages of flat slab application are decreasing dead load of structure, removing beams so that the clear height can be maximized, and providing lateral resistance due to lateral load. Whilst, deflection at middle strip and punching shear are problems to be detail considered. Torsion usually appears when the structural member under flexure such as beam or column dimension is improper in ratio. Considering flat slab as alternative slab system will keep the collapse due to torsion down. Common seismic load resisting system applied in the building is a shear wall. Installation of shear wall will keep the structural system stronger and stiffer affecting in reduced displacement under earthquake. Eccentricity of shear wall location of this building resolved the instability due to horizontal irregularity so that the earthquake load can be absorbed. Performing linear dynamic analysis such as response spectrum and time history analysis due to earthquake load is suitable as the irregularity arise so that the performance of structure can be significantly observed. Utilization of response spectrum data for South Jakarta which PGA 0.389g is basic for the earthquake load idealization to be involved in several load combinations stated on SNI 03-1726-2012. The analysis will result in some basic seismic parameters such as period, displacement, and base shear of the system; besides the internal forces of the critical member will be presented. Predicted period of a structure under earthquake load is 0.45 second, but as different slab system applied in the analysis then the period will show a different value. Flat slab system will probably result in better performance for the displacement parameter compare to conventional slab system due to higher contribution of stiffness to the whole system of the building. In line with displacement, the deflection of the slab will result smaller for flat slab than a conventional slab. Henceforth, shear wall will be effective to strengthen the conventional slab system than flat slab system.

Keywords: conventional slab, flat slab, horizontal irregularity, response spectrum, shear wall

Procedia PDF Downloads 168
2075 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading

Authors: A. Gherbi, L. Dahmani, A. Boudjemia

Abstract:

This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.

Keywords: ANSYS, cracking pattern, displacements, reinforced concrete slab, smeared reinforcements

Procedia PDF Downloads 164
2074 Structural Behavior of Laterally Loaded Precast Foamed Concrete Sandwich Panel

Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali

Abstract:

Experimental and analytical studies were carried out to investigate the structural behavior of precast foamed concrete sandwich panels (PFCSP) of total number (6) as one-way action slab tested under lateral load. The details of the test setup and procedures were illustrated. The results obtained from the experimental tests were discussed which include the observation of cracking patterns and influence of aspect ratio (L/b). Analytical study of finite element analysis was implemented and degree of composite action of the test panels was also examined in both experimental and analytical studies. Result shows that crack patterns appeared in only one-direction, similar to reports on solid slabs, particularly when both concrete wythes act in a composite manner. Foamed concrete was briefly reviewed and experimental results were compared with the finite element analyses data which gives a reasonable degree of accuracy. Therefore, based on the results obtained, PFCSP slab can be used as an alternative to conventional flooring system.

Keywords: aspect ratio (L/b), finite element analyses (FEA), foamed concrete (FC), precast foamed concrete sandwich panel (PFCSP), ultimate flexural strength capacity

Procedia PDF Downloads 293
2073 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange

Authors: Abdul Qader Melhem, Hacene Badache

Abstract:

This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.

Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors

Procedia PDF Downloads 198
2072 Calculating Quantity of Steel Bar Placed in Mesh Form in a Circular Slab or Dome

Authors: Karam Chand Gupta

Abstract:

When steel reinforcement is placed in mesh form in circular concrete slab at base or domes at top in case of over head service reservoir or any other structure, it is difficult to estimate/measure the total quantity of steel that would be needed or placed. For the purpose of calculating the total length of the steel bars, at present, the practice is – the length of each bar is measured and then added up. This is tiresome and time consuming process. I have derived a mathematics formula with the help of which we can calculate in one line the quantity of total steel that will be needed. This will not only make it easy and time saving but also avoids any error in making entries and calculations.

Keywords: dome, mesh, slab, steel

Procedia PDF Downloads 639
2071 Finite Element Modeling of the Effects of Loss of Rigid Pavements Slab Support Due to Built-In Curling

Authors: Ali Ashtiani, Cesar Carrasco

Abstract:

Accurate determination of thermo-mechanical responses of jointed concrete pavement slabs is essential to implement an effective mechanistic design. Temperature-induced curling of concrete slabs can produce premature top-down cracking in rigid pavements. Curling of concrete slabs can result from daily temperature variation through the slab thickness. The slab curling can also result from temperature gradients due hot weather construction, drying shrinkage and creep that are permanently built into the slabs. The existence of permanent curling implies that concrete slabs are not flat at zero temperature gradient. In this case, slabs may not be in full contact with the underlying base layer when subjecting to traffic. Built-in curling can be a major factor producing loss of slab support. The magnitude of stresses induced in slabs is influenced by the stiffness of the underlying foundation layers and the contact condition along the slab-foundation interface. An approach for finite element modeling of the effect of loss of slab support due to built-in curling is presented in this paper. A series of parametric studies is carried out for a pavement system loaded with a combination of traffic and thermal loads, considering different built-in curling and different foundation rigidities. The results explain the effect of loss of support in the magnitude of stresses produced in concrete slabs. The results of parametric study can also be used to evaluate whether the governing equations that are used to idealize the behavior of jointed concrete pavements and the effect of loss of support have been accurately selected and implemented in the finite element model.

Keywords: built-in curling, finite element modeling, loss of slab support, rigid pavement

Procedia PDF Downloads 128
2070 Simulation Study of the Microwave Heating of the Hematite and Coal Mixture

Authors: Prasenjit Singha, Sunil Yadav, Soumya Ranjan Mohantry, Ajay Kumar Shukla

Abstract:

Temperature distribution in the hematite ore mixed with 7.5% coal was predicted by solving a 1-D heat conduction equation using an implicit finite difference approach. In this work, it was considered a square slab of 20 cm x 20 cm, which assumed the coal to be uniformly mixed with hematite ore. It was solved the equations with the use of MATLAB 2018a software. Heat transfer effects in this 1D dimensional slab convective and the radiative boundary conditions are also considered. Temperature distribution obtained inside hematite slab by considering microwave heating time, thermal conductivity, heat capacity, carbon percentage, sample dimensions, and many other factors such as penetration depth, permittivity, and permeability of coal and hematite ore mixtures. The resulting temperature profile can be used as a guiding tool for optimizing the microwave-assisted carbothermal reduction process of hematite slab was extended to other dimensions as well, viz., 1 cm x 1 cm, 5 cm x 5 cm, 10 cm x 10 cm, 20 cm x 20 cm. The model predictions are in good agreement with experimental results.

Keywords: hematite ore, coal, microwave processing, heat transfer, implicit method, temperature distribution

Procedia PDF Downloads 129
2069 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load

Authors: David Koren, Vojko Kilar

Abstract:

The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab. The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.

Keywords: extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction

Procedia PDF Downloads 277
2068 Sensitivity Analysis of Prestressed Post-Tensioned I-Girder and Deck System

Authors: Tahsin A. H. Nishat, Raquib Ahsan

Abstract:

Sensitivity analysis of design parameters of the optimization procedure can become a significant factor while designing any structural system. The objectives of the study are to analyze the sensitivity of deck slab thickness parameter obtained from both the conventional and optimum design methodology of pre-stressed post-tensioned I-girder and deck system and to compare the relative significance of slab thickness. For analysis on conventional method, the values of 14 design parameters obtained by the conventional iterative method of design of a real-life I-girder bridge project have been considered. On the other side for analysis on optimization method, cost optimization of this system has been done using global optimization methodology 'Evolutionary Operation (EVOP)'. The problem, by which optimum values of 14 design parameters have been obtained, contains 14 explicit constraints and 46 implicit constraints. For both types of design parameters, sensitivity analysis has been conducted on deck slab thickness parameter which can become too sensitive for the obtained optimum solution. Deviations of slab thickness on both the upper and lower side of its optimum value have been considered reflecting its realistic possible ranges of variations during construction. In this procedure, the remaining parameters have been kept unchanged. For small deviations from the optimum value, compliance with the explicit and implicit constraints has been examined. Variations in the cost have also been estimated. It is obtained that without violating any constraint deck slab thickness obtained by the conventional method can be increased up to 25 mm whereas slab thickness obtained by cost optimization can be increased only up to 0.3 mm. The obtained result suggests that slab thickness becomes less sensitive in case of conventional method of design. Therefore, for realistic design purpose sensitivity should be conducted for any of the design procedure of girder and deck system.

Keywords: sensitivity analysis, optimum design, evolutionary operations, PC I-girder, deck system

Procedia PDF Downloads 110
2067 Some Trends in Analysis of Two-Way Solid Slabs

Authors: Reem I. Al-Ya' Goub, Nasim Shatarat

Abstract:

This paper presents the results of analytical and comparative study among software programs' outputs in analysis of some two way solid slabs; flat plate, flat slab with beams and flat slab with drop panels problems that already been analyzed using Classical Equivalent Frame Method (CEFM) by several reinforced concrete book authors. The primary objective of this research is to determine the moment results using various software programs. Then, a summary of the results and differences percentages were obtained to show how analysis procedure effects the outputs of calculations that vary from software program to another when comparing them with the results of CEFM. Moment values were obtained using either the Equivalent Frame Method (EFM) or Finite Element Method (FEM) that's used among many software programs. The results of the analyses demonstrate that software programs vary markedly in terms of the information they provide to the structural designer regarding values of the model insertion, stiffness, effective moment of inertia used and specially the moment values.

Keywords: two-way solid slabs, flat plate, flat slab with beams, flat slab with drop panels, analysis, modeling, EFM, CEFM, FEM

Procedia PDF Downloads 392
2066 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method

Authors: Felix Jr. Garde, Eric Augustus Tingatinga

Abstract:

Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.

Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method

Procedia PDF Downloads 295
2065 Influence of the Eccentricity of a Concentrated Load on the Behavior of Multilayers Slabs

Authors: F. Bouzeboudja, K. Ait-Tahar

Abstract:

The method of strengthening of concrete works by composite materials is a practice which knows currently an important development. From this perspective, we propose to make a contribution to the analysis of the behavior of concrete slabs reinforced with composite fabrics, arranged in parallel folds according to the thickness of the slab. The analysis of experimentally obtained modes of failure confirms, generally, that the ruin of the structure occurs essentially by punching. Accordingly, our work is directed to the analysis of the behavior of reinforced slabs towards the punching. An experimental investigation is realized. For that purpose, a set of trial specimens was made. The reinforced specimens are subjected to an essay of punching, by making vary the direction of the eccentricity. The first experimental results show that the ultimate loads, as well as the transition from the flexion failure mode to the punching failure mode, are governed essentially by the eccentricity.

Keywords: composites, concrete slabs, failure, laminate, punching

Procedia PDF Downloads 214
2064 Experimental and Analytical Investigation of Seismic Behavior of Concrete Beam-Column Joints Strengthened by Fiber-Reinforced Polymers Jacketing

Authors: Ebrahim Zamani Beydokhti, Hashem Shariatmadar

Abstract:

This paper presents an experimental and analytical investigation on the behavior of retrofitted beam-column joints subjected to reversed cyclic loading. The experimental program comprises 8 external beam–column joint connection subassemblages tested in 2 phases; one was the damaging phase and second was the repairing phase. The beam-column joints were no seismically designed, i.e. the joint, beam and column critical zones had no special transverse stirrups. The joins were tested under cyclic loading in previous research. The experiment had two phases named damage phase and retrofit phase. Then the experimental results compared with analytical results achieved from modeling in OpenSees software. The presence of lateral slab and the axial load amount were analytically investigated. The results showed that increasing the axial load and presence of lateral slab increased the joint capacity. The presence of lateral slab increased the dissipated energy, while the axial load had no significant effect on it.

Keywords: concrete beam-column joints, CFRP sheets, lateral slab, axial load

Procedia PDF Downloads 120
2063 Surveillance for African Swine Fever and Classical Swine Fever in Benue State, Nigeria

Authors: A. Asambe, A. K. B. Sackey, L. B. Tekdek

Abstract:

A serosurveillance study was conducted to detect the presence of antibodies to African swine fever virus (ASFV) and Classical swine fever virus in pigs sampled from piggeries and Makurdi central slaughter slab in Benue State, Nigeria. 416 pigs from 74 piggeries across 12 LGAs and 44 pigs at the Makurdi central slaughter slab were sampled for serum. The sera collected were analysed using Indirect Enzyme Linked Immunosorbent Assay (ELISA) test kit to test for antibodies to ASFV, while competitive ELISA test kit was used to test for antibodies to CSFV. Of the 416 pigs from piggeries and 44 pigs sampled from the slaughter slab, seven (1.7%) and six (13.6%), respectively, tested positive to ASFV antibodies and was significantly associated (p < 0.0001). Out of the 12 LGAs sampled, Obi LGA had the highest ASFV antibody detection rate of (4.8%) and was significantly associated (p < 0.0001). None of the samples tested positive to CSFV antibodies. The study concluded that antibodies to CSFV were absent in the sampled pigs in piggeries and at the Makurdi central slaughter slab in Benue State, while antibodies to ASFV were present in both locations; hence, the need to keep an eye open for CSF too since both diseases may pose great risk in the study area. Further studies to characterise the ASFV circulating in Benue State and investigate the possible sources is recommended. Routine surveillance to provide a comprehensive and readily accessible data base to plan for the prevention of any fulminating outbreak is also recommended.

Keywords: African swine fever, classical swine fever, piggery, slaughter slab, surveillance

Procedia PDF Downloads 166
2062 Mathematical Analysis of Matrix and Filler Formulation in Composite Materials

Authors: Olusegun A. Afolabi, Ndivhuwo Ndou

Abstract:

Composite material is an important area that has gained global visibility in many research fields in recent years. Composite material is the combination of separate materials with different properties to form a single material having different properties from the parent materials. Material composition and combination is an important aspect of composite material. The focus of this study is to provide insight into an easy way of calculating the compositions and formulations of constituent materials that make up any composite material. The compositions of the matrix and filler used for fabricating composite materials are taken into consideration. From the composite fabricated, data can be collected and analyzed based on the test and characterizations such as tensile, flexural, compression, impact, hardness, etc. Also, the densities of the matrix and the filler with regard to their constituent materials are discussed.

Keywords: composite material, density, filler, matrix, percentage weight, volume fraction

Procedia PDF Downloads 37
2061 Evaluation of Structural Integrity for Composite Lattice Structure

Authors: Jae Moon Im, Kwang Bok Shin, Sang Woo Lee

Abstract:

In this paper, evaluation of structural integrity for composite lattice structure was conducted by compressive test. Composite lattice structure was manufactured by carbon fiber using filament winding method. In order to evaluate the structural integrity of composite lattice structure, compressive test was done using anti-buckling fixture. The delamination occurred 84 Tons of compressive load. It was found that composite lattice structure satisfied the design requirements.

Keywords: composite material, compressive test, lattice structure, structural integrity

Procedia PDF Downloads 468
2060 Investigation of the Progressive Collapse Potential in Steel Buildings with Composite Floor System

Authors: Pouya Kaafi, Gholamreza Ghodrati Amiri

Abstract:

Abnormal loads due to natural events, implementation errors and some other issues can lead to occurrence of progressive collapse in structures. Most of the past researches consist of 2- Dimensional (2D) models of steel frames without consideration of the floor system effects, which reduces the accuracy of the modeling. While employing a 3-Dimensional (3D) model and modeling the concrete slab system for the floors have a crucial role in the progressive collapse evaluation. In this research, a 3D finite element model of a 5-story steel building is modeled by the ABAQUS software once with modeling the slabs, and the next time without considering them. Then, the progressive collapse potential is evaluated. The results of the analyses indicate that the lack of the consideration of the slabs during the analyses, can lead to inaccuracy in assessing the progressive failure potential of the structure.

Keywords: abnormal loads, composite floor system, intermediate steel moment resisting frame system, progressive collapse

Procedia PDF Downloads 435
2059 Effect of Pressing Pressure on Mechanical Properties of Elaeis guineensis Jacq. Fronds-Based Composite Board

Authors: Ellisha Iling, Dayang Siti Hazimmah Ali

Abstract:

Experimental composite boards were fabricated using oil palm (Elaeis guineensis Jacq) fronds particles by applying hot press pressure of 5MPa, 6MPa and 7MPa respectively. Modulus of rupture (MOR) and internal bond strength (IB) of the composite boards made with target density of 0.80 g/cm³ were evaluated. Composite board fabricated under hot press pressure of 5MPa had MOR and IB values of 16.27 and 4.34 N/mm² respectively. Corresponding values for composite board fabricated under hot press pressure of 6MPa were 16.76 and 5.41 N/mm² respectively. Whereas, the MOR and IB values of composite board fabricated under hot press pressure of 7MPa were 17.24 and 6.19 N/mm² respectively. All composite boards met the MOR and IB requirement stated in Japanese Industrial Standard (JIS). Based on results of this work, the strength of mechanical properties of composite board increased with increase of hot press pressure. This study revealed that the selection of applied pressure during fabrication of composite board is important to improve mechanical properties of composite boards.

Keywords: composite board, Elaeis guineensis Jacq. Fronds, hot press pressure, mechanical properties

Procedia PDF Downloads 164
2058 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs

Authors: Gaurav Sancheti

Abstract:

This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.

Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques

Procedia PDF Downloads 195
2057 An Analytical Approach to Calculate Thermo-Mechanical Stresses in Integral Abutment Bridge Piles

Authors: Jafar Razmi

Abstract:

Integral abutment bridges are bridges that do not have joints. If these bridges are subject to large seasonal and daily temperature variations, the expansion and contraction of the bridge slab is transferred to the piles. Since the piles are deep into the soil, displacement induced by slab can cause bending and stresses in piles. These stresses cause fatigue and failure of piles. A complex mechanical interaction exists between the slab, pile, soil and abutment. This complex interaction needs to be understood in order to calculate the stresses in piles. This paper uses a mechanical approach in developing analytical equations for the complex structure to determine the stresses in piles. The solution to these analytical solutions is developed and compared with finite element analysis results and experimental data. Our comparison shows that using analytical approach can accurately predict the displacement in piles. This approach offers a simplified technique that can be utilized without the need for computationally extensive finite element model.

Keywords: integral abutment bridges, piles, thermo-mechanical stress, stress and strains

Procedia PDF Downloads 219
2056 Lateral Buckling of Nanoparticle Additive Composite Beams

Authors: Gürkan Şakar, Akgün Alsaran, Emrah E. Özbaldan

Abstract:

In this study, lateral buckling analysis of composite beams with particle additive was carried out experimentally and numerically. The effects of particle type, particle addition ratio on buckling loads of composite beams were determined. The numerical studies were performed with ANSYS package. In the analyses, clamped-free boundary condition was assumed. The load carrying capabilities of composite beams were influenced by different particle types and particle addition ratios.

Keywords: lateral buckling, nanoparticle, composite beam, numeric analysis

Procedia PDF Downloads 446
2055 Shear Strengthening of Reinforced Concrete Flat Slabs Using Prestressing Bars

Authors: Haifa Saleh, Kamiran Abduka, Robin Kalfat, Riadh Al-Mahaidi

Abstract:

The effectiveness of using pre-stressing steel bars for shear strengthening of high strength reinforced concrete (RC) slabs was assessed. Two large-scale RC slabs were tested, one without shear reinforcement and the second strengthened against punching shear failure using pre-stressing steel bars. The two slabs had the same dimensions, flexural reinforcement ratio, loading and support arrangements. The experimental program including the method of strengthening, set up and instrumentation are described in this paper. The experimental results are analyzed and discussed in terms of the structural behavior of the RC slabs, the performance of pre-stressing steel bolts and failure modes. The results confirmed that the shear strengthening technique increased the shear capacity, ductility and yield capacity of the slab by up to 15%, 44%, and 22%, respectively compared to the unstrengthened slab. The strengthening technique also successfully contributed to changing the failure mode from a brittle punching shear mode to ductile flexural failure mode. Vic3D digital image correlation system (photogrammetry) was also used in this research. This technique holds several advantages over traditional contact instrumentations including that it is inexpensive, it produces results that are simple to analyze and it is remote visualization technique. The displacement profile along the span of the slab and rotation has been found and compared with the results obtained from traditional sensors. The performance of the photogrammetry technique was very good and the results of both measurements were in very close agreement.

Keywords: flat slab, photogrammetry, punching shear, strengthening

Procedia PDF Downloads 132
2054 Geospatial Modeling of Dry Snow Avalanches Distribution Using Geographic Information Systems and Remote Sensing: A Case Study of the Šar Mountains (Balkan Peninsula)

Authors: Uroš Durlević, Ivan Novković, Nina Čegar, Stefanija Stojković

Abstract:

Snow avalanches represent one of the most dangerous natural phenomena in mountain regions worldwide. Material and human casualties caused by snow avalanches can be very significant. In this study, using geographic information systems and remote sensing, the natural conditions of the Šar Mountains were analyzed for geospatial modeling of dry slab avalanches. For this purpose, the Fuzzy Analytic Hierarchy Process (FAHP) multi-criteria analysis method was used, within which fifteen environmental criteria were analyzed and evaluated. Based on the existing analyzes and results, it was determined that a significant area of the Šar Mountains is very highly susceptible to the occurrence of dry slab avalanches. The obtained data can be of significant use to local governments, emergency services, and other institutions that deal with natural disasters at the local level. To our best knowledge, this is one of the first research in the Republic of Serbia that uses the FAHP method for geospatial modeling of dry slab avalanches.

Keywords: GIS, FAHP, Šar Mountains, snow avalanches, environmental protection

Procedia PDF Downloads 67
2053 Sintering of Composite Ceramic based on Corundum with Additive in the Al2O3-TiO2-MnO System

Authors: Aung Kyaw Moe, Lukin Evgeny Stepanovich, Popova Nelya Alexandrovna

Abstract:

In this paper, the effect of the additive content in the Al2O3-TiO2-MnO system on the sintering of composite ceramics based on corundum was studied. The samples were pressed by uniaxial semi-dry pressing under 100 MPa and sintered at 1500 °С and 1550 °С. The properties of composite ceramics for porosity and flexural strength were studied. When the amount of additives increases, the properties of composite ceramic samples are better than samples without additives.

Keywords: ceramic, composite material, sintering, corundum

Procedia PDF Downloads 276
2052 Tribological Behavior of Warm Rolled Spray Formed Al-6Si-1Mg-1Graphite Composite

Authors: Surendra Kumar Chourasiya, Sandeep Kumar, Devendra Singh

Abstract:

In the present investigation tribological behavior of Al-6Si-1Mg-1Graphite composite has been explained. The composite was developed through the unique spray forming route in the spray forming chamber by using N₂ gas at 7kg/cm² and the flight distance was 400 mm. Spray formed composite having a certain amount of porosity which was reduced by the deformations. The composite was subjected to the warm rolling (WR) at 250ºC up to 40% reduction. Spray forming composite shows the considerable microstructure refinement, equiaxed grains, distribution of silicon and graphite particles in the primary matrix of the composite. Graphite (Gr) was incorporated externally during the process that works as a solid lubricant. Porosity decreased after reduction and hardness increases. Pin on disc test has been performed to analyze the wear behavior which is the function of sliding distance for all percent reduction of the composite. 30% WR composite shows the better result of wear rate and coefficient of friction. The improved wear properties of the composite containing Gr are discussed in light of the microstructural features of spray formed the composite and the nature of the debris particles. Scanning electron microscope and optical microscope analysis of the present material supported the prediction of aforementioned changes.

Keywords: Al-6Si-1Mg-1Graphite, spray forming, warm rolling, wear

Procedia PDF Downloads 539
2051 Non-Circular Carbon Fiber Reinforced Polymers Chainring Failure Analysis

Authors: A. Elmikaty, Z. Thanawarothon, L. Mezeix

Abstract:

This paper presents a finite element model to simulate the teeth failure of non-circular composite chainring. Model consists of the chainring and a part of the chain. To reduce the size of the model, only the first 11 rollers are simulated. In order to validate the model, it is firstly applied to a circular aluminum chainring and evolution of the stress in the teeth is compared with the literature. Then, effect of the non-circular shape is studied through three different loading positions. Strength of non-circular composite chainring and failure scenario is investigated. Moreover, two composite lay-ups are proposed to observe the influence of the stacking. Results show that composite material can be used but the lay-up has a large influence on the strength. Finally, loading position does not have influence on the first composite failure that always occurs in the first tooth.

Keywords: CFRP, composite failure, FEA, non-circular chainring

Procedia PDF Downloads 270
2050 Development and Analysis of Waste Human Hair Fiber Reinforced Composite

Authors: Tesfaye Worku

Abstract:

Human hair, chicken feathers, and hairs of other birds and animals are commonly described as waste products, and the currently available disposal methods, such as burying and burning these waste products, are contributing to environmental pollution. However, those waste products are used to develop fiber-reinforced textile composite material. In this research work, the composite was developed using human hair fiber and analysis of the mechanical and physical properties of the developed composite sample. A composite sample was made with different ratios of human hair and unsaturated polyester resin, and an analysis of the mechanical and physical properties of the developed composite sample was tested according to standards. The fabricated human hair fibers reinforced polymer matrix composite sample has given encouraging results in terms of high strength and rigidity for lightweight house ceiling board material.

Keywords: composite, human hair fiber, matrix, unsaturated polyester

Procedia PDF Downloads 32