Search results for: clay nanoparticles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1979

Search results for: clay nanoparticles

1769 Semiconductor Supported Gold Nanoparticles for Photodegradation of Rhodamine B

Authors: Ahmad Alshammari, Abdulaziz Bagabas, Muhamad Assulami

Abstract:

Rhodamine B (RB) is a toxic dye used extensively in textile industry, which must be remediated before its drainage to the environment. In the present study, supported gold nanoparticles on commercially available titania and zincite were successfully prepared and then their activity on the photodegradation of RB under UV-A light irradiation were evaluated. The synthesized photocatalysts were characterized by ICP, BET, XRD, and TEM. Kinetic results showed that Au/TiO2 was an inferior photocatalyst to Au/ZnO. This observation could be attributed to the strong reflection of UV irradiation by gold nanoparticles over TiO2 support.

Keywords: supported AuNPs, semiconductor photocatalyst, photodegradation, rhodamine B

Procedia PDF Downloads 416
1768 Antibacterial Wound Dressing Based on Metal Nanoparticles Containing Cellulose Nanofibers

Authors: Mohamed Gouda

Abstract:

Antibacterial wound dressings based on cellulose nanofibers containing different metal nanoparticles (CMC-MNPs) were synthesized using an electrospinning technique. First, the composite of carboxymethyl cellulose containing different metal nanoparticles (CMC/MNPs), such as copper nanoparticles (CuNPs), iron nanoparticles (FeNPs), zinc nanoparticles (ZnNPs), cadmium nanoparticles (CdNPs) and cobalt nanoparticles (CoNPs) were synthesized, and finally, these composites were transferred to the electrospinning process. Synthesized CMC-MNPs were characterized using scanning electron microscopy (SEM) coupled with high-energy dispersive X-ray (EDX) and UV-visible spectroscopy used to confirm nanoparticle formation. The SEM images clearly showed regular flat shapes with semi-porous surfaces. All MNPs were well distributed inside the backbone of the cellulose without aggregation. The average particle diameters were 29-39 nm for ZnNPs, 29-33 nm for CdNPs, 25-33 nm for CoNPs, 23-27 nm for CuNPs and 22-26 nm for FeNPs. Surface morphology, water uptake and release of MNPs from the nanofibers in water and antimicrobial efficacy were studied. SEM images revealed that electrospun CMC-MNPs nanofibers are smooth and uniformly distributed without bead formation with average fiber diameters in the range of 300 to 450 nm. Fiber diameters were not affected by the presence of MNPs. TEM images showed that MNPs are present in/on the electrospun CMC-MNPs nanofibers. The diameter of the electrospun nanofibers containing MNPs was in the range of 300–450 nm. The MNPs were observed to be spherical in shape. The CMC-MNPs nanofibers showed good hydrophilic properties and had excellent antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus.

Keywords: electrospinning technique, metal nanoparticles, cellulosic nanofibers, wound dressing

Procedia PDF Downloads 300
1767 Synthesis of Plant-Mediated Silver Nanoparticles Using Erythrina indica Extract and Evaluation of Their Anti-Microbial Activities

Authors: Chandra Sekhar Singh, P. Chakrapani, B. Arun Jyothi, A. Roja Rani

Abstract:

The green synthesis of metallic nanoparticles (NPs) involves biocompatible ingredients under physiological conditions of temperature and pressure. Moreover, the biologically active molecules involved in the green synthesis of NPs act as functionalizing ligands, making these NPs more suitable for biomedical applications. Among the most important bioreductants are plant extracts, which are relatively easy to handle, readily available, low cost, and have been well explored for the green synthesis of other nanomaterials. Various types of metallic NPs have already been synthesized using plant extracts. They have wide applicability in various areas such as electronics, catalysis, chemistry, energy, and medicine. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In our study, we were described a cost effective and environment friendly technique for green synthesis of silver nanoparticles from 1mM AgNO3 solution through the aqueous extract of Erythrina indica as reducing as well as capping agent. Nanoparticles were characterized using UV–Vis absorption spectroscopy, FTIR, XRD, X-ray diffraction, SEM and TEM analysis showed the average particle size of 30 nm as well as revealed their spherical structure. Further these biologically synthesized nanoparticles were found to be highly toxic against different human pathogens viz. two Gram positive namely Klebsiella pneumonia and Bacillus subtilis bacteria and two were Gram negative bacteria namely Staphylococcus aureus and Escherichia coli (E. coli). This is for the first time reporting that Erythrina indica plant extract was used for the synthesis of nanoparticles.

Keywords: silver nanoparticles, green synthesis, antibacterial activity, FTIR, TEM, SEM

Procedia PDF Downloads 456
1766 Structural and Magnetic Properties of CoFe2O4:Nd3+/Dy3+/Pr3+/Gd3+ Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method and Annealing Effect

Authors: Raghvendra Singh Yadav, Ivo Kuřitka, Jaromir Havlica, Zuzana Kozakova, Jiri Masilko, Lukas Kalina, Miroslava Hajdúchová, Vojtěch Enev, Jaromir Wasserbauer

Abstract:

In this work, we investigated the structural and magnetic properties of CoFe2O4:Nd3+/Dy3+/Pr3+/Gd3+ nanoparticles synthesized by starch-assisted sol-gel combustion method. X-ray diffraction pattern confirmed the formation of cubic spinel structure of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) doped CoFe2O4 spinel ferrite nanoparticles. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles. The field emission scanning electron microscopy study revealed the effect of annealing temperature on size of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles and particles were in the range of 10-100 nm. The magnetic properties of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with annealing temperature/ particle size of rare-earth ions (Nd3+, Dy3+, Pr3+, Gd3+) substituted CoFe2O4 nanoparticles was observed. Acknowledgment: This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: starch, sol-gel combustion method, rare-earth ions, spinel ferrite nanoparticles, magnetic properties

Procedia PDF Downloads 329
1765 The Use of Rice Husk Ash as a Stabilizing Agent in Lateritic Clay Soil

Authors: J. O. Akinyele, R. W. Salim, K. O. Oikelome, O. T. Olateju

Abstract:

Rice Husk (RH) is the major byproduct in the processing of paddy rice. The management of this waste has become a big challenge to some of the rice producers, some of these wastes are left in open dumps while some are burn in the open space, and these two actions have been contributing to environmental pollution. This study evaluates an alternative waste management of this agricultural product for use as a civil engineering material. The RH was burn in a controlled environment to form Rice Husk Ash (RHA). The RHA was mix with lateritic clay at 0, 2, 4, 6, 8, and 10% proportion by weight. Chemical test was conducted on the open burn and controlled burn RHA with the lateritic clay. Physical test such as particle size distribution, Atterberg limits test, and density test were carried out on the mix material. The chemical composition obtained for the RHA showed that the total percentage compositions of Fe2O3, SiO2 and Al2O3 were found to be above 70% (class “F” pozzolan) which qualifies it as a very good pozzolan. The coefficient of uniformity (Cu) was 8 and coefficient of curvature (Cc) was 2 for the soil sample. The Plasticity Index (PI) for the 0, 2, 4, 6, 8. 10% was 21.0, 18.8, 16.7, 14.4, 12.4 and 10.7 respectively. The work concluded that RHA can be effectively used in hydraulic barriers and as a stabilizing agent in soil stabilization.

Keywords: rice husk ash, pozzolans, paddy rice, lateritic clay

Procedia PDF Downloads 296
1764 Competitive Adsorption of Heavy Metals onto Natural and Activated Clay: Equilibrium, Kinetics and Modeling

Authors: L. Khalfa, M. Bagane, M. L. Cervera, S. Najjar

Abstract:

The aim of this work is to present a low cost adsorbent for removing toxic heavy metals from aqueous solutions. Therefore, we are interested to investigate the efficiency of natural clay minerals collected from south Tunisia and their modified form using sulfuric acid in the removal of toxic metal ions: Zn(II) and Pb(II) from synthetic waste water solutions. The obtained results indicate that metal uptake is pH-dependent and maximum removal was detected to occur at pH 6. Adsorption equilibrium is very rapid and it was achieved after 90 min for both metal ions studied. The kinetics results show that the pseudo-second-order model describes the adsorption and the intraparticle diffusion models are the limiting step. The treatment of natural clay with sulfuric acid creates more active sites and increases the surface area, so it showed an increase of the adsorbed quantities of lead and zinc in single and binary systems. The competitive adsorption study showed that the uptake of lead was inhibited in the presence of 10 mg/L of zinc. An antagonistic binary adsorption mechanism was observed. These results revealed that clay is an effective natural material for removing lead and zinc in single and binary systems from aqueous solution.

Keywords: heavy metal, activated clay, kinetic study, competitive adsorption, modeling

Procedia PDF Downloads 193
1763 Magnetic Nanoparticles for Protein C Purification

Authors: Duygu Çimen, Nilay Bereli, Adil Denizli

Abstract:

In this study is to synthesis magnetic nanoparticles for purify protein C. For this aim, N-Methacryloyl-(L)-histidine methyl ester (MAH) containing 2-hydroxyethyl methacrylate (HEMA) based magnetic nanoparticles were synthesized by using micro-emulsion polymerization technique for templating protein C via metal chelation. The obtained nanoparticles were characterized with Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), zeta-size analysis and electron spin resonance (ESR) spectroscopy. After that, they were used for protein C purification from aqueous solution to evaluate/optimize the adsorption condition. Hereby, the effecting factors such as concentration, pH, ionic strength, temperature, and reusability were evaluated. As the last step, protein C was determined with sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Keywords: immobilized metal affinity chromatography (IMAC), magnetic nanoparticle, protein C, hydroxyethyl methacrylate (HEMA)

Procedia PDF Downloads 390
1762 Microstructure and Mechanical Evaluation of PMMA/Al₂O₃ Nanocomposite Fabricated via Friction Stir Processing

Authors: Reham K. El Sawah, N. S. M. El-Tayeb

Abstract:

This study aims to produce a polymer matrix composite reinforced with Al₂O₃ nanoparticles in order to enhance the mechanical properties of PMMA. The composite was fabricated via Friction stir processing to ensure homogenous dispersion of Al₂O₃ nanoparticles in the polymer, and the processing was submerged to prevent the sputtering of nanoparticles. The surface quality, microstructure, impact energy and hardness of the prepared samples were investigated. Good surface quality and dispersion of nanoparticles were attained through employing sufficient processing conditions. The experimental results indicated that as the percentage of nanoparticles increased, the impact energy and hardness increased, reaching 2 kJ/m2 and 14.7 HV at a nanoparticle concentration of 25%, which means that the toughness and the hardness of the polymer-ceramic produced composite is higher than unprocessed PMMA by 66% and 33% respectively.

Keywords: friction stir processing, polymer matrix nanocomposite, mechanical properties, microstructure

Procedia PDF Downloads 143
1761 Alumina Nanoparticles in One-Pot Synthesis of Pyrazolopyranopyrimidinones

Authors: Saeed Khodabakhshi, Alimorad Rashidi, Ziba Tavakoli, Sajad Kiani, Sadegh Dastkhoon

Abstract:

Alumina nanoparticles (γ-Al2O3 NPs) were prepared via a new and simple synthetic route and characterized by field emission scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy. The catalytic activity of prepared γ-Al2O3 NPs was investigated for the one-pot, four-component synthesis of fused tri-heterocyclic compounds containing pyrazole, pyran, and pyrimidine. This procedure has some advantages such as high efficiency, simplicity, high rate and environmental safety.

Keywords: alumina nanoparticles, one-pot, fused tri-heterocyclic compounds, pyran

Procedia PDF Downloads 295
1760 The Effect of Different Metal Nanoparticles on Growth and Survival of Pseudomonas syringae Bacteria

Authors: Omar Alhamd, Peter A. Thomas, Trevor J. Greenhough, Annette K. Shrive

Abstract:

The Pseudomonas syringae species complex includes many plant pathogenic strains with highly specific interactions with varied host species and cultivars. The rapid spread of these bacteria over the last ten years has become a cause for concern. Nanoparticles have previously shown promise in microbiological action. We have therefore investigated in vitro and in vivo the effects of different types and sizes of nanoparticles in order to provide quantitative information about their effect on the bacteria. The effects of several different nanoparticles against several bacteria strains were investigated. The effect of NP on bacterial growth was studied by measuring the optical density, biochemical and nutritional tests, and transmission electron microscopy (TEM) to determine the shape and size of NP. Our results indicate that their effects varied, with either a negative or a positive impact on both bacterial and plant growth. Additionally, the methods of exposure to nanoparticles have a crucial role in accumulation, translocation, growth response and bacterial growth. The results of our studies on the behaviour and effects of nanoparticles in model plants showed. Cerium oxide (CeO₂) and silver (Ag) NP showed significant antibacterial activity against several pathogenic bacteria. It was found that titanium nanoparticles (TiO₂) can have either a negative or a positive impact, according to concentration and size. It is also thought that environmental conditions can have a major influence on bacterial growth. Studies were therefore also carried out under some environmental stress conditions to test bacterial survival and to assess bacterial virulence. All results will be presented including information about the effects of different nanoparticles on Pseudomonas syringae bacteria.

Keywords: plant microbiome, nanoparticles, 16S rRNA gene sequencing, bacterial survival

Procedia PDF Downloads 178
1759 Antibacterial Activity of Calendula officinalis Extract Loaded Chitosan Nanoparticles

Authors: Sanjay Singh, Swati Jaiswal, Prashant Mishra

Abstract:

Nanoparticle based formulations of drug delivery systems have shown their potential in improving the performance of existing drugs and have opened avenues for new therapies. Calendula extract is a low cost, wide spectrum bioactive material that has been used for a long term therapy of various infections. Aim: The aim of this study was to develop Calendula officinalis extract based nanoformulations and to study the antibacterial activity of either Calendula extract loaded chitosan nanoparticles or Calendula extract coated silver nanoparticles for increased bioavailability and their long term effect. Methods: Chitosan nanoparticles were prepared by the process of ionotropic gelation, based on interaction between the negative groups of tri polyphosphate (TPP) and positively charged amino groups of chitosan. The size of the Calendula extract-loaded chitosan particles was determined using dynamic light scattering and scanning electron microscopy. Antibacterial activities of these formulations were determined based on minimum inhibitory concentration and time kill studies. In addition, silver nanoparticles were also synthesized in the presence of Calendula extract and characterized by UV visible spectrum, DLS and XRD. Experiments were conducted on 96-plates against two Gram-positive bacteria; Staphylococcus aureus and Bacillus subtilis two Gram-negative bacteria; Escherichia coli and Pseudomonas aeruginosa. Results: Results demonstrated time dependent antibacterial activity against different microbes studied. Both Calendula extract and Calendula extract loaded chitosan nanoparticles have shown good antimicrobial activity against both Gram positive and Gram negative bacteria. Conclusion: Calendula extract loaded chitosan nanoparticles and calendula extract coated silver nanoparticles are potential antibacterial for their long term antibacterial effects.

Keywords: antibacterial, Calendula extract, chitosan nanoparticles, silver nanoparticles

Procedia PDF Downloads 319
1758 Comparative Analysis of Water-Based Alumina Nanoparticles with Water-Based Cupric Nanoparticles Past an Exponentially Accelerated Vertical Radiative Riga Plate with Heat Transfer

Authors: Kanayo Kenneth Asogwa

Abstract:

The influence of the flow of nanoparticles in nanofluids across a vertical surface is significant, and its application in medical sciences, engineering, pharmaceutical, and food industries is enormous & widely published. However, the comparative examination of alumina nanoparticles with cupric nanoparticles past a rapid progressive Riga plate remains unknown. Thus, this report investigates water-based alumina and cupric nanoparticles passing through an exponentially accelerated Riga plate. Nanofluids containing copper (II) oxide (CuO) and aluminum oxide (Al2O3) nanoparticles are considered. The Laplace transform technique is used to solve the partial differential equations guiding the flow. The effect of various factors on skin friction coefficient, Nusselt number, velocity and temperature profiles is investigated and reported in tabular and graphical form. The upsurge of Modified Hartmann number and radiative impact improves copper (II) oxide nanofluid compared to aluminum oxide nanofluid due to Lorentz force and since CuO is a better heat conductor. At the same time, heat absorption and reactive species favor a slight decline in Alumina nanofluid than Cupric nanofluid in the thermal and velocity fields. The higher density of Cupric nanofluid is enhanced by increasing nanoparticle volume fraction over Alumina nanofluid with a decline in velocity distribution.

Keywords: alumina, cupric, nanoparticles, water-based

Procedia PDF Downloads 175
1757 Umm Arrazam, Libyan Driling Fluid Resistivity Evaluation

Authors: Omar Hussein El Ayadi, Ali Mustafa Alkekly, Nader Ahmad Musa

Abstract:

Search and evaluate locale source of raw material which can be used as drilling fluid is one of most important economical target. Hopefully, to use Libyan clay that cost less than importing it from outside. Resistivity measurement and control is of primary concern in connection with electrical logging. The influences of resistivity utilizing Umm Arrazam clay were laboratory investigated at ambient condition (room temperature, atmospheric pressure) to fulfill the aim of the study. Several tests were carried-out on three sets of mud mixture with different densities (8.7, 9.0, and 9.3 ppg) as base mud. The resistivity of mud, mud filtrate, and mud cake were measured using resistivity- meter. Mud water losses were also measured. Several results obtained to describe the relationship between the resistivity ratios of mud filtrate to the mud, and the mud cake to mud. The summary of conclusion is that there are no great differences were obtained during comparison of resistivity and water loss of Umm Arrazam and Wyoming Clay.

Keywords: petroleum, drilling, mug, geological engineering

Procedia PDF Downloads 434
1756 Relation between Electrical Properties and Application of Chitosan Nanocomposites

Authors: Evgen Prokhorov, Gabriel Luna-Barcenas

Abstract:

The polysaccharide chitosan (CS) is an attractive biopolymer for the stabilization of several nanoparticles in acidic aqueous media. This is due in part to the presence of abundant primary NH2 and OH groups which may lead to steric or chemical stabilization. Applications of most CS nanocomposites are based upon the interaction of high surface area nanoparticles (NPs) with different substance. Therefore, agglomeration of NPs leads to decreasing effective surface area such that it may decrease the efficiency of nanocomposites. The aim of this work is to measure nanocomposite’s electrical conductivity phenomena that will allow one to formulate optimal concentrations of conductivity NPs in CS-based nanocomposites. Additionally, by comparing the efficiency of such nanocomposites, one can guide applications in the biomedical (antibacterial properties and tissue regeneration) and sensor fields (detection of copper and nitrate ions in aqueous solutions). It was shown that the best antibacterial (CS-AgNPs, CS-AgNPs-carbon nanotubes) and would healing properties (CS-AuNPs) are observed in nanocomposites with concentrations of NPs near the percolation threshold. In this regard, the best detection limit in potentiometric and impedimetric sensors for detection of copper ions (using CS-AuNPs membrane) and nitrate ions (using CS-clay membrane) in aqueous solutions have been observed for membranes with concentrations of NPs near percolation threshold. It is well known that at the percolation concentration of NPs an abrupt increasing of conductivity is observed due to the presence of physical contacts between NPs; above this concentration, agglomeration of NPs takes place such that a decrease in the effective surface and performance of nanocomposite appear. The obtained relationship between electrical percolation threshold and performance of polymer nanocomposites with conductivity NPs is important for the design and optimization of polymer-based nanocomposites for different applications.

Keywords: chitosan, conductivity nanoparticles, percolation threshold, polymer nanocomposites

Procedia PDF Downloads 186
1755 Engineering Ligand-Free Biodegradable-Based Nanoparticles for Cell Attachment and Growth

Authors: Simone F. Medeiros, Isabela F. Santos, Rodolfo M. Moraes, Jaspreet K. Kular, Marcus A. Johns, Ram Sharma, Amilton M. Santos

Abstract:

Tissue engineering aims to develop alternatives to treat damaged tissues by promoting their regeneration. Its basic principle is to place cells on a scaffold capable of promoting cell functions, and for this purpose, polymeric nanoparticles have been successfully used due to the ability of some macro chains to mimic the extracellular matrix and influence cell functions. In general, nanoparticles require surface chemical modification to achieve cell adhesion, and recent advances in their synthesis include methods for modifying the ligand density and distribution onto nanoparticles surface. However, this work reports the development of biodegradable polymeric nanoparticles capable of promoting cellular adhesion without any surface chemical modification by ligands. Biocompatible and biodegradable nanoparticles based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) were synthesized by solvent evaporation method. The produced nanoparticles were small in size (85 and 125 nm) and colloidally stable against time in aqueous solution. Morphology evaluation showed their spherical shape with small polydispersity. Human osteoblast-like cells (MG63) were cultured in the presence of PHBHV nanoparticles, and growth kinetics were compared to those grown on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene (non-TCPS) pre-coated with nanoparticles was assessed and compared to attachment on TCPS. These findings reveal the potential of PHBHV nanoparticles for cell adhesion and growth, without requiring a matrix ligand to support cells, to be used as scaffolds, in tissue engineering applications.

Keywords: tissue engineering, PHBHV, stem cells, cellular attachment

Procedia PDF Downloads 189
1754 Electrochemical Biosensor for Rutin Detection with Multiwall Carbon Nanotubes and Cerium Dioxide Nanoparticles

Authors: Stephen Rathinaraj Benjamin, Flavio Colmati Junior, Maria Izabel Florindo Guedes, Rosa Amalia Fireman Dutra

Abstract:

A new enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium oxide nanoparticles for the detection of rutin has been developed. The cerium oxide nanoparticles /HRP/ multiwall carbon nanotubes/ carbon paste electrode (HRP/ CeO2/MWCNTs/CPE) was prepared by ensuing addition of MWCNTs and HRP on the CPE, followed by the mixing with cerium oxide nanoparticles. Surface physical characteristics of the modified electrode and the electrochemical properties of the composite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), cylic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). The HRP/ CeO2/MWCNTs/CPE showed good selectivity, stability and reproducibility, which was further applied to detect rutin tablet and capsule samples with satisfactory results.

Keywords: cerium dioxide nanoparticles, horseradish peroxidase, multiwall carbon nanotubes, rutin

Procedia PDF Downloads 369
1753 Developing a New Relationship between Undrained Shear Strength and Over-Consolidation Ratio

Authors: Wael M Albadri, Hassnen M Jafer, Ehab H Sfoog

Abstract:

Relationship between undrained shear strength (Su) and over consolidation ratio (OCR) of clay soil (marine clay) is very important in the field of geotechnical engineering to estimate the settlement behaviour of clay and to prepare a small scale physical modelling test. In this study, a relationship between shear strength and OCR parameters was determined using the laboratory vane shear apparatus and the fully automatic consolidated apparatus. The main objective was to establish non-linear correlation formula between shear strength and OCR and comparing it with previous studies. Therefore, in order to achieve this objective, three points were chosen to obtain 18 undisturbed samples which were collected with an increasing depth of 1.0 m to 3.5 m each 0.5 m. Clay samples were prepared under undrained condition for both tests. It was found that the OCR and shear strength are inversely proportional at similar depth and at same undrained conditions. However, a good correlation was obtained from the relationships where the R2 values were very close to 1.0 using polynomial equations. The comparison between the experimental result and previous equation from other researchers produced a non-linear correlation which has a similar pattern with this study.

Keywords: shear strength, over-consolidation ratio, vane shear test, clayey soil

Procedia PDF Downloads 251
1752 Effect of Al2O3 Nanoparticles on Corrosion Behavior of Aluminum Alloy Fabricated by Powder Metallurgy

Authors: Muna Khethier Abbass, Bassma Finner Sultan

Abstract:

In this research the effect of Al2O3 nanoparticles on corrosion behavior of aluminum base alloy(Al-4.5wt%Cu-1.5wt%Mg) has been investigated. Nanocomopsites reinforced with variable contents of 1,3 & 5wt% of Al2O3 nanoparticles were fabricated using powder metallurgy. All samples were prepared from the base alloy powders under the best powder metallurgy processing conditions of 6 hr of mixing time , 450 MPa of compaction pressure and 560°C of sintering temperature. Density and micro hardness measurements, and electrochemical corrosion tests are performed for all prepared samples in 3.5wt%NaCl solution at room temperature using potentiostate instrument. It has been found that density and micro hardness of the nanocomposite increase with increasing of wt% Al2O3 nanoparticles to Al matrix. It was found from Tafel extrapolation method that corrosion rates of the nanocomposites reinforced with alumina nanoparticles were lower than that of base alloy. From results of corrosion test by potentiodynamic cyclic polarization method, it was found the pitting corrosion resistance improves with adding of Al2O3 nanoparticles . It was noticed that the pits disappear and the hysteresis loop disappears also from anodic polarization curve.

Keywords: powder metallurgy, nano composites, Al-Cu-Mg alloy, electrochemical corrosion

Procedia PDF Downloads 440
1751 Laboratory Study on Behavior of Compacted Soils

Authors: M. M. Mekkakia, M. P Luong, A. Arab

Abstract:

These controlling the water content of compaction are a major concern of fundamental civil engineers. Also, the knowledge of the fundamentals of the behaviour of compacted clay soils is essential to predict and quantify the effects of a change in water content. The study of unsaturated soils is a very complex area which several studies are directed to in recent years. Our job work is to perform tests of Proctor, Oedometer and shear, on samples of unsaturated clay in order to see the influence of water content on the compressibility and the shear strength. The samples were prepared at different amounts of water from water content to optimum water contents close to saturation. This study thus allowed us to measure and monitor the parameters of compressibility and shear strength as a function of water content.

Keywords: laboratory tests, clay, unsaturated soil, atterberg limits, compaction, compressibility, shear

Procedia PDF Downloads 386
1750 Investigation of Self-Assembling of Maghemite Nanoparticles into Chain–Like Structures Using Birefringence Measurements

Authors: C. R. Stein; K. Skeff Neto, K. L. C. Miranda, P. P. C. Sartoratto, M. E. Xavier, Z. G. M. Lacava, S. M. De Freita, P. C. Morais

Abstract:

In this study, static magnetic birefringence (SMB) and transmission electron microscopy (TEM) were used to investigate the self-assembling of maghemite nanoparticles suspended as biocompatible magnetic fluid (BMF) while incubated or not with the Black Eyed–Pea Trypsin Chymotripsin Inhibitor–BTCI protein. The stock samples herein studied are dextran coated maghemite nanoparticles (average core diameter of 7.1 nm, diameter dispersion of 0.26, and containing 4.6×1016 particle/mL) and the dextran coated maghemite nanoparticles associated with the BTCI protein. Several samples were prepared by diluting the stock samples with deionized water while following their colloidal stability. The diluted samples were investigated using SMB measurements to assess the average sizes of the self-assembled and suspended mesoscopic structures whereas the TEM micrographs provide the morphology of the as-suspended units. The SMB data were analyzed using a model that includes the particle-particle interaction within the mean field model picture.

Keywords: biocompatible magnetic fluid, maghemite nanoparticles, self-assembling

Procedia PDF Downloads 459
1749 Experimental Investigations on Ultimate Bearing Capacity of Soft Soil Improved by a Group of End-Bearing Column

Authors: Mamata Mohanty, J. T. Shahu

Abstract:

The in-situ deep mixing is an effective ground improvement technique which involves columnar inclusion into soft ground to increase its bearing capacity and reduce settlement. The first part of the study presents the results of unconfined compression on cement-admixed clay prepared at different cement content and subjected to varying curing periods. It is found that cement content is a prime factor controlling the strength of the cement-admixed clay. Besides cement content, curing period is important parameter that adds to the strength of cement-admixed clay. Increase in cement content leads to significant increase in Unconfined Compressive Strength (UCS) values especially at cement contents greater than 8%. The second part of the study investigated the bearing capacity of the clay ground improved by a group of end-bearing column using model tests under plain-strain condition. This study mainly focus to examine the effect of cement contents on the ultimate bearing capacity and failure stress of the improved clay ground. The study shows that the bearing capacity of the improved ground increases significantly with increase in cement contents of the soil-cement columns. A considerable increase in the stiffness of the model ground and failure stress was observed with increase in cement contents.

Keywords: bearing capacity, cement content, curing time, unconfined compressive strength, undrained shear strength

Procedia PDF Downloads 150
1748 The Potential of Extending the Shelf Life of Meat by Encapsulation with Red Clay

Authors: Onuoha Ogbonnaya Gideon, Ishaq Hafsah Yusuf

Abstract:

Introduction: Meat is a perishable food of good nutrition. Meat ranks among the most significant, nutritious, and favored food items available to most locals. It is a good source of protein (17-19%), depending on sources, and contains appreciable amounts of fat and moisture. However, it has a very short shelf life due mainly to its high moisture, fat, and other nutrient contents. Meat spoilage can result from microbial proliferation as well as inherent enzymes in the meat tissues. Bacteria contamination and permeability to both oxygen and water vapor are major concerns associated with spoilage of meat and its storage. Packaging is fundamental in the preservation and presentation of food. Red clay is a very common substance; hydrous aluminum phyllosilicate, sometimes with varying amounts of iron, magnesium, alkali metals, alkaline earth, and cation formed from sedimentary rocks. Furthermore, red clay is an extremely absorbent material and develops plasticity when wet due to the molecular film of water surrounding the clay particles but can become hard, impervious, brittle, and non-brittle and non-plastic when dry. In developing countries, the high cost of refrigeration technologies and most other methods of preserving meat are exorbitant and thus can be substituted with the less expensive and readily available red clay for the preservation of meat. Methodology: 1000g of lean meat was diced into cubes of 10g each. The sample was then divided into four groups labelled raw meat (RMC); raw in 10% brine solution (RMB), boiled meat (BMC), and fried meat (FMC). It was then encapsulated with 2mm thick red clay and then heated in a muffle furnace at a temperature of 600OC for 30min. The samples were kept on a bench top for 30 days, and a storage study was carried out. Results: Our findings showed a decrease in value during storage for the physiochemical properties of all the sample; pH values decreased [RMC (7.05-7.6), RMB (8.46-7.0), BMC (6.0-5.0), FMC (4.08-3.9)]; free fatty acid content decreased with storage time [RMC (32.6%-31%), RMB (30.2%-28.6%), BMC (30.5%-27.4%), FMC (25.6%-23.8%)]; total soluble solid value decreased [RMC16.20-15.07, RMB (17.22-16.04), BMC (17.05-15.54), FMC (15.3-14.9)]. Conclusion: This result shows that encapsulation with red clay reduced all the values analyzed and thus has the potential to extend the shelf life of stored meat.

Keywords: red clay, encapsulating, shelf life, physicochemical properties, lean meat

Procedia PDF Downloads 78
1747 Study of Nanocrystalline Scintillator for Alpha Particles Detection

Authors: Azadeh Farzaneh, Mohammad Reza Abdi, A. Quaranta, Matteo Dalla Palma, Seyedshahram Mortazavi

Abstract:

We report on the synthesis of cesium-iodide nanoparticles using sol-gel technique. The structural properties of CsI nanoparticles were characterized by X-ray diffraction and Scanning Electron Microscope (SEM) Also, optical properties were followed by optical absorption and UV–vis fluorescence. Intense photoluminescence is also observed, with some spectral tuning possible with ripening time getting a range of emission photon wavelength approximately from 366 to 350 nm. The size effect on CsI luminescence leads to an increase in scintillation light yield, a redshift of the emission bands of the on_center and off_center self_trapped excitons (STEs) and an increase in the contribution of the off_center STEs to the net intrinsic emission yield. The energy transfer from the matrix to CsI nanoparticles is a key characteristic for scintillation detectors. So the scintillation spectra to alpha particles of sample were monitored.

Keywords: nanoparticles, luminescence, sol gel, scintillator

Procedia PDF Downloads 565
1746 Improvement of Soft Clay Soil with Biopolymer

Authors: Majid Bagherinia

Abstract:

Lime and cement are frequently used as binders in the Deep Mixing Method (DMM) to improve soft clay soils. The most significant disadvantages of these materials are carbon dioxide emissions and the consumption of natural resources. In this study, three different biopolymers, guar gum, locust bean gum, and sodium alginate, were investigated for the improvement of soft clay using DMM. In the experimental study, the effects of the additive ratio and curing time on the Unconfined Compressive Strength (UCS) of stabilized specimens were investigated. According to the results, the UCS values of the specimens increased as the additive ratio and curing time increased. The most effective additive was sodium alginate, and the highest strength was obtained after 28 days.

Keywords: deep mixing method, soft clays, ground improvement, biopolymers, unconfined compressive strength

Procedia PDF Downloads 44
1745 First Experimental Evidence on Feasibility of Molecular Magnetic Particle Imaging of Tumor Marker Alpha-1-Fetoprotein Using Antibody Conjugated Nanoparticles

Authors: Kolja Them, Priyal Chikhaliwala, Sudeshna Chandra

Abstract:

Purpose: The purpose of this work is to examine possibilities for noninvasive imaging and identification of tumor markers for cancer diagnosis. The proposed method uses antibody conjugated iron oxide nanoparticles and multicolor Magnetic Particle Imaging (mMPI). The method has the potential for radiation exposure free real-time estimation of local tumor marker concentrations in vivo. In this study, the method is applied to human Alpha-1-Fetoprotein. Materials and Methods: As tracer material AFP antibody-conjugated Dendrimer-Fe3O4 nanoparticles were used. The nanoparticle bioconjugates were then incubated with bovine serum albumin (BSA) to block any possible nonspecific binding sites. Parts of the resulting solution were then incubated with AFP antigen. MPI measurements were done using the preclinical MPI scanner (Bruker Biospin MRI GmbH) and the multicolor method was used for image reconstruction. Results: In multicolor MPI images the nanoparticles incubated only with BSA were clearly distinguished from nanoparticles incubated with BSA and AFP antigens. Conclusion: Tomographic imaging of human tumor marker Alpha-1-Fetoprotein is possible using AFP antibody conjugated iron oxide nanoparticles in presence of BSA. This opens interesting perspectives for cancer diagnosis.

Keywords: noninvasive imaging, tumor antigens, antibody conjugated iron oxide nanoparticles, multicolor magnetic particle imaging, cancer diagnosis

Procedia PDF Downloads 273
1744 Targeted Delivery of Sustained Release Polymeric Nanoparticles for Cancer Therapy

Authors: Jamboor K. Vishwanatha

Abstract:

Among the potent anti-cancer agents, curcumin has been found to be very efficacious against various cancer cells. Despite multiple medicinal benefits of curcumin, poor water solubility, poor physiochemical properties and low bioavailability continue to pose major challenges in developing a formulation for clinical efficacy. To improve its potential application in the clinical area, we formulated poly lactic-co-glycolic acid (PLGA) nanoparticles. The PLGA nanoparticles were formulated using solid-oil/water emulsion solvent evaporation method and then characterized for percent yield, encapsulation efficiency, surface morphology, particle size, drug distribution within nanoparticles and drug polymer interaction. Our studies showed the successful formation of smooth and spherical curcumin loaded PLGA nanoparticles with a high percent yield of about 92.01±0.13% and an encapsulation efficiency of 90.88±0.14%. The mean particle size of the nanoparticles was found to be 145nm. The in vitro drug release profile showed 55-60% drug release from the nanoparticles over a period of 24 hours with continued sustained release over a period of 8 days. Exposure to curcumin loaded nanoparticles resulted in reduced cell viability of cancer cells compared to normal cells. We used a novel non-covalent insertion of a homo-bifunctional spacer for targeted delivery of curcumin to various cancer cells. Functionalized nanoparticles for antibody/targeting agent conjugation was prepared using a cross-linking ligand, bis(sulfosuccinimidyl) suberate (BS3), which has reactive carboxyl group to conjugate efficiently to the primary amino groups of the targeting agents. In our studies, we demonstrated successful conjugation of antibodies, Annexin A2 or prostate specific membrane antigen (PSMA), to curcumin loaded PLGA nanoparticles for targeting to prostate and breast cancer cells. The percent antibody attachment to PLGA nanoparticles was found to be 92.8%. Efficient intra-cellular uptake of the targeted nanoparticles was observed in the cancer cells. These results have emphasized the potential of our multifunctional curcumin nanoparticles to improve the clinical efficacy of curcumin therapy in patients with cancer.

Keywords: polymeric nanoparticles, cancer therapy, sustained release, curcumin

Procedia PDF Downloads 296
1743 Particle Size Dependent Magnetic Properties of CuFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

In this work, copper ferrite CuFe2O4 spinel ferrite nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of CuFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 530 cm-1 (ν1) and around 360 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in copper ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of CuFe2O4 nanoparticles was also observed. The change in magnetic properties with change of particle size is due to cation redistribution, which was confirmed by X-Ray photoelectron study.

Keywords: copper ferrite, nanoparticles, magnetic property, CuFe2O4

Procedia PDF Downloads 414
1742 Impact of Gold and Silver Nanoparticles on Terrestrial Flora and Microorganisms

Authors: L. Steponavičiūtė, L. Steponavičienė

Abstract:

Despite the rapid nanotechnology progress and recognition, its potential impact in ecosystems and health of humans is still not fully known. In this paper, the study of ecotoxicological dangers of nanomaterials is presented. By chemical reduction method, silver (AgNPs) and gold (AuNPs) nanoparticles were synthesized, characterized and used in experiments to examine their impact on microorganisms (Escherichia coli, Staphylococcus aureus and Candida albicans) and terrestrial flora (Phaseolus vulgaris and Lepidium sativum). The results collected during experiments with terrestrial flora show tendentious growth stimulations caused by gold nanoparticles. In contrast to these results, silver nanoparticle solutions inhibited growth of beans and garden cress, compared to control samples. The results obtained from experiments with microorganisms show similarities with ones collected from experiments with terrestrial plants. Samples treated with AuNPs of size 13 nm showed stimulation in the growth of the colonies compared with 3,5 nm size nanoparticles.

Keywords: nanomaterials, ecotoxicology, nanoparticles, ecosystems

Procedia PDF Downloads 276
1741 Durability Assessment of Nanocomposite-Based Bone Fixation Device Consisting of Bioabsorbable Polymer and Ceramic Nanoparticles

Authors: Jisoo Kim, Jin-Young Choi, MinSu Lee, Sunmook Lee

Abstract:

Effects of ceramic nanoparticles on the improvement of durability of bone fixation devices have been investigated by assessing the durability of nanocomposite materials consisting of bioabsorbable polymer and ceramic nanoparticles, which could be applied for bone fixation devices such as plates and screws. Various composite ratios were used for the synthesis of nanocomposite materials by blending polylactic acid (PLA) and polyglycolic acid (PGA) as bioabsorbable polymer, and hydroxyapatite (HA) and tri-calcium phosphate (TCP) as ceramic nanoparticles. It was found that the addition of ceramic nanoparticles significantly enhanced the mechanical properties of the bone fixation devices compared to those fabricated with pure biopolymers. Particularly, the layer-by-layer approach for the fabrication of nanocomposites also had an effect on the improvement of bending strength. Durability tests were performed by measuring the changes in the bending strength of nanocomposite samples under varied temperature conditions for the accelerated degradation tests. It was found that Weibull distribution was the most proper one for describing the life distribution of devices in the present study. The mean lifetime was predicted by adopting Arrhenius Eq. Model for Stress-Life relationship.

Keywords: bioabsorbable, bone fixation device, ceramic nanoparticles, durability assessment, nanocomposite

Procedia PDF Downloads 294
1740 Starch-Based Systems for the Nano-Delivery of Quercetin

Authors: Fernando G. Torres, Omar P. Troncoso

Abstract:

Quercetin is a naturally occurring polyphenol found in many vegetables, such as onion, with antioxidant properties. It is a dietary component with a documented role in reducing different human cancers. However, its low bioavailability, poor water solubility, and chemical instability limit its applications. Different nano-delivery systems such as nanoparticles, micelles, and nanohydrogels have been studied in order to improve the bioavailability of quercetin. Nanoparticles based on natural polymers such as starch have the advantage of being biocompatible, biodegradable, and non-toxic. In this study, quercetin was loaded into starch nanoparticles using a nanoprecipitation method. Different routes, using sodium tripolyphosphate and Tween® 80 as tensioactive agents, were tested in order to obtain an optimized starch-based nano-delivery system. The characterization of the nanoparticles loaded with quercetin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that starch-based systems could be successfully used for the nano-delivery of quercetin.

Keywords: starch nanoparticles, nanoprecipitation, quercetin, biomedical applications

Procedia PDF Downloads 103