Search results for: chiller energy system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22786

Search results for: chiller energy system

22426 Battery Energy Storage System Economic Benefits Assessment on a Network Frequency Control

Authors: Kréhi Serge Agbli, Samuel Portebos, Michaël Salomon

Abstract:

Here a methodology is considered aiming at evaluating the economic benefit of the provision of a primary frequency control unit using a Battery Energy Storage System (BESS). In this methodology, two control types (basic and hysteresis) are implemented and the corresponding minimum energy storage system power allowing to maintain the frequency drop inside a given threshold under a given contingency is identified and compared using DigSilent’s PowerFactory software. Following this step, the corresponding energy storage capacity (in MWh) is calculated. As PowerFactory is dedicated to dynamic simulation for transient analysis, a first order model related to the IEEE 9 bus grid used for the analysis under PowerFactory is characterized and implemented on MATLAB-Simulink. Primary frequency control is simulated using the two control types over one-month grid's frequency deviation data on this Simulink model. This simulation results in the energy throughput both basic and hysteresis BESSs. It emerges that the 15 minutes operation band of the battery capacity allocated to frequency control is sufficient under the considered disturbances. A sensitivity analysis on the width of the control deadband is then performed for the two control types. The deadband width variation leads to an identical sizing with the hysteresis control showing a better frequency control at the cost of a higher delivered throughput compared to the basic control. An economic analysis comparing the cost of the sized BESS to the potential revenues is then performed.

Keywords: battery energy storage system, electrical network frequency stability, frequency control unit, PowerFactor

Procedia PDF Downloads 103
22425 Rotational Energy Recovery System

Authors: Vijayendra Anil Menon, Ashwath Narayan Murali

Abstract:

The present day vehicles do not reuse the energy expelled in running the vehicle. The energy used to run the vehicle is expelled immediately.This has remained a constant for many decades. With all the vehicles running on non-renewable resources like fossil fuels, there is an urgent need to improve efficiency of the vehicles until a reliable replacement for fossil fuels is found.Our design is based on the concept of Kinetic energy recovery systems. Though our design lies in principle with the KERS, our design can be used in day-to-day driving. With our design, efficiency of vehicles increases and fuel conservation is possible thereby reducing the carbon footprint.

Keywords: KERS, Battery, Wheels, Efficiency.

Procedia PDF Downloads 355
22424 Simulation Approach for Analyzing Transportation Energy System in South Korea

Authors: Sungjun Hong, Youah Lee, Jongwook Kim

Abstract:

In the last COP21 held in Paris on 2015, Korean government announced that Intended Nationally Determined Contributions (INDC) was 37% based on BAU by 2030. The GHG reduction rate of the transportation sector is the strongest among all sectors by 2020. In order to cope with Korean INDC, Korean government established that 3rd eco-friendly car deployment national plans at the end of 2015. In this study, we make the energy system model for estimating GHG emissions using LEAP model.

Keywords: INDC, greenhouse gas, LEAP, transportation

Procedia PDF Downloads 181
22423 Single Phase PV Inverter Applying a Dual Boost Technology

Authors: Sudha Bhutada, S. R. Nigam

Abstract:

In this paper, a single-phase PV inverter applying a dual boost converter circuit inverter is proposed for photovoltaic (PV) generation system and PV grid connected system. This system is designed to improve integration of a Single phase inverter with Photovoltaic panel. The DC 24V is converted into to 86V DC and then 86V DC to 312V DC. The 312 V DC is then successfully inverted to AC 220V. Hence, solar energy is powerfully converted into electrical energy for fulfilling the necessities of the home load, or to link with the grid. Matlab Simulation software was used for simulation of the circuit and outcome are presented in this paper.

Keywords: H bridge inverter, dual boost converter, PWM, SPWM

Procedia PDF Downloads 613
22422 A Review of Technology Roadmaps for Commercialization of Solar Photovoltaic Energy Systems

Authors: Muhammad Usman Sardar, Muhammad Haroon Nadeem, Shahbaz Ahmad, Ashiq Hussain

Abstract:

The marketing of solar photovoltaic energy systems has one of the monetary settlements to address the higher rate to pay in advance with the purchase of two decades worth of electricity services. To deploy solar photovoltaic technologies and energy setups in areas, it’s important to create a system of credit that can ensure the availability of subsidized capital and commercial conditions for the society. Meanings of energy in developing countries like Pakistan were strongly prompted by marketable interests and industrialization trend influences within their culture. It’s going to be essential to prepare the concerned proceeding models of energy development strategies. This paper discuss the impact and share of environmental friendly solar photo-voltaic energy, researching to find the most appropriate alternate solutions for balance the energy demand and supply and current progressive position in different countries regarding to development and deployment. Based on the literature reviews, its presence found that most beneficial and concerning policies have implemented in several countries around the globe.

Keywords: photovoltaic marketing and pricing, renewable energy technology, solar photovoltaic, SPV

Procedia PDF Downloads 359
22421 Solid Waste Management Challenges and Possible Solution in Kabul City

Authors: Ghulam Haider Haidaree, Nsenda Lukumwena

Abstract:

Most developing nations face energy production and supply problems. This is also the case of Afghanistan whose generating capacity does not meet its energy demand. This is due in part to high security and risk caused by war which deters foreign investments and insufficient internal revenue. To address the issue above, this paper would like to suggest an alternative and affordable way to deal with the energy problem. That is by converting Solid Waste to energy. As a result, this approach tackles the municipal solid waste issue (potential cause of several diseases), contributes to the improvement of the quality of life, local economy, and so on. While addressing the solid waste problem in general, this paper samples specifically one municipality which is District-12, one of the 22 districts of Kabul city. Using geographic information system (GIS) technology, District-12 is divided into nine different zones whose municipal solid waste is respectively collected, processed, and converted into electricity and distributed to the closest area. It is important to mention that GIS has been used to estimate the amount of electricity to be distributed and to optimally position the production plant.

Keywords: energy problem, estimation of electricity, GIS zones, solid waste management system

Procedia PDF Downloads 311
22420 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously

Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen

Abstract:

Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.

Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO₂ cycle, transcritical CO₂ cycle

Procedia PDF Downloads 221
22419 Towards Achieving Energy Efficiency in Kazakhstan

Authors: Aigerim Uyzbayeva, Valeriya Tyo, Nurlan Ibrayev

Abstract:

Kazakhstan is currently one of the dynamically developing states in its region. The stable growth in all sectors of the economy leads to a corresponding increase in energy consumption. Thus, country consumes a significant amount of energy due to the high level of industralisation and the presence of energy-intensive manufacturing such as mining and metallurgy which in turn leads to low energy efficiency. With allowance for this the Government has set several priorities to adopt a transition of Republic of Kazakhstan to a “green economy”. This article provides an overview of Kazakhstan’s energy efficiency situation in for the period of 1991-2014. First, the dynamics of production and consumption of conventional energy resources are given. Second, the potential of renewable energy sources is summarised, followed by the description of GHG emissions trends in the country. Third, Kazakhstan’ national initiatives, policies and locally implemented projects in the field of energy efficiency are described.

Keywords: energy efficiency in Kazakhstan, greenhouse gases, renewable energy, sustainable development

Procedia PDF Downloads 559
22418 Investigating The Nexus Between Energy Deficiency, Environmental Sustainability and Renewable Energy: The Role of Energy Trade in Global Perspectives

Authors: Fahim Ullah, Muhammad Usman

Abstract:

Energy consumption and environmental sustainability are hard challenges of 21st century. Energy richness increases environmental pollution while energy poverty hinders economic growth. Considering these two aspects, present study calculates energy deficiency and examines the role of renewable energy to overcome rising energy deficiency and carbon emission for selected countries from 1990 to 2021. For empirical analysis, this study uses methods of moments panel quantile regression analysis and to check the robustness, study used panel quantile robust analysis. Graphical analysis indicated rising global energy deficiency since last three decades where energy consumption is higher than energy production. Empirical results showed that renewable energy is a significant factor for reducing energy deficiency. Secondly, the energy deficiency increases carbon emission level and again renewable energy decreases emissions level. This study recommends that global energy deficiency and rising carbon emissions can be controlled through structural change in the form of energy transition to replace non-renewable resources with renewable resources.

Keywords: energy deficiency, renewable energy, carbon emission, energy trade, PQL analysis

Procedia PDF Downloads 25
22417 Hybrid Energy System for the German Mining Industry: An Optimized Model

Authors: Kateryna Zharan, Jan C. Bongaerts

Abstract:

In recent years, economic attractiveness of renewable energy (RE) for the mining industry, especially for off-grid mines, and a negative environmental impact of fossil energy are stimulating to use RE for mining needs. Being that remote area mines have higher energy expenses than mines connected to a grid, integration of RE may give a mine economic benefits. Regarding the literature review, there is a lack of business models for adopting of RE at mine. The main aim of this paper is to develop an optimized model of RE integration into the German mining industry (GMI). Hereby, the GMI with amount of around 800 mill. t. annually extracted resources is included in the list of the 15 major mining country in the world. Accordingly, the mining potential of Germany is evaluated in this paper as a perspective market for RE implementation. The GMI has been classified in order to find out the location of resources, quantity and types of the mines, amount of extracted resources, and access of the mines to the energy resources. Additionally, weather conditions have been analyzed in order to figure out where wind and solar generation technologies can be integrated into a mine with the highest efficiency. Despite the fact that the electricity demand of the GMI is almost completely covered by a grid connection, the hybrid energy system (HES) based on a mix of RE and fossil energy is developed due to show environmental and economic benefits. The HES for the GMI consolidates a combination of wind turbine, solar PV, battery and diesel generation. The model has been calculated using the HOMER software. Furthermore, the demonstrated HES contains a forecasting model that predicts solar and wind generation in advance. The main result from the HES such as CO2 emission reduction is estimated in order to make the mining processing more environmental friendly.

Keywords: diesel generation, German mining industry, hybrid energy system, hybrid optimization model for electric renewables, optimized model, renewable energy

Procedia PDF Downloads 318
22416 The Effects of Plantation Size and Internal Transport on Energy Efficiency of Biofuel Production

Authors: Olga Orynycz, Andrzej Wasiak

Abstract:

Mathematical model describing energetic efficiency (defined as a ratio of energy obtained in the form of biofuel to the sum of energy inputs necessary to facilitate production) of agricultural subsystem as a function of technological parameters was developed. Production technology is characterized by parameters of machinery, topological characteristics of the plantation as well as transportation routes inside and outside of plantation. The relationship between the energetic efficiency of agricultural and industrial subsystems is also derived. Due to the assumed large area of the individual field, the operations last for several days increasing inter-fields routes because of several returns. The total distance driven outside of the fields is, however, small as compared to the distance driven inside of the fields. This results in small energy consumption during inter-fields transport that, however, causes a substantial decrease of the energetic effectiveness of the whole system.

Keywords: biofuel, energetic efficiency, EROEI, mathematical modelling, production system

Procedia PDF Downloads 322
22415 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 820
22414 Technical and Economic Analysis of Smart Micro-Grid Renewable Energy Systems: An Applicable Case Study

Authors: M. A. Fouad, M. A. Badr, Z. S. Abd El-Rehim, Taher Halawa, Mahmoud Bayoumi, M. M. Ibrahim

Abstract:

Renewable energy-based micro-grids are presently attracting significant consideration. The smart grid system is presently considered a reliable solution for the expected deficiency in the power required from future power systems. The purpose of this study is to determine the optimal components sizes of a micro-grid, investigating technical and economic performance with the environmental impacts. The micro grid load is divided into two small factories with electricity, both on-grid and off-grid modes are considered. The micro-grid includes photovoltaic cells, back-up diesel generator wind turbines, and battery bank. The estimated load pattern is 76 kW peak. The system is modeled and simulated by MATLAB/Simulink tool to identify the technical issues based on renewable power generation units. To evaluate system economy, two criteria are used: the net present cost and the cost of generated electricity. The most feasible system components for the selected application are obtained, based on required parameters, using HOMER simulation package. The results showed that a Wind/Photovoltaic (W/PV) on-grid system is more economical than a Wind/Photovoltaic/Diesel/Battery (W/PV/D/B) off-grid system as the cost of generated electricity (COE) is 0.266 $/kWh and 0.316 $/kWh, respectively. Considering the cost of carbon dioxide emissions, the off-grid will be competitive to the on-grid system as COE is found to be (0.256 $/kWh, 0.266 $/kWh), for on and off grid systems.

Keywords: renewable energy sources, micro-grid system, modeling and simulation, on/off grid system, environmental impacts

Procedia PDF Downloads 241
22413 Heating Demand Reduction in Single Family Houses Community through Home Energy Management: Putting Users in Charge

Authors: Omar Shafqat, Jaime Arias, Cristian Bogdan, Björn Palm

Abstract:

Heating constitutes a major part of the overall energy consumption in Sweden. In 2013 heating and hot water accounted for about 55% of the total energy use in the housing sector. Historically, the end users have not been able to make a significant impact on their consumption on account of traditional control systems that do not facilitate interaction and control of the heating systems. However, in recent years internet connected home energy management systems have become increasingly available which allow users to visualize the indoor temperatures as well as control the heating system. However, the adoption of these systems is still in its nascent stages. This paper presents the outcome of a study carried out in a community of single-family houses in Stockholm. Heating in the area is provided through district heating, and the neighbourhood is connected through a local micro thermal grid, which is owned and operated by the local community. Heating in the houses is accomplished through a hydronic system equipped with radiators. The system installed offers the households to control the indoor temperature through a mobile application as well as through a physical thermostat. It was also possible to program the system to, for instance, lower the temperatures during night time and when the users were away. The users could also monitor the indoor temperatures through the application. It was additionally possible to create different zones in the house with their own individual programming. The historical heating data (in the form of billing data) was available for several previous years and has been used to perform quantitative analysis for the study after necessary normalization for weather variations. The experiment involved 30 households out of a community of 178 houses. The area was selected due to uniform construction profile in the area. It was observed that despite similar design and construction period there was a large variation in the heating energy consumption in the area which can for a large part be attributed to user behaviour. The paper also presents qualitative analysis done through survey questions as well as a focus group carried out with the participants. Overall, considerable energy savings were accomplished during the trial, however, there was a considerable variation between the participating households. The paper additionally presents recommendations to improve the impact of home energy management systems for heating in terms of improving user engagement and hence the energy impact.

Keywords: energy efficiency in buildings, energy behavior, heating control system, home energy management system

Procedia PDF Downloads 145
22412 Solar Energy for Decontamination of Ricinus communis

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale

Abstract:

The solar energy was used as a source of heating in Ricinus communis pie with the objective of eliminating or minimizing the percentage of the poison in it, so that it can be used as animal feed. A solar cylinder and plane collector were used as heating system. In the focal area of the solar concentrator a gutter support endowed with stove effect was placed. Parameters that denote the efficiency of the systems for the proposed objective was analyzed.

Keywords: solar energy, concentrate, Ricinus communis, temperature

Procedia PDF Downloads 401
22411 Performance Evaluation of Adsorption Refrigerating Systems

Authors: Nadia Allouache, Omar Rahli

Abstract:

Many promising technologies have been developed to harness the sun's energy. These technologies help in economizing energy and environmental protection. The solar refrigerating systems are one of these important technologies. In addition to environmental benefits and energy saving, adsorption refrigerating systems have many advantages such as lack of moving parts, simplicity of construction and low operating costs. The work aimed to establish the main factors that affect the performances of an adsorption refrigerating system using different geometries of adsorbers and different adsorbent-adsorbate pairs. The numerical modeling of the heat and mass transfer in the system, using various working pairs, such as: activated carbon-ammonia, calcium chlorid-ammonia, activated carbon fiber- methanol and activated carbon AC35-methanol, show that the adsorber design can influence the system performances; The thermal performances of system are better in the annular configuration case. An optimal value of generating temperature is observed in annular adsorber case for which the thermal performance of the cooling system is maximal. While in the plate adsorber, above a certain value of generating temperature, the performance of the system remains almost constant. The environmental conditions such as solar radiation and pressure have a great influence in the system efficiency, and the choice of the working pair depends on the environmental conditions and the geometry of the adsorber.

Keywords: adsorber geometry, numerical modeling, optimal environmental conditions, working pairs.

Procedia PDF Downloads 60
22410 Technical Feasibility Analysis of PV Water Pumping System in Khuzestan Province-Iran

Authors: M.Goodarzi, M.Mohammadi, M. Rezaee

Abstract:

The technical analysis of using solar energy and electricity for water pumping in the Khuzestan province in Iran is investigated. For this purpose, the ecological conditions such as the weather data, air clearness and sunshine hours are analyzed. The nature of groundwater in the region was examined in terms of depth, static and dynamic head, water pumping rate.Three configurations for solar water pumping system were studied in this thesis; AC solar water pumping with storage battery, AC solar water pumping with storage tank and DC direct solar water pumping.

Keywords: technical feasibility, solar energy, photovoltaic systems, photovoltaic water pumping system

Procedia PDF Downloads 596
22409 Sun-Driven Evaporation Enhanced Forward Osmosis Process for Application in Wastewater Treatment and Pure Water Regeneration

Authors: Dina Magdy Abdo, Ayat N. El-Shazly, E. A. Abdel-Aal

Abstract:

Forward osmosis (FO) is one of the important processes during the wastewater treatment system for environmental remediation and fresh water regeneration. Both Egypt and China are troubled by over millions of tons of wastewater every year, including domestic and industrial wastewater. However, the traditional FO process in wastewater treatment usually suffers low efficiency and high energy consumption because of the continuously diluted draw solution. An additional concentration process is necessary to keep running of FO separation, causing energy waste. Based on the previous study on photothermal membrane, a sun-driven evaporation process is integrated into the draw solution side of FO system. During the sun-driven evaporation, not only the draw solution can be concentrated to maintain a stable and sustainable FO system, but fresh water can be directly separated for regeneration. Solar energy is the ultimate energy source of everything we have on Earth and is, without any doubt, the most renewable and sustainable energy source available to us. Additionally, the FO membrane process is rationally designed to limit the concentration polarization and fouling. The FO membrane’s structure and surface property will be further optimized by the adjustment of doping ratio of controllable nano-materials, membrane formation conditions, and selection of functional groups. A novel kind of nano-composite functional separation membrane with bi-interception layers and high hydrophilicity will be developed for the application in wastewater treatment. So, herein we aim to design a new wastewater treatment system include forward osmosis with high-efficiency energy recovery via the integration of photothermal membrane.

Keywords: forward osmosis, membrane, solar, water treatement

Procedia PDF Downloads 73
22408 Hybrid Renewable Energy Systems for Electricity and Hydrogen Production in an Urban Environment

Authors: Same Noel Ngando, Yakub Abdulfatai Olatunji

Abstract:

Renewable energy micro-grids, such as those powered by solar or wind energy, are often intermittent in nature. This means that the amount of energy generated by these systems can vary depending on weather conditions or other factors, which can make it difficult to ensure a steady supply of power. To address this issue, energy storage systems have been developed to increase the reliability of renewable energy micro-grids. Battery systems have been the dominant energy storage technology for renewable energy micro-grids. Batteries can store large amounts of energy in a relatively small and compact package, making them easy to install and maintain in a micro-grid setting. Additionally, batteries can be quickly charged and discharged, allowing them to respond quickly to changes in energy demand. However, the process involved in recycling batteries is quite costly and difficult. An alternative energy storage system that is gaining popularity is hydrogen storage. Hydrogen is a versatile energy carrier that can be produced from renewable energy sources such as solar or wind. It can be stored in large quantities at low cost, making it suitable for long-distance mass storage. Unlike batteries, hydrogen does not degrade over time, so it can be stored for extended periods without the need for frequent maintenance or replacement, allowing it to be used as a backup power source when the micro-grid is not generating enough energy to meet demand. When hydrogen is needed, it can be converted back into electricity through a fuel cell. Energy consumption data is got from a particular residential area in Daegu, South Korea, and the data is processed and analyzed. From the analysis, the total energy demand is calculated, and different hybrid energy system configurations are designed using HOMER Pro (Hybrid Optimization for Multiple Energy Resources) and MATLAB software. A techno-economic and environmental comparison and life cycle assessment (LCA) of the different configurations using battery and hydrogen as storage systems are carried out. The various scenarios included PV-hydrogen-grid system, PV-hydrogen-grid-wind, PV-hydrogen-grid-biomass, PV-hydrogen-wind, PV-hydrogen-biomass, biomass-hydrogen, wind-hydrogen, PV-battery-grid-wind, PV- battery -grid-biomass, PV- battery -wind, PV- battery -biomass, and biomass- battery. From the analysis, the least cost system for the location was the PV-hydrogen-grid system, with a net present cost of about USD 9,529,161. Even though all scenarios were environmentally friendly, taking into account the recycling cost and pollution involved in battery systems, all systems with hydrogen as a storage system produced better results. In conclusion, hydrogen is becoming a very prominent energy storage solution for renewable energy micro-grids. It is easier to store compared with electric power, so it is suitable for long-distance mass storage. Hydrogen storage systems have several advantages over battery systems, including flexibility, long-term stability, and low environmental impact. The cost of hydrogen storage is still relatively high, but it is expected to decrease as more hydrogen production, and storage infrastructure is built. With the growing focus on renewable energy and the need to reduce greenhouse gas emissions, hydrogen is expected to play an increasingly important role in the energy storage landscape.

Keywords: renewable energy systems, microgrid, hydrogen production, energy storage systems

Procedia PDF Downloads 65
22407 Comparison Analysis of Fuzzy Logic Controler Based PV-Pumped Hydro and PV-Battery Storage Systems

Authors: Seada Hussen, Frie Ayalew

Abstract:

Integrating different energy resources, like solar PV and hydro, is used to ensure reliable power to rural communities like Hara village in Ethiopia. Hybrid power system offers power supply for rural villages by providing an alternative supply for the intermittent nature of renewable energy resources. The intermittent nature of renewable energy resources is a challenge to electrifying rural communities in a sustainable manner with solar resources. Major rural villages in Ethiopia are suffering from a lack of electrification, that cause our people to suffer deforestation, travel for long distance to fetch water, and lack good services like clinic and school sufficiently. The main objective of this project is to provide a balanced, stable, reliable supply for Hara village, Ethiopia using solar power with a pumped hydro energy storage system. The design of this project starts by collecting data from villages and taking solar irradiance data from NASA. In addition to this, geographical arrangement and location are also taken into consideration. After collecting this, all data analysis and cost estimation or optimal sizing of the system and comparison of solar with pumped hydro and solar with battery storage system is done using Homer Software. And since solar power only works in the daytime and pumped hydro works at night time and also at night and morning, both load will share to cover the load demand; this need controller designed to control multiple switch and scheduling in this project fuzzy logic controller is used to control this scenario. The result of the simulation shows that solar with pumped hydro energy storage system achieves good results than with a battery storage system since the comparison is done considering storage reliability, cost, storage capacity, life span, and efficiency.

Keywords: pumped hydro storage, solar energy, solar PV, battery energy storage, fuzzy logic controller

Procedia PDF Downloads 44
22406 Virtual Metering and Prediction of Heating, Ventilation, and Air Conditioning Systems Energy Consumption by Using Artificial Intelligence

Authors: Pooria Norouzi, Nicholas Tsang, Adam van der Goes, Joseph Yu, Douglas Zheng, Sirine Maleej

Abstract:

In this study, virtual meters will be designed and used for energy balance measurements of an air handling unit (AHU). The method aims to replace traditional physical sensors in heating, ventilation, and air conditioning (HVAC) systems with simulated virtual meters. Due to the inability to manage and monitor these systems, many HVAC systems have a high level of inefficiency and energy wastage. Virtual meters are implemented and applied in an actual HVAC system, and the result confirms the practicality of mathematical sensors for alternative energy measurement. While most residential buildings and offices are commonly not equipped with advanced sensors, adding, exploiting, and monitoring sensors and measurement devices in the existing systems can cost thousands of dollars. The first purpose of this study is to provide an energy consumption rate based on available sensors and without any physical energy meters. It proves the performance of virtual meters in HVAC systems as reliable measurement devices. To demonstrate this concept, mathematical models are created for AHU-07, located in building NE01 of the British Columbia Institute of Technology (BCIT) Burnaby campus. The models will be created and integrated with the system’s historical data and physical spot measurements. The actual measurements will be investigated to prove the models' accuracy. Based on preliminary analysis, the resulting mathematical models are successful in plotting energy consumption patterns, and it is concluded confidently that the results of the virtual meter will be close to the results that physical meters could achieve. In the second part of this study, the use of virtual meters is further assisted by artificial intelligence (AI) in the HVAC systems of building to improve energy management and efficiency. By the data mining approach, virtual meters’ data is recorded as historical data, and HVAC system energy consumption prediction is also implemented in order to harness great energy savings and manage the demand and supply chain effectively. Energy prediction can lead to energy-saving strategies and considerations that can open a window in predictive control in order to reach lower energy consumption. To solve these challenges, the energy prediction could optimize the HVAC system and automates energy consumption to capture savings. This study also investigates AI solutions possibility for autonomous HVAC efficiency that will allow quick and efficient response to energy consumption and cost spikes in the energy market.

Keywords: virtual meters, HVAC, artificial intelligence, energy consumption prediction

Procedia PDF Downloads 77
22405 Experimental Analysis of the Plate-on-Tube Evaporator on a Domestic Refrigerator’s Performance

Authors: Mert Tosun, Tuğba Tosun

Abstract:

The evaporator is the utmost important component in the refrigeration system, since it enables the refrigerant to draw heat from the desired environment, i.e. the refrigerated space. Studies are being conducted on this component which generally affects the performance of the system, where energy efficient products are important. This study was designed to enhance the effectiveness of the evaporator in the refrigeration cycle of a domestic refrigerator by adjusting the capillary tube length, refrigerant amount, and the evaporator pipe diameter to reduce energy consumption. The experiments were conducted under identical thermal and ambient conditions. Experiment data were analysed using the Design of Experiment (DOE) technique which is a six-sigma method to determine effects of parameters. As a result, it has been determined that the most important parameters affecting the evaporator performance among the selected parameters are found to be the refrigerant amount and pipe diameter. It has been determined that the minimum energy consumption is 6-mm pipe diameter and 16-g refrigerant. It has also been noted that the overall consumption of the experiment sample decreased by 16.6% with respect to the reference system, which has 7-mm pipe diameter and 18-g refrigerant.

Keywords: heat exchanger, refrigerator, design of experiment, energy consumption

Procedia PDF Downloads 124
22404 A New Optimization Algorithm for Operation of a Microgrid

Authors: Sirus Mohammadi, Rohala Moghimi

Abstract:

The main advantages of microgrids are high energy efficiency through the application of Combined Heat and Power (CHP), high quality and reliability of the delivered electric energy and environmental and economic advantages. This study presents an energy management system (EMS) to optimize the operation of the microgrid (MG). In this paper an Adaptive Modified Firefly Algorithm (AMFA) is presented for optimal operation of a typical MG with renewable energy sources (RESs) accompanied by a back-up Micro-Turbine/Fuel Cell/Battery hybrid power source to level the power mismatch or to store the energy surplus when it’s needed. The problem is formulated as a nonlinear constraint problem to minimize the total operating cost. The management of Energy storage system (ESS), economic load dispatch and operation optimization of distributed generation (DG) are simplified into a single-object optimization problem in the EMS. The proposed algorithm is tested on a typical grid-connected MG including WT/PV/Micro Turbine/Fuel Cell and Energy Storage Devices (ESDs) then its superior performance is compared with those from other evolutionary algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Fuzzy Self Adaptive PSO (FSAPSO), Chaotic Particle PSO (CPSO), Adaptive Modified PSO (AMPSO), and Firefly Algorithm (FA).

Keywords: microgrid, operation management, optimization, firefly algorithm (AMFA)

Procedia PDF Downloads 318
22403 Green Procedure for Energy and Emission Balancing of Alternative Scenario Improvements for Cogeneration System: A Case of Hardwood Lumber Manufacturing Process

Authors: Aldona Kluczek

Abstract:

Energy efficient process have become a pressing research field in manufacturing. The arguments for having an effective industrial energy efficiency processes are interacted with factors: economic and environmental impact, and energy security. Improvements in energy efficiency are most often achieved by implementation of more efficient technology or manufacturing process. Current processes of electricity production represents the biggest consumption of energy and the greatest amount of emissions to the environment. The goal of this study is to improve the potential energy-savings and reduce greenhouse emissions related to improvement scenarios for the treatment of hardwood lumber produced by an industrial plant operating in the U.S. through the application of green balancing procedure, in order to find the preferable efficient technology. The green procedure for energy is based on analysis of energy efficiency data. Three alternative scenarios of the cogeneration systems plant (CHP) construction are considered: generation of fresh steam, the purchase of a new boiler with the operating pressure 300 pounds per square inch gauge (PSIG), an installation of a new boiler with a 600 PSIG pressure. In this paper, the application of a bottom-down modelling for energy flow to devise a streamlined Energy and Emission Flow Analyze method for the technology of producing electricity is illustrated. It will identify efficiency or technology of a given process to be reached, through the effective use of energy, or energy management. Results have shown that the third scenario seem to be the efficient alternative scenario considered from the environmental and economic concerns for treating hardwood lumber. The energy conservation evaluation options could save an estimated 6,215.78 MMBtu/yr in each year, which represents 9.5% of the total annual energy usage. The total annual potential cost savings from all recommendations is $143,523/yr, which represents 30.1% of the total annual energy costs. Estimation have presented that energy cost savings are possible up to 43% (US$ 143,337.85), representing 18.6% of the total annual energy costs.

Keywords: alternative scenario improvements, cogeneration system, energy and emission flow analyze, energy balancing, green procedure, hardwood lumber manufacturing process

Procedia PDF Downloads 185
22402 Mechanochemical Behaviour of Aluminium–Boron Oxide–Melamine Ternary System

Authors: Ismail Seckin Cardakli, Mustafa Engin Kocadagistan, Ersin Arslan

Abstract:

In this study, mechanochemical behaviour of aluminium - boron oxide - melamine ternary system was investigated by high energy ball milling. According to the reaction Al + B₂O₃ = Al₂O₃ + B, stochiometric amount of aluminium and boron oxide with melamine up to ten percent of total weight was used in the experiments. The powder characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy (SEM) after leaching of product by 1M HCl acid. Results show that mechanically induced self-sustaining reaction (MSR) between aluminium and boron oxide takes place after four hours high energy ball milling. Al₂O₃/h-BN composite powder is obtained as the product of aluminium - boron oxide - melamine ternary system.

Keywords: high energy ball milling, hexagonal boron nitride, mechanically induced self-sustaining reaction, melamine

Procedia PDF Downloads 123
22401 A Comprehensive Study of a Hybrid System Integrated Solid Oxide Fuel cell, Gas Turbine, Organic Rankine Cycle with Compressed air Energy Storage

Authors: Taiheng Zhang, Hongbin Zhao

Abstract:

Compressed air energy storage become increasingly vital for solving intermittency problem of some renewable energies. In this study, a new hybrid system on a combination of compressed air energy storage (CAES), solid oxide fuel cell (SOFC), gas turbine (GT), and organic Rankine cycle (ORC) is proposed. In the new system, excess electricity during off-peak time is utilized to compress air. Then, the compressed air is stored in compressed air storage tank. During peak time, the compressed air enters the cathode of SOFC directly instead of combustion chamber of traditional CAES. There is no air compressor consumption of SOFC-GT in peak demand, so SOFC- GT can generate power with high-efficiency. In addition, the waste heat of exhaust from GT is recovered by applying an ORC. Three different organic working fluid (R123, R601, R601a) of ORC are chosen to evaluate system performance. Based on Aspen plus and Engineering Equation Solver (EES) software, energy and exergoeconomic analysis are used to access the viability of the combined system. Besides, the effect of two parameters (fuel flow and ORC turbine inlet pressure) on energy efficiency is studied. The effect of low-price electricity at off-peak hours on thermodynamic criteria (total unit exergy cost of products and total cost rate) is also investigated. Furthermore, for three different organic working fluids, the results of round-trip efficiency, exergy efficiency, and exergoeconomic factors are calculated and compared. Based on thermodynamic performance and exergoeconomic performance of different organic working fluids, the best suitable working fluid will be chosen. In conclusion, this study can provide important guidance for system efficiency improvement and viability.

Keywords: CAES, SOFC, ORC, energy and exergoeconomic analysis, organic working fluids

Procedia PDF Downloads 92
22400 Comparison the Energy Consumption with Sustainability in Campus: Case Study of Four American Universities

Authors: Bifeng Zhu, Zhekai Wang, Chaoyang Sun, Bart Dewancker

Abstract:

Under the tide of promoting sustainable development in the world, American universities that have been committed to sustainable practice and innovation, not only have its sustainable campus construction been in the forefront of the world, but also have developed STARS (The Sustainability Tracking, Assessment & Rating System), which is widely used in the world and highly recognized. At the same time, in the process of global sustainable campus construction, energy problem is often regarded as one of the most important sustainable aspects, even equivalent to the sustainability of campus. Therefore, the relationship between campus energy and sustainability is worth discussing. In this study, four American universities with the highest level evaluated by STARS are selected as examples to compare and analyze the campus energy consumption and the use of new energy, GHG emissions and the overall sustainability of the campus, in order to explore the relationship between campus energy and sustainable construction. It is found that the advantages of sustainable campus construction in the United States are mainly focused on the "software" of management, education, activities, etc. Although different energy-saving measures have been taken in campus energy, the construction results are quite different. Moreover, as an important aspect of sustainable campus, energy can not fully represent the sustainability of campus, but because of the various measures it takes, it can greatly promote the sustainable construction of the whole campus. These measures and construction experiences are worthy of summary and promotion, and have positive reference significance for other universities even communities around the world.

Keywords: sustainable campus, energy consumption, STARS assessment, GHG emissions

Procedia PDF Downloads 240
22399 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves

Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada

Abstract:

Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.

Keywords: renewable energy, oscillating water column, multi-criteria selection, Wells turbine

Procedia PDF Downloads 136
22398 Advancement of Oscillating Water Column Wave Energy Technologies through Integrated Applications and Alternative Systems

Authors: S. Doyle, G. A. Aggidis

Abstract:

Wave energy converter technologies continue to show good progress in worldwide research. One of the most researched technologies, the Oscillating Water Column (OWC), is arguably one of the most popular categories within the converter technologies due to its robustness, simplicity and versatility. However, the versatility of the OWC is still largely untapped with most deployments following similar trends with respect to applications and operating systems. As the competitiveness of the energy market continues to increase, the demand for wave energy technologies to be innovative also increases. For existing wave energy technologies, this requires identifying areas to diversify for lower costs of energy with respect to applications and synergies or integrated systems. This paper provides a review of all OWCs systems integrated into alternative applications in the past and present. The aspects and variation in their design, deployment and system operation are discussed. Particular focus is given to the Multi-OWCs (M-OWCs) and their great potential to increase capture on a larger scale, especially in synergy applications. It is made clear that these steps need to be taken in order to make wave energy a competitive and viable option in the renewable energy mix as progression to date shows that stand alone single function devices are not economical. Findings reveal that the trend of development is moving toward these integrated applications in order to reduce the Levelised Cost of Energy (LCOE) and will ultimately continue in this direction in efforts to make wave energy a competitive option in the renewable energy mix.

Keywords: wave energy converter, oscillating water column, ocean energy, renewable energy

Procedia PDF Downloads 102
22397 A Particle Swarm Optimal Control Method for DC Motor by Considering Energy Consumption

Authors: Yingjie Zhang, Ming Li, Ying Zhang, Jing Zhang, Zuolei Hu

Abstract:

In the actual start-up process of DC motors, the DC drive system often faces a conflict between energy consumption and acceleration performance. To resolve the conflict, this paper proposes a comprehensive performance index that energy consumption index is added on the basis of classical control performance index in the DC motor starting process. Taking the comprehensive performance index as the cost function, particle swarm optimization algorithm is designed to optimize the comprehensive performance. Then it conducts simulations on the optimization of the comprehensive performance of the DC motor on condition that the weight coefficient of the energy consumption index should be properly designed. The simulation results show that as the weight of energy consumption increased, the energy efficiency was significantly improved at the expense of a slight sacrifice of fastness indicators with the comprehensive performance index method. The energy efficiency was increased from 63.18% to 68.48% and the response time reduced from 0.2875s to 0.1736s simultaneously compared with traditional proportion integrals differential controller in energy saving.

Keywords: comprehensive performance index, energy consumption, acceleration performance, particle swarm optimal control

Procedia PDF Downloads 130