Search results for: cardio data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42082

Search results for: cardio data analysis

42082 A Comparative Study of Cardio Respiratory Efficiency between Aquatic and Track and Field Performers

Authors: Sumanta Daw, Gopal Chandra Saha

Abstract:

The present study was conducted to explore the basic pulmonary functions which may generally vary according to the bio-physical characteristics including age, height, body weight, and environment etc. of the sports performers. Regular and specific training exercises also change the characteristics of an athlete’s prowess and produce a positive effect on the physiological functioning, mostly upon cardio-pulmonary efficiency and thereby improving the body mechanism. The objective of the present study was to compare the differences in cardio-respiratory functions between aquatics and track and field performers. As cardio-respiratory functions are influenced by pulse rate and blood pressure (systolic and diastolic), so both of the factors were also taken into consideration. The component selected under cardio-respiratory functions for the present study were i) FEVI/FVC ratio (forced expiratory volume divided by forced vital capacity ratio, i.e. the number represents the percentage of lung capacity to exhale in one second) ii) FVC1 (this is the amount of air which can force out of lungs in one second) and iii) FVC (forced vital capacity is the greatest total amount of air forcefully breathe out after breathing in as deeply as possible). All the three selected components of the cardio-respiratory efficiency were measured by spirometry method. Pulse rate was determined manually. The radial artery which is located on the thumb side of our wrist was used to assess the pulse rate. Blood pressure was assessed by sphygmomanometer. All the data were taken in the resting condition. 36subjects were selected for the present study out of which 18were water polo players and rest were sprinters. The age group of the subjects was considered between 18 to 23 years. In this study the obtained data inform of digital score were treated statistically to get result and draw conclusions. The Mean and Standard Deviation (SD) were used as descriptive statistics and the significant difference between the two subject groups was assessed with the help of statistical ‘t’-test. It was found from the study that all the three components i.e. FEVI/FVC ratio (p-value 0.0148 < 0.01), FVC1 (p-value 0.0010 < 0.01) and FVC (p-value 0.0067 < 0.01) differ significantly as water polo players proved to be better in terms of cardio-respiratory functions than sprinters. Thus study clearly suggests that the exercise training as well as the medium of practice arena associated with water polo players has played an important role to determine better cardio respiratory efficiency than track and field athletes. The outcome of the present study revealed that the lung function in land-based activities may not provide much impact than that of in water activities.

Keywords: cardio-respiratory efficiency, spirometry, water polo players, sprinters

Procedia PDF Downloads 134
42081 The Impact of Total Dust (LGS) and Mineral Dust (PM 10) in Cardio Vascular and Respiratory System, in Albania: A Longitudinal Study

Authors: Canga Mimoza, Irene Malagnino, Giulia Malagnino, Vito Malagnino

Abstract:

Aim: This study aims at evaluating the impact of total dust (LGS) and mineral dust (PM10), in the cardio vascular and respiratory systems. Also proving that these air polluters are the cause of several diseases, such as bronchopneumonia, pneumonia, bronchitis, angina pectoris and cardiac insufficiency. Material and Method: The study is concentrated in the cities of Fier and Vlora. This is a clinic-epidemiological study conducted during the time period 2014-2019. Some of the data of LGS and PM10 were obtained from the database of the Institute of Public Health. The formula to measure the mean value of LGS and PM10 is ∆X=X (mean)-Xᵢ. Results: Based on the calculations made, we noticed that: The mean value of LGS in the city of Fieri was 227,33, while the mean value of LGS in the city of Vlora was 177,4. Whereas, the mean value of PM10 in the city of Fieri was 105.5 and the mean value of PM10 in the city of Vlore was 77.5. According to, our statistics the values of LGS were 1.2 times higher in Fier than in Vlora and the PM10 values were 1.36 times higher in Fier than in Vlora. Based on the data, in the city of Fier, the incidence of the bronchopneumonia was 56.53 sick patients/1000 inhabitants, but in Vlora, it was 22 sick patients/1000 inhabitants, so the number of the sick patients was 2.5 times higher in the city of Fieri compared with Vlora city, (P=0.001). The number of the patients with bronchitis, in the city of Fier, was 18 patients/1000 inhabitants, whereas, in Vlora, it was 9 patients/1000 inhabitants, (P=0.005). Based on the data, 8 patients/1000 inhabitants in the city of Fier, suffered from the pneumonia disease, while in Vlora city, were 4 patients/1000 inhabitants, (P=0.005). Another disease taken in consideration was angina pectoris. This study can claim that in the city of Fier, 9.5 patients/1000 inhabitants suffered from this disease, while in Vlora city, were only 4 patients /1000 inhabitants, (P=0.001). Findings of the present study proved that 3.7 patients/1000 inhabitants in the city of Fieri, had cardiac insufficiency, whereas in the city of Vlora, were 1.8 patients/1000 inhabitants, (P=0.05). Conclusions: LGS and PM10 have an influential impact on the cardio vascular and respiratory system; that’s why their levels should be kept under control. The pollution levels are 1.2 and 1.4 times higher in Fier than in Vlora; also the incidences of the diseases are 2 times higher in Fier than in Vlora. Recommendations: In order to prevent the cardio vascular and respiratory diseases, we should avoid places where pollution is higher than the norm. This can be achieved by frequenting places where the air pollution is lower, such as parks, gardens, top floors, etc.

Keywords: impact of total dust, LGS, mineral dust, PM 10, cardio vascular pathologies, respiratory disease

Procedia PDF Downloads 127
42080 Effect Of Selected Food And Nutrition Environments On Prevalence Of Cardio-Metabolic Risk Factors With Emphasis On Worksite Environment In Urban Delhi

Authors: Deepa Shokeen, Bani Tamber Aeri

Abstract:

Food choice is a complex process influenced by the interplay of multiple factors, including physical, socio-cultural and economic factors comprising macro or micro level food environments. While a clear understanding of the relationship between what we eat and the environmental context in which these food choices are made is still needed; it has however now been shown that food environments do play a significant role in the obesity epidemic and increasing cardio-metabolic risk factors. Evidence in other countries indicates that the food environment may strongly influence the prevalence of obesity and cardio-metabolic risk factors among young adults. Although in the Indian context, data does indicate the associations between sedentary lifestyle, stress, faulty diets but very little evidence supports the role of food environment in influencing cardio-metabolic health among employed adults. Thus, this research is required to establish how different environments affect different individuals as individuals interact with the environment on a number of levels. Methodology: The objective of the present study is to assess the effect of selected food and nutrition environments with emphasis on worksite environment and to analyse its impact on the food choices and dietary behaviour of the employees (25-45 years of age) of the organizations under study. In the proposed study an attempt will be made to randomly select various worksite environments from Delhi and NCR. The study will be conducted in two phases. In phase I, Information will be obtained on their socio-demographic profile and various factors influencing their food choices including most commonly consumed foods and most frequently visited eating outlets in and around the work place. Data will also be gathered on anthropometry (height, weight, waist circumference), biochemical parameters (lipid profile and fasting glucose), blood pressure and dietary intake. Based on the findings of phase I, a list of the most frequently visited eating outlets in and around the workplace will be prepared in Phase II. These outlets will then be subjected to nutrition environment assessment survey (NEMS). On the basis of the information gathered from phase I and phase II, influence of selected food and nutrition environments on food choice, dietary behaviour and prevalence of cardio-metabolic risk factors among employed adults will be assessed. Expected outcomes: The proposed study will try to ascertain the impact of selected food and nutrition environments on food choice and dietary intake of the working adults as it is important to learn how these food environments influence the eating perceptions and health behavior of the adults. In addition to this, anthropometry blood pressure and biochemical assessment of the subjects will be done to assess the prevalence of cardio-metabolic risk factors. If the findings indicate that the work environment, where most of these young adults spend their productive hours of the day, influence their health, than perhaps steps maybe needed to make these environments more conducive to health.

Keywords: food and nutrition environment, cardio-metabolic risk factors, India, worksite environment

Procedia PDF Downloads 281
42079 Inflammatory and Cardio Hypertrophic Remodeling Biomarkers in Patients with Fabry Disease

Authors: Margarita Ivanova, Julia Dao, Andrew Friedman, Neil Kasaci, Rekha Gopal, Ozlem Goker-Alpan

Abstract:

In Fabry disease (FD), α-galactosidase A (α-Gal A) deficiency leads to the accumulation of globotriaosylceramide (Lyso-Gb3 and Gb3), triggering a pathologic cascade that causes the severity of organs damage. The heart is one of the several organs with high sensitivity to the α-Gal A deficiency. A subgroup of patients with significant residual of α-Gal A activity with primary cardiac involvement is occasionally referred to as “cardiac variant.” The cardiovascular complications are most frequently encountered, contributing substantially to morbidity, and are the leading cause of premature death in male and female patients with FD. The deposition of Lyso-Gb-3 and Gb-3 within the myocardium affects cardiac function with resultant progressive cardiovascular pathology. Gb-3 and Lyso-Gb-3 accumulation at the cellular level trigger a cascade of events leading to end-stage fibrosis. In the cardiac tissue, Lyso-Gb-3 deposition is associated with the increased release of inflammatory factors and transforming growth factors. Infiltration of lymphocytes and macrophages into endomyocardial tissue indicates that inflammation plays a significant role in cardiac damage. Moreover, accumulated data suggest that chronic inflammation leads to multisystemic FD pathology even under enzyme replacement therapy (ERT). NF-κB activation plays a subsequent role in the inflammatory response to cardiac dysfunction and advanced heart failure in the general population. TNFalpha/NF-κB signaling protects the myocardial evoking by ischemic preconditioning; however, this protective effect depends on the concentration of TNF-α. Thus, we hypothesize that TNF-α is a critical factor in determining the grade of cardio-pathology. Cardiac hypertrophy corresponds to the expansion of the coronary vasculature to maintain a sufficient supply of nutrients and oxygen. Coronary activation of angiogenesis and fibrosis plays a vital role in cardiac vascularization, hypertrophy, and tissue remodeling. We suggest that the interaction between the inflammatory pathways and cardiac vascularization is a bi-directional process controlled by secreted cytokines and growth factors. The co-coordination of these two processes has never been explored in FD. In a cohort of 40 patients with FD, biomarkers associated with inflammation and cardio hypertrophic remodeling were studied. FD patients were categorized into three groups based on LVmass/DSA, LVEF, and ECG abnormalities: FD with no cardio complication, FD with moderate cardio complication, and severe cardio complication. Serum levels of NF-kB, TNFalpha, Il-6, Il-2, MCP1, ING-gamma, VEGF, IGF-1, TGFβ, and FGF2 were quantified by enzyme-linked immunosorbent assays (ELISA). Among the biomarkers, MCP-1, INF-gamma, VEGF, TNF-alpha, and TGF-beta were elevated in FD patients. Some of these biomarkers also have the potential to correlate with cardio pathology in FD. Conclusion: The study provides information about the role of inflammatory pathways and biomarkers of cardio hypertrophic remodeling in FD patients. This study will also reveal the mechanisms that link intracellular accumulation of Lyso-GB-3 and Gb3 to the development of cardiomyopathy with myocardial thickening and resultant fibrosis.

Keywords: biomarkers, Fabry disease, inflammation, growth factors

Procedia PDF Downloads 81
42078 Investigation of the Effects of Aerobic Exercise Programs on Hematological Parameters of Sedentary People

Authors: Sanjeev Kumar, Swati Choudhary

Abstract:

Background: A variety of studies warn that sedentary lifestyles can contribute to many preventable causes of death. This study was taken to determine the effects of two types of aerobic training programs on erythrocytes, leukocytes, hemoglobin concentration (Hb), platelets and hematocrit of sedentary people (N=60) with age group 20 to 30 years. Methods: All the subjects were randomly divided into three groups i.e. two experiments groups (aerobic dance & cardio fitness) and control group. Each group having 10 male and 10 females. Experimental groups undergone 60 minutes of training 5 times a week for 12 weeks whereas the control group did not participate in any training program except their daily routine. The aerobic dance group was chosen to perform exercise like step –touch, side-to-side, V-step and hand and body movements, etc. The cardio fitness group was chosen to perform exercises with modern fitness equipment like treadmill, elliptical trainer, stationary bike and rowing machine. Rating of perceived exertion (RPE) scale developed by Gunner Borg was used to monitor the intensity of the workout. Aerobic programs were encompassed of low-impact (0- 4 week & perceived exertion from 6 to 12), moderate-impact (4-8 week and perceived exertion from 12 to 16) and high-impact (8- 12 week & perceived exertion from 16 to 20). Results: To test the effectiveness of training programs paired t-test was used and significant difference (p<0.05) was observed in erythrocytes, hemoglobin concentration, platelets, hematocrit but no significant effects of training was found in leukocytes (p>0.05). Paired t-test also showed that no effect of time was seen in the control group in all the cases (p>0.05). Further analysis of covariance was used to know which program was more effective and it was seen that F value was found significant in the case of erythrocytes, hemoglobin concentration, platelets, and hematocrit as their associated p-value (p<0.05) is lesser than 0.05. As F value was found significant for hematological parameters, fishers least significant difference test was used and results of post hoc mean comparison indicated that experimental groups (aerobic dance group and cardio fitness group) had significant difference with control group in erythrocytes, hemoglobin concentration, platelets and hematocrit and insignificant difference was found between aerobic dance group & cardio fitness group in all the cases. Thus, it may be concluded that in general, both the aerobic training programs had adequate effects on all the hematological parameters except leukocytes.

Keywords: aerobic dance, cardio fitness, hematological variables, rating perceived exertion scale

Procedia PDF Downloads 272
42077 Integration Program Through Physical Education Lessons for The Influence of Some Physical Fitness Health-Related Components in Visual Handicapped Children

Authors: Said S. Almaiuof

Abstract:

Integration Program Through Physical Education Lessons for The Influence of Some Physical Fitness Health-Related Components in Visual Handicapped Children. Propose of the study: The aim of this study is to design and evaluate a program for the physical education lesson to improve the cardio-respiratory endurance, considering the lesson of physical education as one of the educational means to achieve the society aims toward health and fitness, concerning the importance of the cardio-respiratory endurance as an essential one of the physical fitness health-related components. And this program tried to give them hand of help as a part of the society having the same rights as the rest of the society. Methodology: The researcher used the experimental method as a suitable method for this study and tested its hypothesis. The subject of the research selected randomly of the two classes from primary education in TRIPOLI-LIBYA, it was 28 boys (14-15) years old, then divided into groups, experimental group, n=13, which practiced the special exercises program and control group, n=15, which only practiced the normal school program. The selected child subjected to a medical examination in order to make sure that they are healthy, and the Vo2max measured by cycle ergometry and test some physical fitness makers before and after the program. Results: The study cleared that the experimental group developed in all physical variation in comparison with the control group which has a little development in a general balance only. Results are following: 1. The experimental group was successful more than the control group in all the research variation. 2. There were some improvements in time of keeping Balance in control group only. Discussion /conclusion: According to statistical analysis of data related to the values of the variables in this study; the suggested exercise program according to development the cardio respiratory endurance (CRE), and some physical fitness more than the program which already implemented in the school was less effective, just there is developing on keep balancing. It’s statistically significant (p<0.05) after applying this program. Improving the experimental group on (CRE), balance, running, sit and reach, from the suggested exercise program of what indicate the partaking program positive in improve those physical variables, and the selected exercises may contributed in improving the (CRE) for visual impairment and its pivotal in visual impairment children’s life. A health-related physical education curriculum can provide students with substantially more physical activity during physical education classes. The results show that the physical rehabilitation program for visual impairment children helped them in developing their defects due to the injury which means that this program should be in every organization having this part of people to increase their production and give them hand of help as a part of the society having the same rights as the rest of the society and to establish the idea of sport for all.

Keywords: visual handicapped, cardio-respiratory endurance, health, ergometry, education

Procedia PDF Downloads 435
42076 Data Transformations in Data Envelopment Analysis

Authors: Mansour Mohammadpour

Abstract:

Data transformation refers to the modification of any point in a data set by a mathematical function. When applying transformations, the measurement scale of the data is modified. Data transformations are commonly employed to turn data into the appropriate form, which can serve various functions in the quantitative analysis of the data. This study addresses the investigation of the use of data transformations in Data Envelopment Analysis (DEA). Although data transformations are important options for analysis, they do fundamentally alter the nature of the variable, making the interpretation of the results somewhat more complex.

Keywords: data transformation, data envelopment analysis, undesirable data, negative data

Procedia PDF Downloads 20
42075 Association of Neck Circumference as an Indicator of Upper Body Obesity with Cardio-Metabolic Risk Factors among First Degree Relatives of Diabetes Patients

Authors: Hadi Abdollahi, Bijan Iraj, Maryam Mirpourian, Behzad Shariatifar

Abstract:

Background: The aim of the present study was to determine the relationship between neck circumferences (NC), as an indicator of upper body obesity, with anthropometric and cardio-metabolic factors among the first degree relatives of diabetes patients. Materials and Methods: This cross-sectional study was performed on first degree relatives of diabetes patients (n = 213). Weight, height, waist circumference (WC), hip circumference (HC), systolic blood pressure (SBP), diastolic blood pressure (DBP) and NC were measured. Laboratory data included oral glucose tolerance test (OGTT) results, high density lipoprotein (HDL), low density lipoprotein, triglyceride (TG) and total cholesterol. Results: There was no difference in NC among different results of OGTT in men or women. Factors including weight, body mass index (BMI), WC and HC were strongly associated with NC in both genders (r = 0.420-0.711). NC was weakly associated with SBP in women (r = 0.195) and moderately with DBP in men (r = 0.314). Regarding lipid profile, HDL and TG were associated with NC only in women (r = −0.268-0.325). Conclusions: NC has a significant correlation with gender and anthropometric variables, including BMI, weight and waist and HCs in both men and women, but it does not differ significantly in patients with different status in OGTT.

Keywords: body mass index, cardiovascular, diabetes, neck circumference, obesity

Procedia PDF Downloads 74
42074 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management

Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide

Abstract:

This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.

Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis

Procedia PDF Downloads 10
42073 Cardio-respiratory Rehabilitation in Patients With Chronic or Post-acute Cardiomyopathy and COPD

Authors: Ledi Neçaj

Abstract:

Introduction: Cardio-respiratory rehabilitation is the set of coordinated interventions needed to provide the best physical, psychological, and social conditions so that patients with chronic or post-acute cardiopulmonary disease, with their efforts, maintain or resume optimal functioning in society through improved health behaviors. Purpose: To study the effectiveness of the application of Cardio-Respiratory Rehabilitation in the typology of patients with chronic or post-acute cardiomyopathy and chronic respiratory diseases in order to facilitate their therapeutic use and to improve the overall quality of life. Material and Method: This is a prospective study including patients with COPD and cardiac disease who were included in the rehabilitation program during the period January 2019 - November 2021. The study was conducted at the University Hospital Center "Mother Teresa" in Tirana, University Hospital "SHEFQET NDROQI", AMERICAN Hospital, HYGEA Hospital, and "Our Lady of Good Counsel, Tirana". An individual chart was used to collect sociodemographic, physical, clinical, and functional examinations for each patient. Results: The study included 253 patients, with a mean age of 62.1 (± 7.9) years, ranging from 48 to 82 years. (67.6%) of the patients were males, and (32.4%) female. Male patients predominated in all age groups, with a statistically significant difference with females (p<0.01). The most common cardiac pathologies are coronary artery bypass (24%), cerebral stroke (9%), myocardial infarction (17%), Stent placement (8%) (p<0.01). Correlation matrix of risk factors found a significant correlation of alcohol consumption with diabetes, smoking, dyslipidemia, sedentary life, obesity, AVC, and hypertension. Functional capacity estimated by change in metabolic equivalents (MET) improved by 46% from 4. ±2.2 to 7.2± .8 METs (p<0.01). Duration of exercise after rehabilitation was increased by 21% compared to baseline (p<0.01). The mean score of all three subscales of the questionnaire: symptoms (p=0.03), activity (p<0.01), and impact (p<0.01) after rehabilitation, was lower compared to pre-rehabilitation. Conclusions: The rehabilitation program has impacted on improving the quality of life, reducing symptoms, reducing the impact of negative factors on daily life, and reducing dyspnea during daily activities.

Keywords: cardio-respiratory rehabilitation, physical exercise, quality of life, diseases

Procedia PDF Downloads 91
42072 Correlation Analysis between Physical Fitness Norm and Cardio-Pulmonary Signals under Graded Exercise and Recovery

Authors: Shyan-Lung Lin, Cheng-Yi Huang, Tung-Yi Lin

Abstract:

Physical fitness is the adaptability of the body to physical work and the environment, and is generally known to include cardiopulmonary-fitness, muscular-fitness, body flexibility, and body composition. This paper is aimed to study the ventilatory and cardiovascular activity under various exercise intensities for subjects at distinct ends of cardiopulmonary fitness norm. Three graded upright biking exercises, light, moderate, and vigorous exercise, were designed for subjects at distinct ends of cardiopulmonary fitness norm from their physical education classes. The participants in the experiments were 9, 9, and 11 subjects in the top 20%, middle 20%, and bottom 20%, respectively, among all freshmen of the Feng Chia University in the academic year of 2015. All participants were requested to perform 5 minutes of upright biking exercise to attain 50%, 65%, and 85% of their maximum heart rate (HRmax) during the light, moderate, and vigorous exercise experiment, respectively, and 5 minutes of recovery following each graded exercise. The cardiovascular and ventilatory signals, including breathing frequency (f), tidal volume (VT), heart rate (HR), mean arterial pressure (MAP), and ECG signals were recorded during rest, exercise, and recovery periods. The physiological signals of three groups were analyzed based on their recovery, recovery rate, and percentage variation from rest. Selected time domain parameters, SDNN and RMSSD, were computed and spectral analysis was performed to study the hear rate variability from collected ECG signals. The comparison studies were performed to examine the correlations between physical fitness norm and cardio-pulmonary signals during graded exercises and exercise recovery. No significant difference was found among three groups with VT during all levels of exercise intensity and recovery. The top 20% group was found to have better performance in heart recovery (HRR), frequency recovery rate (fRR) and percentage variation from rest (Δf) during the recovery period of vigorous exercise. The top 20% group was also found to achieve lower mean arterial pressure MAP only at rest but showed no significant difference during graded exercises and recovery periods. In time-domain analysis of HRV, the top 20% group again seemed to have better recovery rate and less variation in terms of SDNN during recovery period of light and vigorous exercises. Most assessed frequency domain parameters changed significantly during the experiment (p<0.05, ANOVA). The analysis showed that the top 20% group, in comparison with middle and bottom 20% groups, appeared to have significantly higher TP, LF, HF, and nHF index, while the bottom 20% group showed higher nLF and LF/HF index during rest, three graded levels of exercises, and their recovery periods.

Keywords: physical fitness, cardio-pulmonary signals, graded exercise, exercise recovery

Procedia PDF Downloads 257
42071 Isolated and Combined Effects of Multimedia Computer Assisted Coaching and Traditional Coaching on Motor Ability Component and Physiological Variables among Sports School Basketball Players

Authors: Biju Lukose

Abstract:

The objective of the study was to identify the isolated and combined effect of multi-media computer assisted coaching and traditional coaching on selected motor ability component and physiological variables among sports school basketball players. Forty male basketball players aged between 14 to 18 years were selected randomly. They were divided into four groups of three experimental and one control. Isolated multi-media computer assisted coaching, isolated traditional coaching and combined coaching (multimedia computer assisted coaching and traditional coaching) are the three experimental groups. All the three experimental groups were given coaching for 24 weeks and control group were not allowed to participate in any coaching programme. The subjects were tested dependent variables such as speed and cardio vascular endurance; at the beginning (pre-test) in middle 12 week (mid-test) and after the coaching 24 week (post-test). The coaching schedule was for a period of 24 weeks. The data were collected two days before and after the coaching schedule and mid test after the 12 weeks of the coaching schedule. The data were analysed by applying ANCOVA and Scheffe’s Post hoc test. The result showed that there were significant changes in dependent variables such as speed and cardio vascular endurance. The results of the study showed that combined coaching (multimedia computer assisted coaching and traditional coaching) is more superior to traditional coaching and multimedia computer assisted coaching groups and no significant change in speed in the case of isolated multimedia computer assisted coaching group.

Keywords: computer, computer-assisted coaching, multimedia coaching, traditional coaching

Procedia PDF Downloads 455
42070 Effect of Cardio-Specific Overexpression of MUL1, a Mitochondrial Protein on Myocardial Function

Authors: Ximena Calle, Plinio Cantero-López, Felipe Muñoz-Córdova, Mayarling-Francisca Troncoso, Sergio Lavandero, Valentina Parra

Abstract:

MUL1, a mitochondrial E3 ubiquitin ligase anchored to the outer mitochondrial membrane, is highly expressed in the heart. MUL1 is involved in multiple biological pathways associated with mitochondrial dynamics. Increased MUL1 affects the balance between fission and fusion, affecting mitochondrial function, which plays a crucial role in myocardial function. Therefore, it is interesting to evaluate the effect of cardiac-specific overexpression of MUL1 on myocardial function. Aim: To determine heart functionality in a mouse model with cardio-specific overexpression MUL1 protein. Methods and Results: Male C57BL/Tg transgenic mice with cardiomyocyte-specific overexpression of MUL1 (n=10) and control (n=4) were evaluated at 12, 27, and 35 weeks of age. Glucose tolerance curve determination was performed after a 6-hours fast to assess metabolic capacity, treadmill test, and systolic, and diastolic pressure was evaluated by the mouse tail-cuff blood pressure system equipment. The result showed no glucose tolerance curve, and the treadmill test demonstrated no significant changes between groups. However, substantial changes in diastolic function were observed by ultrasound and determination of cardiac hypertrophy proteins by western blot. Conclusions: Cardio-specific overexpression of MUL1 in mice without any treatment affects diastolic cardiac function, thus showing the important role contributed by MUL1 in the heart. Future research should evaluate the effect of cardiomyocyte-specific overexpression of MUL1 in pathological conditions such as a high-fat diet is one of the main risk factors for cardiovascular disease.

Keywords: diastolic dysfunction, hypertrophy cardiac, mitochondrial E3 ubiquitin ligase 1, MUL1

Procedia PDF Downloads 70
42069 Evaluating Models Through Feature Selection Methods Using Data Driven Approach

Authors: Shital Patil, Surendra Bhosale

Abstract:

Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.

Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE

Procedia PDF Downloads 117
42068 Considerations for the Use of High Intensity Interval Training in Secondary Physical Education

Authors: Amy Stringer, Resa Chandler

Abstract:

High Intensity Interval Training (HIIT) involves a 3-10-minute circuit of various exercises which is a viable alternative to a traditional cardiovascular and strength training regimen. Research suggests that measures of health-related fitness can either be maintained or actually improve with the use of this training method. After conducting a 6-week HIIT research study with 10-14 year old children, considerations for using a daily HIIT workout are presented. Is the use of HIIT with children a reasonable consideration for physical education programs? The benefits and challenges of this type of an intervention are identified. This study is significant in that achieving fitness gains in a small amount of daily class time is an attractive concept – especially for physical education teachers who often do not have the time necessary to accomplish all of their curricular goals in the amount of class time assigned. Basic methodologies include students participating in a circuit of exercises for 7-10 minutes at 80-95% of max heart rate as measured by heart rate monitors. Student pre and post fitness test data were collected for cardio-vascular endurance, muscular endurance, and body composition. Research notes as well as commentary by the teachers and researchers who participated in the HIIT study contributed to the understanding of the cost-benefit analysis. Major findings of the study are that HIIT has limited effectiveness but is a good choice for limited class times. Student efficacy of their ability to complete the exercises and visible heart rate data were considered to be significant factors in success of the HIIT study. The effective use of technology promoting positive audience effect during the display of heart rate data was more important at the beginning of the study than at the end. Student ‘buy-in’ and motivation, teacher motivation and ‘buy-in’, the variety of activities in the circuit and the fitness level of the student at the beginning of the study were also findings influencing the fitness outcomes of the study. Concluding Statement: High intensity interval training can be used effectively in a secondary physical education program. It is not a ‘magic bullet’ to produce health-related fitness outcomes in every student but it is an effective tool to enhance student fitness in a limited time and contribute to the goals of the program.

Keywords: cardio vascular fitness, children, high intensity interval training, physical education

Procedia PDF Downloads 114
42067 Integrating Computational Modeling and Analysis with in Vivo Observations for Enhanced Hemodynamics Diagnostics and Prognosis

Authors: Shreyas S. Hegde, Anindya Deb, Suresh Nagesh

Abstract:

Computational bio-mechanics is developing rapidly as a non-invasive tool to assist the medical fraternity to help in both diagnosis and prognosis of human body related issues such as injuries, cardio-vascular dysfunction, atherosclerotic plaque etc. Any system that would help either properly diagnose such problems or assist prognosis would be a boon to the doctors and medical society in general. Recently a lot of work is being focused in this direction which includes but not limited to various finite element analysis related to dental implants, skull injuries, orthopedic problems involving bones and joints etc. Such numerical solutions are helping medical practitioners to come up with alternate solutions for such problems and in most cases have also reduced the trauma on the patients. Some work also has been done in the area related to the use of computational fluid mechanics to understand the flow of blood through the human body, an area of hemodynamics. Since cardio-vascular diseases are one of the main causes of loss of human life, understanding of the blood flow with and without constraints (such as blockages), providing alternate methods of prognosis and further solutions to take care of issues related to blood flow would help save valuable life of such patients. This project is an attempt to use computational fluid dynamics (CFD) to solve specific problems related to hemodynamics. The hemodynamics simulation is used to gain a better understanding of functional, diagnostic and theoretical aspects of the blood flow. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. In this project the mathematical modeling of the blood flow in the arteries in the presence of successive blockages has been analyzed using CFD technique. Different cases of blockages in terms of percentages have been modeled using commercial software CATIA V5R20 and simulated using commercial software ANSYS 15.0 to study the effect of varying wall shear stress (WSS) values and also other parameters like the effect of increase in Reynolds number. The concept of fluid structure interaction (FSI) has been used to solve such problems. The model simulation results were validated using in vivo measurement data from existing literature

Keywords: computational fluid dynamics, hemodynamics, blood flow, results validation, arteries

Procedia PDF Downloads 406
42066 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor

Authors: Pranav Gulati, Isha Sharma

Abstract:

Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.

Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring

Procedia PDF Downloads 275
42065 Typology of Customers in Fitness Centres

Authors: Josef Voracek, Jan Sima

Abstract:

The main purpose of our study is to state the basic types of fitness customers. This paper aims to create a specific customer typology in today’s fitness centres in the region of Prague. Our suggested typology of Prague fitness centres customers is based on answers to the questions: What are the customers like, what are their preferences, and what kinds of services do they use more often in Prague fitness centres? These are the main aspects of the presented typology. A survey was conducted on a sample of 1004 respondents from 48 fitness centres, which ran during May 2012. We used questionnaires and latent class analysis for the assessment and interpretation of data. Gender was especially the main filter criterion. In the population, there were 522 males and 482 females. Data were analysed using the LCA method. We identified 6 segments of typical customers, of which three are male and three are female. Each segment is influenced primarily by the age of customers, from which we can develop further characteristics, such as education, income, marital status, etc. Male segments use the main workout area above all, whilst female segments use a much wider range of services offered, for example, group exercises, personal training, and cardio theatres. LCA method was found to be the most suitable tool, because cluster analysis is very limited in the forms and numbers of variables and indicators. Models of 3 latent classes for each gender are optimal, as it is demonstrated by entropy indices and matrices of the likelihood of the membership to the classes. A probable weak point of the survey is the selection of fitness centres, because of the market in Prague is really specific.

Keywords: customer, fitness, latent class analysis, typology

Procedia PDF Downloads 215
42064 Cardio Autonomic Response during Mental Stress in the Wards of Normal and Hypertensive Parents

Authors: Sheila R. Pai, Rekha D. Kini, Amrutha Mary

Abstract:

Objective: To assess and compare the cardiac autonomic activity after mental stress among the wards of normal and hypertensive parents. Methods: The study included 67 subjects, 30 of them had a parental history of hypertension and rest 37 had normotensive parents. Subjects were divided into control group (wards of normotensive parents) and Study group (wards of hypertensive parents). The height, weight were noted, and Body Mass Index (BMI) was also calculated. The mental stress test was carried out. Blood pressure (BP) and electro cardiogram (ECG) was recorded during normal breathing and after mental stress test. Heart rate variability (HRV) analysis was done by time domain method HRV was recorded and analyzed by the time-domain method. Analysis of HRV in the time-domain was done using the software version 1.1 AIIMS, New Delhi. The data obtained was analyzed using student’s t-test followed by Mann-Whitney U-test and P < 0.05 was considered significant. Results: There was no significant difference in systolic blood pressure and diastolic blood pressure (DBP) between study group and control group following mental stress. In the time domain analysis, the mean value of pNN50 and RMSSD of the study group was not significantly different from the control group after the mental stress test. Conclusion: The study thus concluded that there was no significant difference in HRV between study group and control group following mental stress.

Keywords: heart rate variability, time domain analysis, mental stress, hypertensive

Procedia PDF Downloads 273
42063 A Data Envelopment Analysis Model in a Multi-Objective Optimization with Fuzzy Environment

Authors: Michael Gidey Gebru

Abstract:

Most of Data Envelopment Analysis models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp Data Envelopment Analysis into Data Envelopment Analysis with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the Data Envelopment Analysis model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units' efficiency. Finally, the developed Data Envelopment Analysis model is illustrated with an application on real data 50 educational institutions.

Keywords: efficiency, Data Envelopment Analysis, fuzzy, higher education, input, output

Procedia PDF Downloads 56
42062 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 851
42061 The Lopsided Burden of Non-Communicable Diseases in India: Evidences from the Decade 2004-2014

Authors: Kajori Banerjee, Laxmi Kant Dwivedi

Abstract:

India is a part of the ongoing globalization, contemporary convergence, industrialization and technical advancement that is taking place world-wide. Some of the manifestations of this evolution is rapid demographic, socio-economic, epidemiological and health transition. There has been a considerable increase in non-communicable diseases due to change in lifestyle. This study aims to assess the direction of burden of disease and compare the pressure of infectious diseases against cardio-vascular, endocrine, metabolic and nutritional diseases. The change in prevalence in a ten-year period (2004-2014) is further decomposed to determine the net contribution of various socio-economic and demographic covariates. The present study uses the recent 71st (2014) and 60th (2004) rounds of National Sample Survey. The pressure of infectious diseases against cardio-vascular (CVD), endocrine, metabolic and nutritional (EMN) diseases during 2004-2014 is calculated by Prevalence Rates (PR), Hospitalization Rates (HR) and Case Fatality Rates (CFR). The prevalence of non-communicable diseases are further used as a dependent variable in a logit regression to find the effect of various social, economic and demographic factors on the chances of suffering from the particular disease. Multivariate decomposition technique further assists in determining the net contribution of socio-economic and demographic covariates. This paper upholds evidences of stagnation of the burden of communicable diseases (CD) and rapid increase in the burden of non-communicable diseases (NCD) uniformly for all population sub-groups in India. CFR for CVD has increased drastically in 2004-2014. Logit regression indicates the chances of suffering from CVD and EMN is significantly higher among the urban residents, older ages, females, widowed/ divorced and separated individuals. Decomposition displays ample proof that improvement in quality of life markers like education, urbanization, longevity of life has positively contributed in increasing the NCD prevalence rate. In India’s current epidemiological phase, compression theory of morbidity is in action as a significant rise in the probability of contracting the NCDs over the time period among older ages is observed. Age is found to play a vital contributor in increasing the probability of having CVD and EMN over the study decade 2004-2014 in the nationally representative sample of National Sample Survey.

Keywords: cardio-vascular disease, case-fatality rate, communicable diseases, hospitalization rate, multivariate decomposition, non-communicable diseases, prevalence rate

Procedia PDF Downloads 310
42060 Development and Mineral Profile Analysis of Fruit, Vegetable and Wild Herb Based Juices to Be Consumed in Elderly Centres in Durban, South Africa

Authors: Mkhize Xolile, Davies Theopheluis

Abstract:

The purpose of the study was to develop a variety of fruit, vegetable and indigenous wild herb (amaranth) based juices, which can increase mineral consumption (of Ca, Fe, K, Mg, Zn). Ten samples of juice varieties were developed. The concentration range for the standards was between 10 and 150 ppm. Standards and samples were analysed using Perkin Elmer Atomic Absorption Spectrophotometer and the AAnalyst 400 model was used. The indigenous herb based juice was the most nutritious than all the other varieties developed. Mg and Fe could contribute significantly in improving cardio vascular health, bone functionality and immunity of elderly.

Keywords: minerals, elderly, juice, hypertension, intervention

Procedia PDF Downloads 270
42059 Multi-Source Data Fusion for Urban Comprehensive Management

Authors: Bolin Hua

Abstract:

In city governance, various data are involved, including city component data, demographic data, housing data and all kinds of business data. These data reflects different aspects of people, events and activities. Data generated from various systems are different in form and data source are different because they may come from different sectors. In order to reflect one or several facets of an event or rule, data from multiple sources need fusion together. Data from different sources using different ways of collection raised several issues which need to be resolved. Problem of data fusion include data update and synchronization, data exchange and sharing, file parsing and entry, duplicate data and its comparison, resource catalogue construction. Governments adopt statistical analysis, time series analysis, extrapolation, monitoring analysis, value mining, scenario prediction in order to achieve pattern discovery, law verification, root cause analysis and public opinion monitoring. The result of Multi-source data fusion is to form a uniform central database, which includes people data, location data, object data, and institution data, business data and space data. We need to use meta data to be referred to and read when application needs to access, manipulate and display the data. A uniform meta data management ensures effectiveness and consistency of data in the process of data exchange, data modeling, data cleansing, data loading, data storing, data analysis, data search and data delivery.

Keywords: multi-source data fusion, urban comprehensive management, information fusion, government data

Procedia PDF Downloads 392
42058 Analysis of Impact of Flu Vaccination on Acute Respiratory Viral Infections (ARVI) Morbidity among Population in South Kazakhstan Region, 2010-2015

Authors: Karlygash Tulendieva

Abstract:

Presently vaccination is the most effective method of prevention of flu and its complications. The purpose of this study was to analyze the impact of the increase of coverage of the population of South Kazakhstan region with flu vaccination and decrease of the ARVI morbidity. The analysis was performed on the data of flu vaccination of risk groups, including children under one year and pregnant women. Data on ARVI morbidity during 2010-2015 and data on vaccination were taken from the reports of the Epidemiological Surveillance Unit of Department of Consumers’ Rights Protection of South Kazakhstan region. Coverage with flu vaccination of the risk groups was annually increasing and in 2015 it reached 16% (450,000/2,800,682) from the total population. The ARVI morbidity rate in the entire population in 2010 was 2,010.4 per 100,000 of the population and decreased 3.2 times to 609.9 per 100,000 of the population in 2015. Annual growth was observed from 2010 to 2015 of specific weight of the vaccinated main risk groups: healthcare workers by 51% (from 17,331 in 2010 to 33,538 in 2015), children with chronic pulmonary and cardio-vascular diseases, immune deficiency, weak and sickly children above six months by 39% (from 63,122 in 2010 to 158,023 in 2015), adults with chronic co-morbidities by 27% (from 44,271 in 2010 to 162,595 in 2015), persons above 65 by 17% (from 10,276 in 2010 to 57,875 in 2015), and annual coverage of pregnant women on second or third trimester from 34,443 in 2010 to 37,969 in 2015. Starting from 2013 and until 2015 vaccination was performed in the region with coverage of at least 90% of children from 6 months to one year. The ARVI morbidity in this age group decreased 3.3 times from 8,687.8 per 100,000 of the population in 2010 to 2,585.8 per 100,000 of the population in 2015. Vaccination of pregnant women on 2-3 trimester was started in the region in 2012. Annual increase of vaccination coverage of pregnant women from 86.1% (34,443/40,000) in 2012 to 95% (37,969/40,000) in 2015 decreased the morbidity 1.5 times from 4,828.8 per 100,000 of population in 2012 to 3,022.7 per 100,000 of population in 2015. Following the increase of vaccination coverage of the population in South Kazakhstan region, the trend was observed of decrease of ARVI morbidity rates among the population and main risk groups, among pregnant women and children under one year.

Keywords: acute respiratory viral infections, flu, risk groups, vaccination

Procedia PDF Downloads 240
42057 Heart Attack Prediction Using Several Machine Learning Methods

Authors: Suzan Anwar, Utkarsh Goyal

Abstract:

Heart rate (HR) is a predictor of cardiovascular, cerebrovascular, and all-cause mortality in the general population, as well as in patients with cardio and cerebrovascular diseases. Machine learning (ML) significantly improves the accuracy of cardiovascular risk prediction, increasing the number of patients identified who could benefit from preventive treatment while avoiding unnecessary treatment of others. This research examines relationship between the individual's various heart health inputs like age, sex, cp, trestbps, thalach, oldpeaketc, and the likelihood of developing heart disease. Machine learning techniques like logistic regression and decision tree, and Python are used. The results of testing and evaluating the model using the Heart Failure Prediction Dataset show the chance of a person having a heart disease with variable accuracy. Logistic regression has yielded an accuracy of 80.48% without data handling. With data handling (normalization, standardscaler), the logistic regression resulted in improved accuracy of 87.80%, decision tree 100%, random forest 100%, and SVM 100%.

Keywords: heart rate, machine learning, SVM, decision tree, logistic regression, random forest

Procedia PDF Downloads 136
42056 Implementation of an IoT Sensor Data Collection and Analysis Library

Authors: Jihyun Song, Kyeongjoo Kim, Minsoo Lee

Abstract:

Due to the development of information technology and wireless Internet technology, various data are being generated in various fields. These data are advantageous in that they provide real-time information to the users themselves. However, when the data are accumulated and analyzed, more various information can be extracted. In addition, development and dissemination of boards such as Arduino and Raspberry Pie have made it possible to easily test various sensors, and it is possible to collect sensor data directly by using database application tools such as MySQL. These directly collected data can be used for various research and can be useful as data for data mining. However, there are many difficulties in using the board to collect data, and there are many difficulties in using it when the user is not a computer programmer, or when using it for the first time. Even if data are collected, lack of expert knowledge or experience may cause difficulties in data analysis and visualization. In this paper, we aim to construct a library for sensor data collection and analysis to overcome these problems.

Keywords: clustering, data mining, DBSCAN, k-means, k-medoids, sensor data

Procedia PDF Downloads 377
42055 Customer Data Analysis Model Using Business Intelligence Tools in Telecommunication Companies

Authors: Monica Lia

Abstract:

This article presents a customer data analysis model using business intelligence tools for data modelling, transforming, data visualization and dynamic reports building. Economic organizational customer’s analysis is made based on the information from the transactional systems of the organization. The paper presents how to develop the data model starting for the data that companies have inside their own operational systems. The owned data can be transformed into useful information about customers using business intelligence tool. For a mature market, knowing the information inside the data and making forecast for strategic decision become more important. Business Intelligence tools are used in business organization as support for decision-making.

Keywords: customer analysis, business intelligence, data warehouse, data mining, decisions, self-service reports, interactive visual analysis, and dynamic dashboards, use cases diagram, process modelling, logical data model, data mart, ETL, star schema, OLAP, data universes

Procedia PDF Downloads 428
42054 Behavioral and Cultural Risk Factor of Cardiovascular Disease in India: Evidence from SAGE-Study

Authors: Sunita Patel

Abstract:

Cardiovascular diseases are the leading cause of morbidity as well as mortality in India. Objective of this study is to examine CVDs prevalence and identify their behavioral and cultural risk factors with the help of SAGE-2007 data conducted on 6th states in India. Findings reveal that 18.3% of people diagnosed with CVDs in India. Higher disease occurs in an increasing rate between ages of 30-39 having OR 2.45 (CI: 1.66-3.63) and 70+ age OR 7.45 (CI: 4.82-11.49) times higher compare to 18-29 age group respectively. Wealth quintile higher CVD occurs as 3rd in 60% (CI: 1.16-2.21) and in richest 5th quintile 58% (CI: 1.13-2.21) contrast to lowest quintile. Relative risk depicted that 22.4% in moderate and 44% in vigorous activity have less chance of diseases compare to who performed no work and those who consumed alcohol. Results reveal that policy prospect should be recommended and that it would be beneficial for awareness of people and their future.

Keywords: behavioral risk, cultural risk, cardio-vascular diseases, wealth quintile

Procedia PDF Downloads 399
42053 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 140