Search results for: carbon nanocarriers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3019

Search results for: carbon nanocarriers

2629 Failure Analysis of Windshield Glass of Automobiles

Authors: Bhupinder Kaur, O. P. Pandey

Abstract:

An automobile industry is using variety of materials for better comfort and utility. The present work describes the details of failure analysis done for windshield glass of a four-wheeler class. The failure occurred in two different models of the heavy duty class of four wheelers, which analysed separately. The company reported that the failure has occurred only in their rear windshield when vehicles parked under shade for several days. These glasses were characterised by dilatometer, differential thermal analyzer, and X-ray diffraction. The glasses were further investigated under scanning electron microscope with energy dispersive X-ray spectroscopy and X-ray dot mapping. The microstructural analysis of the glasses done at the surface as well as at the fractured area indicates that carbon as an impurity got segregated as banded structure throughout the glass. Since carbon absorbs higher heat, it causes thermal mismatch to the entire glass system, and glass shattered down. In this work, the details of sequential analysis done to predict the cause of failure are present.

Keywords: failure, windshield, thermal mismatch, carbon

Procedia PDF Downloads 226
2628 Thermoluminescent Response of Nanocrystalline BaSO4:Eu to 85 MeV Carbon Beams

Authors: Shaila Bahl, S. P. Lochab, Pratik Kumar

Abstract:

Nanotechnology and nanomaterials have attracted researchers from different fields, especially from the field of luminescence. Recent studies on various luminescent nanomaterials have shown their relevance in dosimetry of ionizing radiations for the measurements of high doses using the Thermoluminescence (TL) technique, where the conventional microcrystalline phosphors saturate. Ion beams have been used for diagnostic and therapeutic purposes due to their favorable profile of dose deposition at the end of the range known as the Bragg peak. While dealing with human beings, doses from these beams need to be measured with great precision and accuracy. Henceforth detailed investigations of suitable thermoluminescent dosimeters (TLD) for dose verification in ion beam irradiation are required. This paper investigates the TL response of nanocrystalline BaSO4 doped with Eu to 85 MeV carbon beam. The synthesis was done using Co-precipitation technique by mixing Barium chloride and ammonium sulphate solutions. To investigate the crystallinity and particle size, analytical techniques such as X-ray diffraction (XRD) and Transmission electron microscopy (TEM) were used which revealed the average particle sizes to 45 nm with orthorhombic structure. Samples in pellet form were irradiated by 85 MeV carbon beam in the fluence range of 1X1010-5X1013. TL glow curves of the irradiated samples show two prominent glow peaks at around 460 K and 495 K. The TL response is linear up to 1X1013 fluence after which saturation was observed. The wider linear TL response of nanocrystalline BaSO4: Eu and low fading make it a superior candidate as a dosimeter to be used for detecting the doses of carbon beam.

Keywords: radiation, dosimetry, carbon ions, thermoluminescence

Procedia PDF Downloads 265
2627 Synthesis and Characterization of the Carbon Spheres Built Up from Reduced Graphene Oxide

Authors: Takahiro Saida, Takahiro Kogiso, Takahiro Maruyama

Abstract:

The ordered structural carbon (OSC) material is expected to apply to the electrode of secondary batteries, the catalyst supports, and the biomaterials because it shows the low substance-diffusion resistance by its uniform pore size. In general, the OSC material is synthesized using the template material. Changing size and shape of this template provides the pore size of OSC material according to the purpose. Depositing the oxide nanosheets on the polymer sphere template by the layer by layer (LbL) method was reported as one of the preparation methods of OSC material. The LbL method can provide the controlling thickness of structural wall without the surface modification. When the preparation of the uniform carbon sphere prepared by the LbL method which composed of the graphene oxide wall and the polymethyl-methacrylate (PMMA) core, the reduction treatment will be the important object. Since the graphene oxide has poor electron conductivity due to forming a lot of functional groups on the surface, it could be hard to apply to the electrode of secondary batteries and the catalyst support of fuel cells. In this study, the graphene oxide wall of carbon sphere was reduced by the thermal treatment under the vacuum conditions, and its crystalline structure and electronic state were characterized. Scanning electron microscope images of the carbon sphere after the heat treatment at 300ºC showed maintaining sphere shape, but its shape was collapsed with increasing the heating temperature. In this time, the dissolution rate of PMMA core and the reduction rate of graphene oxide were proportionate to heating temperature. In contrast, extending the heating time was conducive to the conservation of the sphere shape. From results of X-ray photoelectron spectroscopy analysis, its electronic state of the surface was indicated mainly sp² carbon. From the above results, we succeeded in the synthesis of the sphere structure composed by the reduction graphene oxide.

Keywords: carbon sphere, graphene oxide, reduction, layer by layer

Procedia PDF Downloads 121
2626 Preparation of Ni, Mg, and Fe Ions Doped Carbon-Based Catalyst with Ordered Mesoporous Configuration for Catalyzing the Production of Green Diesel from Fatty Acid and Waste Cooking Oil

Authors: Ya-Ting Liao, Chien-Chang Huang

Abstract:

Green diesel is a renewable biofuel obtained from plant oil or fatty acid deoxygenation. Because the molecular structure of green diesel is similar to that of fossil fuel, green diesel can be directly used in present vehicle engines without blending with fossil fuel. In this study, mesoporous carbon-based catalysts with doped metal ions, such as Mg, Ni, or Fe, were prepared using co-polymers and gallic acid as molecular templates and carbon sources, respectively. The prepared catalysts were then applied to carry out the deoxygenation of fatty acid and waste cooking oil. To obtain the highest net energy from the produced green diesel, the catalyzed deoxygenation reaction and catalyst preparation processes were carried out under ambient conditions, respectively, to avoid using H₂ as a reagent and reducing agent. XRD, BET, SEM, EDS, FT-IR, and pyridine-IR characterized the composition and configuration of the prepared catalyst. The results display that the doped metal ions were well-dispersed in the carbon-based catalyst and the surface of the catalysts was rich in Lewis acid sites after the catalysts were calcined at the proper temperature. The pore size present on the catalyst was 9-11 nm. To catalyze the deoxygenation of fatty acid by the prepared catalysts at 320℃ under H₂-free conditions, high fatty acid conversion (99%) and high selectivity for hydrocarbons (78%) were obtained when the ratio of doped Ni to doped Mg was optimized.

Keywords: ordered mesoporous carbon, catalysts, hydrocarbons, deoxygenation

Procedia PDF Downloads 49
2625 The Proton Flow Battery for Storing Renewable Energy: A Theoretical Model of Electrochemical Hydrogen Storage in an Activated Carbon Electrode

Authors: Sh. Heidari, A. J. Andrews, A. Oberoi

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have a roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. In this paper, a theoretical model is presented of the process of H+ ion (proton) conduction through an acid electrolyte into a highly porous activated carbon electrode where it is neutralised and absorbed on the inner surfaces of pores. A Butler-Volmer type equation relates the rate of adsorption to the potential difference between the activated carbon surface and the electrolyte. This model for the hydrogen storage electrode is then incorporated into a more general computer model based on MATLAB software of the entire electrochemical cell including the oxygen electrode. Hence a theoretical voltage-current curve is generated for given input parameters for a particular activated carbon electrode. It is shown that theoretical VI curves produced by the model can be fitted accurately to experimental data from an actual electrochemical cell with the same characteristics. By obtaining the best-fit values of input parameters, such as the exchange current density and charge transfer coefficient for the hydrogen adsorption reaction, an improved understanding of the adsorption reaction is obtained. This new model will assist in designing improved proton flow batteries for storing solar and wind energy.

Keywords: electrochemical hydrogen storage, proton flow battery, butler-volmer equation, activated carbon

Procedia PDF Downloads 476
2624 Impact of Nitrogen Fertilization on Soil Respiration and Net Ecosystem Production in Maize

Authors: Shirley Lamptey, Lingling Li, Junhong Xie

Abstract:

Agriculture in the semi-arid is often challenged by overuse of N, inadequate soil water, and heavy carbon emissions thereby threatening sustainability. Field experiments were conducted to investigate the effect of nitrogen fertilization levels (0-N₀, 100-N₁₀₀, 200-N₂₀₀, and 300 kg ha⁻¹-N₃₀₀) on soil water dynamics, soil respiration (Rs), net ecosystem production (NEP), and biomass yield. Zero nitrogen soils decreased Rs by 23% and 16% compared to N₃₀₀ and N₂₀₀ soils, respectively. However, biomass yield was greatest under N₃₀₀ compared with N₀, which therefore translated into increased net primary production (NPP) by 89% and NEP by 101% compared to N₀. To a lesser extent, N₂₀₀ increased net primary production by 69% and net ecosystem production by 79% compared to N₀. Grain yields were greatest under N₃₀₀ compared with N₁₀₀ and N₀, which therefore translated into increased carbon emission efficiency (CEE) by 53%, 39% and 3% under N₃₀₀ compared to N₀, N₁₀₀, and N₂₀₀ treatments respectively. Under the conditions of this study, crop yield and CEE may be optimized at nitrogen application rates in the range of 200-300 kg ha⁻¹. Based on these results, there appears potential for 200 kg N ha⁻¹ to be used to improve yield and increase CEE in the context of the rainfall-limiting environment.

Keywords: carbon emission, carbon emission efficiency, C sequestration, N rates, semi-arid

Procedia PDF Downloads 210
2623 Health Impacts of Size Segregated Particulate Matter and Black Carbon in Industrial Area of Firozabad

Authors: Kalpana Rajouriya, Ajay Taneja

Abstract:

Particulates are ubiquitous in the air environment and cause serious threats to human beings, such as lung cancer, Chronic obstructive pulmonary disease (COPD), and Asthma. Particulates mainly arise from industrial effluent, vehicular emission, and other anthropogenic activities. In the glass industrial city Firozabad, real-time monitoring (mass as well as a number) of size segregated Particulate Matter (PM) and black carbon was done by Aerosol Black Carbon Detector (ABCD) and GRIMM portable aerosol Spectrometer at two different sites in which one site is urban, and another is rural. The average mass concentration of size segregated PM during the study period (March & April 2022) was recorded as PM₁₀ (223.73 g/m-³), PM₅.₀ (44.955 g/m-³), PM₂.₅ (59.275 g/m-³), PM₁.₀ (33.02 g/m-³), PM₀.₅ (2.05 g/m-³), and PM₀.₂₅ (2.99 g/m- ³). In number mode, PM concentration was found as PM₁₀ (27.46g/m-³), PM₅.₀ (233.48g/m-³), PM₂.₅ (646.61g/m-³), PM₁.₀ (1134.94 g/m-³), PM₀.₅ (14056.04g/m-³), and PM₀.₂₅ (182906.4 g/m-³). The highest concentration of BC was found in Urban due to the emissions from diesel engines and wood burning while NO2 was highest at the rural sites. The concentrations of PM₁₀ and PM₂.₅ exceeded the NAAQS and WHO guidelines. The sensitive, exposed population may be at risk of developing health-related problems from exposure to size-segregated PM and BC.

Keywords: particulate matter, black carbon, NO2, health risk

Procedia PDF Downloads 19
2622 A Study of Impact of Changing Fuel Practices on Organic Carbon and Elemental Carbon Levels in Indoor Air in Two States of India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

India is a rural major country and majority of rural population is dependent on burning of biomass as fuel for domestic cooking on traditional stoves (Chullahs) and heating purposes. This results into indoor air pollution and ultimately affects health of the residents. Still, a very small fraction of rural population has been benefitted by the facilities of Liquefied Petroleum Gas (LPG) cylinders. Different regions of country follow different methods and use different type of biomass for cooking. So in order to study the differences in cooking practices and resulting indoor air pollution, this study was carried out in two rural areas of India viz. Budhwada, Madhya Pradesh and Baggi, Himachal Pradesh. Both the regions have significant differences in terms of topography, culture and daily practices. Budhwada lies in plain area and Baggi belongs to hilly terrain. The study of carbonaceous aerosols was carried out in four different houses of each village. The residents were asked to bring slight change in their practices by cooking only with biomass (BB) then with a mix of biomass and LPG (BL) and then finally only with LPG (LP). It was found that in BB, average values of organic carbon (OC) and elemental carbon (EC) were 28% and 44% lower in Budhwada than in Baggi whereas a reverse trend was found where OC and EC was respectively more by 56% and 26% with BL and by 54% and 29% with LP in Budhwada than in Baggi. Although, a significant reduction was found both in Budhwada (OC by 49% and EC by 34%) as well as in Baggi (OC by 84% and EC by 73%) when cooking was shifted from BB to LP. The OC/EC ratio was much higher for Budhwada (BB=9.9; BL=2.5; LP=6.1) than for Baggi (BB=1.7; BL=1.6; LP=1.3). The correlation in OC and EC was found to be excellent in Baggi (r²=0.93) and relatively poor in Budhwada (r²=0.65). A questionnaire filled by the residents suggested that they agree to the health benefits of using LPG over biomass burning but the challenges of supply of LPG and changing the prevailing tradition of cooking on Chullah are making it difficult for them to make this shift.

Keywords: biomass burning, elemental carbon, liquefied petroluem gas, organic carbon

Procedia PDF Downloads 165
2621 Removal of Copper(II) and Lead(II) from Aqueous Phase by Plum Stone Activated Carbon

Authors: Serife Parlayici, Erol Pehlivan

Abstract:

In this study, plum stone shell activated carbon (PS-AC) was prepared to adsorb Cu(II) and Pb(II) ions in aqueous solutions. Some important parameters that influence the adsorption of metal ions such as pH, contact time and metal concentration have been systematically investigated in batch type reactors. The characterization of adsorbent is carried out by means of FTIR and SEM. It was found that the adsorption capacities of PS-AC were pH-dependent, and the optimal pH values were 4.5 and 5.0 for Cu(II) and Pb(II), respectively. The adsorption was rapid and the equilibrium was reached within 60 minutes to remove of Cu(II) and Pb(II) ions. The adsorption stability was studied in various doses of adsorbent. Langmuir, Freundlich and D-R adsorption models were used to describe adsorption equilibrium studies of PS-AC. Adsorption data showed that the adsorption of Cu(II) and Pb(II) is compatible with Langmuir isotherm model. The result showed that adsorption capacities calculated from the Langmuir isotherm were 33.22 mg/g and 57.80 mg/g for Cu(II) and Pb(II), respectively.

Keywords: plum-stone, activated carbon, copper and lead, isotherms

Procedia PDF Downloads 343
2620 Nafion Multiwalled Carbon Nano Tubes Composite Film Modified Glassy Carbon Sensor for the Voltammetric Estimation of Dianabol Steroid in Pharmaceuticals and Biological Fluids

Authors: Nouf M. Al-Ourfi, A. S. Bashammakh, M. S. El-Shahawi

Abstract:

The redox behavior of dianabol steroid (DS) on Nafion Multiwalled Carbon nano -tubes (MWCNT) composite film modified glassy carbon electrode (GCE) in various buffer solutions was studied using cyclic voltammetry (CV) and differential pulse- adsorptive cathodic stripping voltammetry (DP-CSV) and successfully compared with the results at non modified bare GCE. The Nafion-MWCNT composite film modified GCE exhibited the best electrochemical response among the two electrodes for the electro reduction of DS that was inferred from the EIS, CV and DP-CSV. The modified sensor showed a sensitive, stable and linear response in the concentration range of 5 – 100 nM with a detection limit of 0.08 nM. The selectivity of the proposed sensor was assessed in the presence of high concentration of major interfering species. The analytical application of the sensor for the quantification of DS in pharmaceutical formulations and biological fluids (urine) was determined and the results demonstrated acceptable recovery and RSD of 5%. Statistical treatment of the results of the proposed method revealed no significant differences in the accuracy and precision. The relative standard deviations for five measurements of 50 and 300 ng mL−1 of DS were 3.9 % and 1.0 %, respectively.

Keywords: dianabol steroid, determination, modified GCE, urine

Procedia PDF Downloads 259
2619 Microstructures Evolution of a Nano/Ultrafine Grained Low Carbon Steel Produced by Martensite Treatment Using Accumulative Roll Bonding

Authors: Mehdi Salari

Abstract:

This work introduces a new experimental method of martensite treatment contains accumulative roll-bonding used for producing the nano/ultrafine grained structure in low carbon steel. The ARB process up to 4 cycles was performed under unlubricated conditions, while the annealing process was carried out in the temperature range of 450–550°C for 30–100 min. The microstructures of the deformed and annealed specimens were investigated. The results showed that in the annealed specimen at 450°C for 30 or 60 min, recrystallization couldn’t be completed. Decrease in time and temperature intensified the volume fraction of the martensite cell blocks. Fully equiaxed nano/ultrafine grained ferrite was developed from the martensite cell blocks during the annealing at temperature around 500°C for 100 min.

Keywords: martensite process, accumulative roll bonding, recrystallization, nanostructure, plain carbon steel

Procedia PDF Downloads 353
2618 Carbon Sequestration Modeling in the Implementation of REDD+ Programmes in Nigeria

Authors: Oluwafemi Samuel Oyamakin

Abstract:

The forest in Nigeria is currently estimated to extend to around 9.6 million hectares, but used to expand over central and southern Nigeria decades ago. The forest estate is shrinking due to long-term human exploitation for agricultural development, fuel wood demand, uncontrolled forest harvesting and urbanization, amongst other factors, compounded by population growth in rural areas. Nigeria has lost more than 50% of its forest cover since 1990 and currently less than 10% of the country is forested. The current deforestation rate is estimated at 3.7%, which is one of the highest in the world. Reducing Emissions from Deforestation and forest Degradation plus conservation, sustainable management of forests and enhancement of forest carbon stocks constituted what is referred to as REDD+. This study evaluated some of the existing way of computing carbon stocks using eight indigenous tree species like Mansonia, Shorea, Bombax, Terminalia superba, Khaya grandifolia, Khaya senegalenses, Pines and Gmelina arborea. While these components are the essential elements of REDD+ programme, they can be brought under a broader framework of systems analysis designed to arrive at optimal solutions for future predictions through statistical distribution pattern of carbon sequestrated by various species of tree. Available data on height and diameter of trees in Ibadan were studied and their respective potentials of carbon sequestration level were assessed and subjected to tests so as to determine the best statistical distribution that would describe the carbon sequestration pattern of trees. The result of this study suggests a reasonable statistical distribution for carbons sequestered in simulation studies and hence, allow planners and government in determining resources forecast for sustainable development especially where experiments with real-life systems are infeasible. Sustainable management of forest can then be achieved by projecting future condition of forests under different management regimes thereby supporting conservation and REDD+ programmes in Nigeria.

Keywords: REDD+, carbon, climate change, height and diameter

Procedia PDF Downloads 139
2617 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells

Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth

Abstract:

Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.

Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR

Procedia PDF Downloads 151
2616 Adsorption of Lead (II) and Copper (II) Ions onto Marula Nuts Activated Carbon

Authors: Lucky Malise, Hilary Rutto, Tumisang Seodigeng

Abstract:

Heavy metal contamination in waste water is a very serious issue affecting a lot of industrialized countries due to the health and environmental impact of these heavy metals on human life and the ecosystem. Adsorption using activated carbon is the most promising method for the removal of heavy metals from waste water but commercial activated carbon is expensive which gives rise to the need for alternatively activated carbon derived from cheap precursors, agricultural wastes, or byproducts from other processes. In this study activated bio-carbon derived from the carbonaceous material obtained from the pyrolysis of Marula nut shells was chemically activated and used as an adsorbent for the removal of lead (II) and copper (II) ions from aqueous solution. The surface morphology and chemistry of the adsorbent before and after chemical activation with zinc chloride impregnation were studied using SEM and FTIR analysis respectively and the results obtained indicate that chemical activation with zinc chloride improves the surface morphology of the adsorbent and enhances the intensity of the surface oxygen complexes on the surface of the adsorbent. The effect of process parameters such as adsorbent dosage, pH value of the solution, initial metal concentration, contact time, and temperature on the adsorption of lead (II) and copper (II) ions onto Marula nut activated carbon were investigated, and their optimum operating conditions were also determined. The experimental data was fitted to both the Langmuir and Freundlich isotherm models, and the data fitted best on the Freundlich isotherm model for both metal ions. The adsorption kinetics were also evaluated, and the experimental data fitted the pseudo-first order kinetic model better than the pseudo second-order kinetic model. The adsorption thermodynamics were also studied and the results indicate that the adsorption of lead and copper ions is spontaneous and exothermic in nature, feasible, and also involves a dissociative mechanism in the temperature range of 25-45 °C.

Keywords: adsorption, isotherms, kinetics, marula nut shells activated carbon, thermodynamics

Procedia PDF Downloads 247
2615 Characterization of Inkjet-Printed Carbon Nanotube Electrode Patterns on Cotton Fabric

Authors: N. Najafi, Laleh Maleknia , M. E. Olya

Abstract:

An aqueous conductive ink of single-walled carbon nanotubes for inkjet printing was formulated. To prepare the homogeneous SWCNT ink in a size small enough not to block a commercial inkjet printer nozzle, we used a kinetic ball-milling process to disperse the SWCNTs in an aqueous suspension. When a patterned electrode was overlaid by repeated inkjet printings of the ink on various types of fabric, the fabric resistance decreased rapidly following a power law, reaching approximately 760 X/sq, which is the lowest value ever for a dozen printings. The Raman and Fourier transform infrared spectra revealed that the oxidation of the SWCNTs was the source of the doped impurities. This study proved also that the droplet ejection velocity can have an impact on the CNT distribution and consequently on the electrical performances of the ink.

Keywords: ink-jet printing, carbon nanotube, fabric ink, cotton fabric, raman spectroscopy, fourier transform infrared spectroscopy, dozen printings

Procedia PDF Downloads 394
2614 Rapid Degradation of High-Concentration Methylene Blue in the Combined System of Plasma-Enhanced Photocatalysis Using TiO₂-Carbon

Authors: Teguh Endah Saraswati, Kusumandari Kusumandari, Candra Purnawan, Annisa Dinan Ghaisani, Aufara Mahayum

Abstract:

The present study aims to investigate the degradation of methylene blue (MB) using TiO₂-carbon (TiO₂-C) photocatalyst combined with dielectric discharge (DBD) plasma. The carbon materials used in the photocatalyst were activated carbon and graphite. The thin layer of TiO₂-C photocatalyst was prepared by ball milling method which was then deposited on the plastic sheet. The characteristic of TiO₂-C thin layer was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) spectroscopy, and UV-Vis diffuse reflectance spectrophotometer. The XRD diffractogram patterns of TiO₂-G thin layer in various weight compositions of 50:1, 50:3, and 50:5 show the 2θ peaks found around 25° and 27° are the main characteristic of TiO₂ and carbon. SEM analysis shows spherical and regular morphology of the photocatalyst. Analysis using UV-Vis diffuse reflectance shows TiO₂-C has narrower band gap energy. The DBD plasma reactor was generated using two electrodes of Cu tape connected with stainless steel mesh and Fe wire separated by a glass dielectric insulator, supplied by a high voltage 5 kV with an air flow rate of 1 L/min. The optimization of the weight composition of TiO₂-C thin layer was studied based on the highest reduction of the MB concentration achieved, examined by UV-Vis spectrophotometer. The changes in pH values and color of MB indicated the success of MB degradation. Moreover, the degradation efficiency of MB was also studied in various higher concentrations of 50, 100, 200, 300 ppm treated for 0, 2, 4, 6, 8, 10 min. The degradation efficiency of MB treated in combination system of photocatalysis and DBD plasma reached more than 99% in 6 min, in which the greater concentration of methylene blue dye, the lower degradation rate of methylene blue dye would be achieved.

Keywords: activated carbon, DBD plasma, graphite, methylene blue, photocatalysis

Procedia PDF Downloads 98
2613 Torsional Vibration of Carbon Nanotubes via Nonlocal Gradient Theories

Authors: Mustafa Arda, Metin Aydogdu

Abstract:

Carbon nanotubes (CNTs) have many possible application areas because of their superior physical properties. Nonlocal Theory, which unlike the classical theories, includes the size dependency. Nonlocal Stress and Strain Gradient approaches can be used in nanoscale static and dynamic analysis. In the present study, torsional vibration of CNTs was investigated according to nonlocal stress and strain gradient theories. Effects of the small scale parameters to the non-dimensional frequency were obtained. Results were compared with the Molecular Dynamics Simulation and Lattice Dynamics. Strain Gradient Theory has shown more weakening effect on CNT according to the Stress Gradient Theory. Combination of both theories gives more acceptable results rather than the classical and stress or strain gradient theory according to Lattice Dynamics.

Keywords: torsional vibration, carbon nanotubes, nonlocal gradient theory, stress, strain

Procedia PDF Downloads 361
2612 Development of Ferrous-Aluminum Alloys from Recyclable Material by High Energy Milling

Authors: Arnold S. Freitas Neto, Rodrigo E. Coelho, Erick S. Mendonça

Abstract:

This study aimed to obtain an alloy of Iron and Aluminum in the proportion of 50% of atomicity for each constituent. Alloys were obtained by processing recycled aluminum and chips of 1200 series carbon steel in a high-energy mill. For the experiment, raw materials were processed thorough high energy milling before mixing the substances. Subsequently, the mixture of 1200 series carbon steel and Aluminum powder was carried out a milling process. Thereafter, hot compression was performed in a closed die in order to obtain the samples. The pieces underwent heat treatments, sintering and aging. Lastly, the composition and the mechanical properties of their hardness were analyzed. In this paper, results are compared with previous studies, which used iron powder of high purity instead of Carbon steel in the composition.

Keywords: Fe-Al alloys, high energy milling, metallography characterization, powder metallurgy

Procedia PDF Downloads 281
2611 Thin and Flexible Zn-Air Battery by Inexpensive Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work focuses the development of thin and flexible zinc-air battery. The battery with an overall thickness of about 300 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder and ZnO was used to prepare the anode electrode. Types of conductive materials (Bi2O3, Na2O3Si and carbon black) for the anode and its concentration were investigated. Results showed that the battery using 29% carbon black showed the best performance. The open-circuit voltage and energy density observed were 1.6 V and 694 Wh/kg, respectively. When the battery was discharged at 10 mA/cm2, the potential voltage observed was 1.35 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, Gel Electrolyte, screen printing, thin battery, Zn-Air battery

Procedia PDF Downloads 183
2610 A Review on Thermal Conductivity of Bio-Based Carbon Nanotubes

Authors: Gloria A. Adewumi, Andrew C. Eloka-Eboka, Freddie L. Inambao

Abstract:

Bio-based carbon nanotubes (CNTs) have received considerable research attention due to their comparative advantages of high level stability, simplistic use, low toxicity and overall environmental friendliness. New potentials for improvement in heat transfer applications are presented due to their high aspect ratio, high thermal conductivity and special surface area. Phonons have been identified as being responsible for thermal conductivities in carbon nanotubes. Therefore, understanding the mechanism of heat conduction in CNTs involves investigating the difference between the varieties of phonon modes and knowing the kinds of phonon modes that play the dominant role. In this review, a reference to a different number of studies is made and in addition, the role of phonon relaxation rate mainly controlled by boundary scattering and three-phonon Umklapp scattering process was investigated. Results show that the phonon modes are sensitive to a number of nanotube conditions such as: diameter, length, temperature, defects and axial strain. At a low temperature (<100K) the thermal conductivity increases with increasing temperature. A small nanotube size causes phonon quantization which is evident in the thermal conductivity at low temperatures.

Keywords: carbon nanotubes, phonons, thermal conductivity, Umklapp process

Procedia PDF Downloads 330
2609 Electrochemical Detection of Hydroquinone by Square Wave Voltammetry Using a Zn Layered Hydroxide-Ferulate Modified Multiwall Carbon Nanotubes Paste Electrode

Authors: Mohamad Syahrizal Ahmad, Illyas M. Isa

Abstract:

In this paper, a multiwall carbon nanotubes (MWCNT) paste electrode modified by a Zn layered hydroxide-ferulate (ZLH-F) was used for detection of hydroquinone (HQ). The morphology and characteristic of the ZLH-F/MWCNT were investigated by scanning electron microscope (SEM), transmission electron microscope (TEM) and square wave voltammetry (SWV). Under optimal conditions, the SWV response showed linear plot for HQ concentration in the range of 1.0×10⁻⁵ M – 1.0×10⁻³ M. The detection limit was found to be 5.7×10⁻⁶ M and correlation coefficient of 0.9957. The glucose, fructose, sucrose, bisphenol A, acetaminophen, lysine, NO₃⁻, Cl⁻ and SO₄²⁻ did not interfere the HQ response. This modified electrode can be used to determine HQ content in wastewater and cosmetic cream with range of recovery 97.8% - 103.0%.

Keywords: 1, 4-dihydroxybenzene, hydroquinone, multiwall carbon nanotubes, square wave voltammetry

Procedia PDF Downloads 206
2608 Electrochemical and Theoretical Quantum Approaches on the Inhibition of C1018 Carbon Steel Corrosion in Acidic Medium Containing Chloride Using Newly Synthesized Phenolic Schiff Bases Compounds

Authors: Hany M. Abd El-Lateef

Abstract:

Two novel Schiff bases, 5-bromo-2-[(E)-(pyridin-3-ylimino) methyl] phenol (HBSAP) and 5-bromo-2-[(E)-(quinolin-8-ylimino) methyl] phenol (HBSAQ) have been synthesized. They have been characterized by elemental analysis and spectroscopic techniques (UV–Vis, IR and NMR). Moreover, the molecular structure of HBSAP and HBSAQ compounds are determined by single crystal X-ray diffraction technique. The inhibition activity of HBSAP and HBSAQ for carbon steel in 3.5 %NaCl+0.1 M HCl for both short and long immersion time, at different temperatures (20-50 ºC), was investigated using electrochemistry and surface characterization. The potentiodynamic polarization shows that the inhibitors molecule is more adsorbed on the cathodic sites. Its efficiency increases with increasing inhibitor concentrations (92.8 % at the optimal concentration of 10-3 M for HBSAQ). Adsorption of the inhibitors on the carbon steel surface was found to obey Langmuir’s adsorption isotherm with physical/chemical nature of the adsorption, as it is shown also by scanning electron microscopy. Further, the electronic structural calculations using quantum chemical methods were found to be in a good agreement with the results of the experimental studies.

Keywords: carbon steel, Schiff bases, corrosion inhibition, SEM, electrochemical techniques

Procedia PDF Downloads 362
2607 Carboxylic Acid-Functionalized Multi-Walled Carbon Nanotubes-Polyindole/Ti2O3 Nanocomposite: Electrochemical Nanomolar Detection of α-Lipoic Acid in Vegetables

Authors: Ragu Sasikumar, Palraj Ranganathan, Shen-Ming Chen, Syang-Peng Rwei

Abstract:

A highly sensitive, and selective α-Lipoic acid (ALA) sensor based on a functionalized multi-walled carbon nanotubes-polyindole/Ti2O3 (f-MWCNTs-PIN/Ti2O3) nanocomposite modified glassy carbon electrode (GCE) was developed. The fabricated f-MWCNTs-PIN/Ti2O3/GCE displayed an enhanced voltammetric response for oxidation towards ALA relative to that of a f-MWCNTs/GCE, f-MWCNTs-PIN/GCE, Ti2O3/GCE, and a bare GCE. Under optimum conditions, the f-MWCNTs-PIN/Ti2O3/GCE showed a wide linear range at ALA concentrations of 0.39-115.8 µM. The limit of detection of 12 nM and sensitivity of about 6.39 µA µM-1cm-2. The developed sensor showed anti-interference, reproducibility, good repeatability, and operational stability. Applied possibility of the sensor has been confirmed in vegetable samples.

Keywords: f-MWCNT, polyindole, Ti2O3, Alzheimer’s diseases, ALA sensor

Procedia PDF Downloads 203
2606 Application of Neutron-Gamma Technologies for Soil Elemental Content Determination and Mapping

Authors: G. Yakubova, A. Kavetskiy, S. A. Prior, H. A. Torbert

Abstract:

In-situ soil carbon determination over large soil surface areas (several hectares) is required in regard to carbon sequestration and carbon credit issues. This capability is important for optimizing modern agricultural practices and enhancing soil science knowledge. Collecting and processing representative field soil cores for traditional laboratory chemical analysis is labor-intensive and time-consuming. The neutron-stimulated gamma analysis method can be used for in-situ measurements of primary elements in agricultural soils (e.g., Si, Al, O, C, Fe, and H). This non-destructive method can assess several elements in large soil volumes with no need for sample preparation. Neutron-gamma soil elemental analysis utilizes gamma rays issued from different neutron-nuclei interactions. This process has become possible due to the availability of commercial portable pulse neutron generators, high-efficiency gamma detectors, reliable electronics, and measurement/data processing software complimented by advances in state-of-the-art nuclear physics methods. In Pulsed Fast Thermal Neutron Analysis (PFTNA), soil irradiation is accomplished using a pulsed neutron flux, and gamma spectra acquisition occurs both during and between pulses. This method allows the inelastic neutron scattering (INS) gamma spectrum to be separated from the thermal neutron capture (TNC) spectrum. Based on PFTNA, a mobile system for field-scale soil elemental determinations (primarily carbon) was developed and constructed. Our scanning methodology acquires data that can be directly used for creating soil elemental distribution maps (based on ArcGIS software) in a reasonable timeframe (~20-30 hectares per working day). Created maps are suitable for both agricultural purposes and carbon sequestration estimates. The measurement system design, spectra acquisition process, strategy for acquiring field-scale carbon content data, and mapping of agricultural fields will be discussed.

Keywords: neutron gamma analysis, soil elemental content, carbon sequestration, carbon credit, soil gamma spectroscopy, portable neutron generators, ArcMap mapping

Procedia PDF Downloads 65
2605 Kinetic and Thermodynamics of Sorption of 5-Fluorouracil (5-Fl) on Carbon Nanotubes

Authors: Muhammad Imran Din

Abstract:

The aim of this study was to understand the interaction between multi-walled carbon nano tubes (MCNTs) and anticancer agents and evaluate the drug-loading ability of MCNTs. Batch adsorption experiments were carried out for adsorption of 5-Fluorouracil (5-FL) using MCNTs. The effect of various operating variables, viz., adsorbent dosage, pH, contact time and temperature for adsorption of 5-Fluorouracil (5-FL) has been studied. The Freundlich adsorption model was successfully employed to describe the adsorption process. It was found that the pseudo-second-order mechanism is predominant and the overall rate of the 5-Fluorouracil (5-FL) adsorption process appears to be controlled by the more than one-step. Thermodynamic parameters such as free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°) have been calculated respectively, revealed the spontaneous, endothermic and feasible nature of adsorption process. The results showed that carbon nano tubes were able to form supra molecular complexes with 5-Fluorouracil (5-FL) by π-π stacking and possessed favorable loading properties as drug carriers.

Keywords: drug, adsorption, anticancer, 5-Fluorouracil (5-FL)

Procedia PDF Downloads 337
2604 Numerical Analysis of Solar Cooling System

Authors: Nadia Allouache, Mohamed Belmedani

Abstract:

Energy source is a sustainable, totally inexhaustible and environmentally friendly alternative to the fossil fuels available. It is a renewable and economical energy that can be harnessed sustainably over the long term and thus stabilizes energy costs. Solar cooling technologies have been developed to decrease the augmentation electricity consumption for air conditioning and to displace the peak load during hot summer days. A numerical analysis of thermal and solar performances of an annular finned adsorber, which is the most important component of the adsorption solar refrigerating system, is considered in this work. Different adsorbent/adsorbate pairs, such as activated carbon AC35/methanol, activated carbon AC35/ethanol, and activated carbon BPL/Ammoniac, are undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular finned adsorber. The Wilson and Dubinin- Astakhov models of the solid-adsorbate equilibrium are used to calculate the adsorbed quantity. The porous medium and the fins are contained in the annular space, and the adsorber is heated by solar energy. Effects of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The AC35/methanol pair is the best pair compared to BPL/Ammoniac and AC35/ethanol pairs in terms of system performance. The system performances are sensitive to the fin geometry. For the considered data measured for clear type days of July 2023 in Algeria and Morocco, the performances of the cooling system are very significant in Algeria.

Keywords: activated carbon AC35-methanol pair, activated carbon AC35-ethanol pair, activated carbon BPL-ammoniac pair, annular finned adsorber, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 31
2603 Effect of Multi Walled Carbon Nanotubes on Pyrolysis Behavior of Unsaturated Polyester Resin

Authors: Rosli Mohd Yunus, A. K. M. Moshiul Alam, Mohammad Dalour Beg

Abstract:

In the case of advance polymeric materials reinforcement and thermal stability of matrix is a focused arena of researchers. The distribution of carbon nanotubes (CNTs) in polymer matrix influences material properties. In this study, multi-walled carbon nanotubes (MWCNTs) have been dispersed in unsaturated polyester resin (UPR) through solution mixing and sonication techniques using tetra hydro furan (THF) solvent. Nanocomposites have been fabricated with solution mixing and without solution mixing. Viscosity, Fourier-transform infrared spectroscopy, Field emission scanning electron microscopy (FESEM) investigations have been conducted to study the distribution as well as interaction between matrix and MWCNT. The differential scanning calorimetry (DSC), thermogravimetric analyses (TGA) and pyrolysis behavior have been conducted to study the thermal degradation and stability of nanocomposites. In addition, the SEM micrographs of nanocomposite residual chars were exhibited more packed together. Incorporation of CNT enhances crystallinity and mechanical and thermal properties of the nanocomposites. Correlations among MWCNTs dispersion, nucleation, fracture morphology and various properties have been made.

Keywords: char, multiwall carbon nanotubes, nano composite, pyrolysis

Procedia PDF Downloads 333
2602 Carbon Nanofibers Reinforced P(VdF-HFP) Based Gel Polymer Electrolyte for Lithium-Ion Battery Application

Authors: Anjan Sil, Rajni Sharma, Subrata Ray

Abstract:

The effect of carbon nanofibers (CNFs) on the electrical properties of Poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP)) based gel polymer electrolytes has been investigated in the present work. The length and diameter ranges of CNFs used in the present work are 5-50 µm and 200-600 nm, respectively. The nanocomposite gel polymer electrolytes have been synthesized by solution casting technique with varying CNFs content in terms of weight percentage. Electrochemical impedance analysis demonstrates that the reinforcement of carbon nanofibers significantly enhances the ionic conductivity of the polymer electrolyte. The decrease of crystallinity of P(VdF-HFP) due the addition of CNFs has been confirmed by X-ray diffraction (XRD). The interaction of CNFs with various constituents of nanocomposite gel polymer electrolytes has been assessed by Fourier Transform Infrared (FTIR) spectroscopy. Moreover, CNFs added gel polymer electrolytes offer superior thermal stability as compared to that of CNFs free electrolytes as confirmed by Thermogravimetric analysis (TGA).

Keywords: polymer electrolytes, CNFs, ionic conductivity, TGA

Procedia PDF Downloads 345
2601 Analysis of Particulate Matter Concentration, EC, OC Emission and Elemental Composition for Biodiesel-Fuelled Diesel Engine

Authors: A. M. Ashraful, H .H. Masjuki, M. A. Kalam

Abstract:

Comparative investigations were performed on the particles matter emitted from a DI diesel engine utilizing palm biodiesel. In this experiment, palm biodiesel PB10 (90% diesel and 10% palm biodiesel), PB20 (80% diesel, 20% palm biodiesel) and diesel fuel samples exhaust were investigated at different working condition (25% and 50% load at 1500 rpm constant speed). Observation of this experiment it clearly seen that at low load condition particle matter concentration of palm biodiesel exhaust were de-creased than that of diesel fuel. At no load and 25% load condition PB10 biodiesel blend exhibited 2.2 times lower PM concentration than that of diesel fuel. On the other hand, elemental carbon (EC) and organic emission for PB10 showed decreases trend as varies 4.2% to 6.6% and 32 to 39% respectively, while elemental carbon percentage increased by 0.85 to 10% respectively. Similarly, metal composition of PB10 biodiesel blend increased by 4.8 to 26.5% respectively. SEM images for B10 and B20 demonstrated granular structure particulates with greater grain sizes compared with diesel fuel. Finally, the experimental outcomes showed that the blend composition and degree of unsaturation of the methyl ester present in biodiesel influence on the particulate matter formation.

Keywords: particulate matter, elemental carbon, organic carbon, biodiesel

Procedia PDF Downloads 364
2600 Equilibrium and Kinetic Studies of Lead Adsorption on Activated Carbon Derived from Mangrove Propagule Waste by Phosphoric Acid Activation

Authors: Widi Astuti, Rizki Agus Hermawan, Hariono Mukti, Nurul Retno Sugiyono

Abstract:

The removal of lead ion (Pb2+) from aqueous solution by activated carbon with phosphoric acid activation employing mangrove propagule as precursor was investigated in a batch adsorption system. Batch studies were carried out to address various experimental parameters including pH and contact time. The Langmuir and Freundlich models were able to describe the adsorption equilibrium, while the pseudo first order and pseudo second order models were used to describe kinetic process of Pb2+ adsorption. The results show that the adsorption data are seen in accordance with Langmuir isotherm model and pseudo-second order kinetic model.

Keywords: activated carbon, adsorption, equilibrium, kinetic, lead, mangrove propagule

Procedia PDF Downloads 138