Search results for: automated programming
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1707

Search results for: automated programming

57 Embedded Test Framework: A Solution Accelerator for Embedded Hardware Testing

Authors: Arjun Kumar Rath, Titus Dhanasingh

Abstract:

Embedded product development requires software to test hardware functionality during development and finding issues during manufacturing in larger quantities. As the components are getting integrated, the devices are tested for their full functionality using advanced software tools. Benchmarking tools are used to measure and compare the performance of product features. At present, these tests are based on a variety of methods involving varying hardware and software platforms. Typically, these tests are custom built for every product and remain unusable for other variants. A majority of the tests goes undocumented, not updated, unusable when the product is released. To bridge this gap, a solution accelerator in the form of a framework can address these issues for running all these tests from one place, using an off-the-shelf tests library in a continuous integration environment. There are many open-source test frameworks or tools (fuego. LAVA, AutoTest, KernelCI, etc.) designed for testing embedded system devices, with each one having several unique good features, but one single tool and framework may not satisfy all of the testing needs for embedded systems, thus an extensible framework with the multitude of tools. Embedded product testing includes board bring-up testing, test during manufacturing, firmware testing, application testing, and assembly testing. Traditional test methods include developing test libraries and support components for every new hardware platform that belongs to the same domain with identical hardware architecture. This approach will have drawbacks like non-reusability where platform-specific libraries cannot be reused, need to maintain source infrastructure for individual hardware platforms, and most importantly, time is taken to re-develop test cases for new hardware platforms. These limitations create challenges like environment set up for testing, scalability, and maintenance. A desirable strategy is certainly one that is focused on maximizing reusability, continuous integration, and leveraging artifacts across the complete development cycle during phases of testing and across family of products. To get over the stated challenges with the conventional method and offers benefits of embedded testing, an embedded test framework (ETF), a solution accelerator, is designed, which can be deployed in embedded system-related products with minimal customizations and maintenance to accelerate the hardware testing. Embedded test framework supports testing different hardwares including microprocessor and microcontroller. It offers benefits such as (1) Time-to-Market: Accelerates board brings up time with prepacked test suites supporting all necessary peripherals which can speed up the design and development stage(board bring up, manufacturing and device driver) (2) Reusability-framework components isolated from the platform-specific HW initialization and configuration makes the adaptability of test cases across various platform quick and simple (3) Effective build and test infrastructure with multiple test interface options and preintegrated with FUEGO framework (4) Continuos integration - pre-integrated with Jenkins which enabled continuous testing and automated software update feature. Applying the embedded test framework accelerator throughout the design and development phase enables to development of the well-tested systems before functional verification and improves time to market to a large extent.

Keywords: board diagnostics software, embedded system, hardware testing, test frameworks

Procedia PDF Downloads 116
56 Numerical Investigation of the Influence on Buckling Behaviour Due to Different Launching Bearings

Authors: Nadine Maier, Martin Mensinger, Enea Tallushi

Abstract:

In general, today, two types of launching bearings are used in the construction of large steel and steel concrete composite bridges. These are sliding rockers and systems with hydraulic bearings. The advantages and disadvantages of the respective systems are under discussion. During incremental launching, the center of the webs of the superstructure is not perfectly in line with the center of the launching bearings due to unavoidable tolerances, which may have an influence on the buckling behavior of the web plates. These imperfections are not considered in the current design against plate buckling, according to DIN EN 1993-1-5. It is therefore investigated whether the design rules have to take into account any eccentricities which occur during incremental launching and also if this depends on the respective launching bearing. Therefore, at the Technical University Munich, large-scale buckling tests were carried out on longitudinally stiffened plates under biaxial stresses with the two different types of launching bearings and eccentric load introduction. Based on the experimental results, a numerical model was validated. Currently, we are evaluating different parameters for both types of launching bearings, such as load introduction length, load eccentricity, the distance between longitudinal stiffeners, the position of the rotation point of the spherical bearing, which are used within the hydraulic bearings, web, and flange thickness and imperfections. The imperfection depends on the geometry of the buckling field and whether local or global buckling occurs. This and also the size of the meshing is taken into account in the numerical calculations of the parametric study. As a geometric imperfection, the scaled first buckling mode is applied. A bilinear material curve is used so that a GMNIA analysis is performed to determine the load capacity. Stresses and displacements are evaluated in different directions, and specific stress ratios are determined at the critical points of the plate at the time of the converging load step. To evaluate the load introduction of the transverse load, the transverse stress concentration is plotted on a defined longitudinal section on the web. In the same way, the rotation of the flange is evaluated in order to show the influence of the different degrees of freedom of the launching bearings under eccentric load introduction and to be able to make an assessment for the case, which is relevant in practice. The input and the output are automatized and depend on the given parameters. Thus we are able to adapt our model to different geometric dimensions and load conditions. The programming is done with the help of APDL and a Python code. This allows us to evaluate and compare more parameters faster. Input and output errors are also avoided. It is, therefore, possible to evaluate a large spectrum of parameters in a short time, which allows a practical evaluation of different parameters for buckling behavior. This paper presents the results of the tests as well as the validation and parameterization of the numerical model and shows the first influences on the buckling behavior under eccentric and multi-axial load introduction.

Keywords: buckling behavior, eccentric load introduction, incremental launching, large scale buckling tests, multi axial stress states, parametric numerical modelling

Procedia PDF Downloads 78
55 Effect of Juvenile Hormone on Respiratory Metabolism during Non-Diapausing Sesamia cretica Wandering Larvae (Lepidoptera: Noctuidae)

Authors: E. A. Abdel-Hakim

Abstract:

The corn stemborer Sesamia cretica (Lederer), has been viewed in many parts of the world as a major pest of cultivated maize, graminaceous crops and sugarcane. Its life cycle is comprised of two different phases, one is the growth and developmental phase (non-diapause) and the other is diapause phase which takes place at the last larval instar. Several problems associated with the use of conventional insecticides, have strongly demonstrated the need for applying alternative safe compounds. Prominent among the prototypes of such prospective chemicals are the juvenoids; i.e. the insect (JH) mimics. In fact, the hormonal effect on metabolism has long been viewed as a secondary consequence of its direct action on specific energy-requiring biosynthetic mechanisms. Therefore, the present study was undertaken essentially in a rather systematic fashion as a contribution towards clarifying metabolic and energetic changes taking place during non-diapause wandering larvae as regulated by (JH) mimic. For this purpose, we applied two different doses of JH mimic (Ro 11-0111) in a single (standard) dose of 100µg or in a single dose of 20 µg/g bw in1µl acetone topically at the onset of nondiapause wandering larvae (WL). Energetic data were obtained by indirect calorimetry methods by conversion of respiratory gas exchange volumetric data, as measured manometrically using a Warburg constant respirometer, to caloric units (g-cal/g fw/h). The findings obtained can be given in brief; these treated larvae underwent supernumerary larval moults. However, this potential the wandering larvae proved to possess whereby restoration of larval programming for S. cretica to overcome stresses even at this critical developmental period. The results obtained, particularly with the high dose used, show that 98% wandering larvae were rescued to survive up to one month (vs. 5 days for normal controls), finally the formation of larval-adult intermediates. Also, the solvent controls had resulted in about 22% additional, but stationary moultings. The basal respiratory metabolism (O2 uptake and CO2 output) of the (WL), whether un-treated or larvae not had followed reciprocal U-shaped curves all along of their developmental duration. The lowest points stood nearly to the day of prepupal formation (571±187 µl O2/gfw/h and 553±181 µl CO2/gfw/h) during un-treated in contrast to the larvae treated with JH (210±48 µl O2/gfw/h and 335±81 µl CO2/gfw/h). Un-treated (normal) larvae proved to utilize carbohydrates as the principal source for energy supply; being fully oxidised without sparing any appreciable amount for endergonic conversion to fats. While, the juvenoid-treated larvae and compared with the acetone-treated control equivalents, there existed no distinguishable differences between them; both had been observed utilising carbohydrates as the sole source of energy demand and converting endergonically almost similar percentages to fats. The overall profile, treated and un-treated (WL) utilized carbohydrates as the principal source for energy demand during this stage.

Keywords: juvenile hormone, respiratory metabolism, Sesamia cretica, wandering phase

Procedia PDF Downloads 267
54 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 104
53 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 198
52 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 109
51 Nutrition Budgets in Uganda: Research to Inform Implementation

Authors: Alexis D'Agostino, Amanda Pomeroy

Abstract:

Background: Resource availability is essential to effective implementation of national nutrition policies. To this end, the SPRING Project has collected and analyzed budget data from government ministries in Uganda, international donors, and other nutrition implementers to provide data for the first time on what funding is actually allocated to implement nutrition activities named in the national nutrition plan. Methodology: USAID’s SPRING Project used the Uganda Nutrition Action Plan (UNAP) as the starting point for budget analysis. Thorough desk reviews of public budgets from government, donors, and NGOs were mapped to activities named in the UNAP and validated by key informants (KIs) across the stakeholder groups. By relying on nationally-recognized and locally-created documents, SPRING provided a familiar basis for discussions to increase credibility and local ownership of findings. Among other things, the KIs validated the amount, source, and type (specific or sensitive) of funding. When only high-level budget data were available, KIs provided rough estimates of the percentage of allocations that were actually nutrition-relevant, allowing creation of confidence intervals around some funding estimates. Results: After validating data and narrowing in on estimates of funding to nutrition-relevant programming, researchers applied a formula to estimate overall nutrition allocations. In line with guidance by the SUN Movement and its three-step process, nutrition-specific funding was counted at 100% of its allocation amount, while nutrition sensitive funding was counted at 25%. The vast majority of nutrition funding in Uganda is off-budget, with over 90 percent of all nutrition funding is provided outside of the government system. Overall allocations are split nearly evenly between nutrition-specific and –sensitive activities. In FY 2013/14, the two-year study’s baseline year, on- and off-budget funding for nutrition was estimated to be around 60 million USD. While the 60 million USD allocations compare favorably to the 66 million USD estimate of the cost of the UNAP, not all activities are sufficiently funded. Those activities with a focus on behavior change were the most underfunded. In addition, accompanying qualitative research suggested that donor funding for nutrition activities may shift government funding into other areas of work, making it difficult to estimate the sustainability of current nutrition investments.Conclusions: Beyond providing figures, these estimates can be used together with the qualitative results of the study to explain how and why these amounts were allocated for particular activities and not others, examine the negotiation process that occurred, and suggest options for improving the flow of finances to UNAP activities for the remainder of the policy tenure. By the end of the PBN study, several years of nutrition budget estimates will be available to compare changes in funding over time. Halfway through SPRING’s work, there is evidence that country stakeholders have begun to feel ownership over the ultimate findings and some ministries are requesting increased technical assistance in nutrition budgeting. Ultimately, these data can be used within organization to advocate for more and improved nutrition funding and to improve targeting of nutrition allocations.

Keywords: budget, nutrition, financing, scale-up

Procedia PDF Downloads 408
50 Digitization and Morphometric Characterization of Botanical Collection of Indian Arid Zones as Informatics Initiatives Addressing Conservation Issues in Climate Change Scenario

Authors: Dipankar Saha, J. P. Singh, C. B. Pandey

Abstract:

Indian Thar desert being the seventh largest in the world is the main hot sand desert occupies nearly 385,000km2 and about 9% of the area of the country harbours several species likely the flora of 682 species (63 introduced species) belonging to 352 genera and 87 families. The degree of endemism of plant species in the Thar desert is 6.4 percent, which is relatively higher than the degree of endemism in the Sahara desert which is very significant for the conservationist to envisage. The advent and development of computer technology for digitization and data base management coupled with the rapidly increasing importance of biodiversity conservation resulted in the invention of biodiversity informatics as discipline of basic sciences with multiple applications. Aichi Target 19 as an outcome of Convention of Biological Diversity (CBD) specifically mandates the development of an advanced and shared biodiversity knowledge base. Information on species distributions in space is the crux of effective management of biodiversity in the rapidly changing world. The efficiency of biodiversity management is being increased rapidly by various stakeholders like researchers, policymakers, and funding agencies with the knowledge and application of biodiversity informatics. Herbarium specimens being a vital repository for biodiversity conservation especially in climate change scenario the digitization process usually aims to improve access and to preserve delicate specimens and in doing so creating large sets of images as a part of the existing repository as arid plant information facility for long-term future usage. As the leaf characters are important for describing taxa and distinguishing between them and they can be measured from herbarium specimens as well. As a part of this activity, laminar characterization (leaves being the most important characters in assessing climate change impact) initially resulted in classification of more than thousands collections belonging to ten families like Acanthaceae, Aizoaceae, Amaranthaceae, Asclepiadaceae, Anacardeaceae, Apocynaceae, Asteraceae, Aristolochiaceae, Berseraceae and Bignoniaceae etc. Taxonomic diversity indices has also been worked out being one of the important domain of biodiversity informatics approaches. The digitization process also encompasses workflows which incorporate automated systems to enable us to expand and speed up the digitisation process. The digitisation workflows used to be on a modular system which has the potential to be scaled up. As they are being developed with a geo-referencing tool and additional quality control elements and finally placing specimen images and data into a fully searchable, web-accessible database. Our effort in this paper is to elucidate the role of BIs, present effort of database development of the existing botanical collection of institute repository. This effort is expected to be considered as a part of various global initiatives having an effective biodiversity information facility. This will enable access to plant biodiversity data that are fit-for-use by scientists and decision makers working on biodiversity conservation and sustainable development in the region and iso-climatic situation of the world.

Keywords: biodiversity informatics, climate change, digitization, herbarium, laminar characters, web accessible interface

Procedia PDF Downloads 201
49 The Efficiency Analysis in the Health Sector: Marmara Region

Authors: Hale Kirer Silva Lecuna, Beyza Aydin

Abstract:

Health is one of the main components of human capital and sustainable development, and it is very important for economic growth. Health economics, which is an indisputable part of the science of economics, has five stages in general. These are health and development, financing of health services, economic regulation in the health, allocation of resources and efficiency of health services. A well-developed and efficient health sector plays a major role by increasing the level of development of countries. The most crucial pillars of the health sector are the hospitals that are divided into public and private. The main purpose of the hospitals is to provide more efficient services. Therefore the aim is to meet patients’ satisfaction by increasing the service quality. Health-related studies in Turkey date back to the Ottoman and Seljuk Empires. In the near past, Turkey applied 'Health Sector Transformation Programs' under different titles between 2003 and 2010. Our aim in this paper is to measure how effective these transformation programs are for the health sector, to see how much they can increase the efficiency of hospitals over the years, to see the return of investments, to make comments and suggestions on the results, and to provide a new reference for the literature. Within this framework, the public and private hospitals in Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, Istanbul, Kirklareli, Kocaeli, Sakarya, Tekirdağ, Yalova will be examined by using Data Envelopment Analysis (DEA) for the years between 2000 and 2019. DEA is a linear programming-based technique, which gives relatively good results in multivariate studies. DEA basically estimates an efficiency frontier and make a comparison. Constant returns to scale and variable returns to scale are two most commonly used DEA methods. Both models are divided into two as input and output-oriented. To analyze the data, the number of personnel, number of specialist physicians, number of practitioners, number of beds, number of examinations will be used as input variables; and the number of surgeries, in-patient ratio, and crude mortality rate as output variables. 11 hospitals belonging to the Marmara region were included in the study. It is seen that these hospitals worked effectively only in 7 provinces (Balıkesir, Bilecik, Bursa, Edirne, İstanbul, Kırklareli, Yalova) for the year 2001 when no transformation program was implemented. After the transformation program was implemented, for example, in 2014 and 2016, 10 hospitals (Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, İstanbul, Kocaeli, Kırklareli, Tekirdağ, Yalova) were found to be effective. In 2015, ineffective results were observed for Sakarya, Tekirdağ and Yalova. However, since these values are closer to 1 after the transformation program, we can say that the transformation program has positive effects. For Sakarya alone, no effective results have been achieved in any year. When we look at the results in general, it shows that the transformation program has a positive effect on the effectiveness of hospitals.

Keywords: data envelopment analysis, efficiency, health sector, Marmara region

Procedia PDF Downloads 102
48 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification

Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos

Abstract:

Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.

Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology

Procedia PDF Downloads 124
47 Geographic Information System Based Multi-Criteria Subsea Pipeline Route Optimisation

Authors: James Brown, Stella Kortekaas, Ian Finnie, George Zhang, Christine Devine, Neil Healy

Abstract:

The use of GIS as an analysis tool for engineering decision making is now best practice in the offshore industry. GIS enables multidisciplinary data integration, analysis and visualisation which allows the presentation of large and intricate datasets in a simple map-interface accessible to all project stakeholders. Presenting integrated geoscience and geotechnical data in GIS enables decision makers to be well-informed. This paper is a successful case study of how GIS spatial analysis techniques were applied to help select the most favourable pipeline route. Routing a pipeline through any natural environment has numerous obstacles, whether they be topographical, geological, engineering or financial. Where the pipeline is subjected to external hydrostatic water pressure and is carrying pressurised hydrocarbons, the requirement to safely route the pipeline through hazardous terrain becomes absolutely paramount. This study illustrates how the application of modern, GIS-based pipeline routing techniques enabled the identification of a single most-favourable pipeline route crossing of a challenging seabed terrain. Conventional approaches to pipeline route determination focus on manual avoidance of primary constraints whilst endeavouring to minimise route length. Such an approach is qualitative, subjective and is liable to bias towards the discipline and expertise that is involved in the routing process. For very short routes traversing benign seabed topography in shallow water this approach may be sufficient, but for deepwater geohazardous sites, the need for an automated, multi-criteria, and quantitative approach is essential. This study combined multiple routing constraints using modern least-cost-routing algorithms deployed in GIS, hitherto unachievable with conventional approaches. The least-cost-routing procedure begins with the assignment of geocost across the study area. Geocost is defined as a numerical penalty score representing hazard posed by each routing constraint (e.g. slope angle, rugosity, vulnerability to debris flows) to the pipeline. All geocosted routing constraints are combined to generate a composite geocost map that is used to compute the least geocost route between two defined terminals. The analyses were applied to select the most favourable pipeline route for a potential gas development in deep water. The study area is geologically complex with a series of incised, potentially active, canyons carved into a steep escarpment, with evidence of extensive debris flows. A similar debris flow in the future could cause significant damage to a poorly-placed pipeline. Protruding inter-canyon spurs offer lower-gradient options for ascending an escarpment but the vulnerability of periodic failure of these spurs is not well understood. Close collaboration between geoscientists, pipeline engineers, geotechnical engineers and of course the gas export pipeline operator guided the analyses and assignment of geocosts. Shorter route length, less severe slope angles, and geohazard avoidance were the primary drivers in identifying the most favourable route.

Keywords: geocost, geohazard, pipeline route determination, pipeline route optimisation, spatial analysis

Procedia PDF Downloads 365
46 Culturally Relevant Education Challenges and Threats in the US Secondary Classroom

Authors: Owen Cegielski, Kristi Maida, Danny Morales, Sylvia L. Mendez

Abstract:

This study explores the challenges and threats US secondary educators experience in incorporating culturally relevant education (CRE) practices in their classrooms. CRE is a social justice pedagogical practice used to connect student’s cultural references to academic skills and content, to promote critical reflection, to facilitate cultural competence, and to critique discourses of power and oppression. Empirical evidence on CRE demonstrates positive student educational outcomes in terms of achievement, engagement, and motivation. Additionally, due to the direct focus on uplifting diverse cultures through the curriculum, students experience greater feelings of belonging, increased interest in the subject matter, and stronger racial/ethnic identities. When these teaching practices are in place, educators develop deeper relationships with their students and appreciate the multitude of gifts they (and their families) bring to the classroom environment. Yet, educators regularly report being unprepared to incorporate CRE in their daily teaching practice and identify substantive gaps in their knowledge and skills in this area. Often, they were not exposed to CRE in their educator preparation program, nor do they receive adequate support through school- or district-wide professional development programming. Through a descriptive phenomenological research design, 20 interviews were conducted with a diverse set of secondary school educators to explore the challenges and threats they experience in incorporating CRE practices in their classrooms. The guiding research question for this study is: What are the challenges and threats US secondary educators face when seeking to incorporate CRE practices in their classrooms? Interviews were grounded by the theory of challenge and threat states, which highlights the ways in which challenges and threats are appraised and how resources factor into emotional valence and perception, as well as the potential to meet the task at hand. Descriptive phenomenological data analysis strategies were utilized to develop an essential structure of the educators’ views of challenges and threats in regard to incorporating CRE practices in their secondary classrooms. The attitude of the phenomenological reduction method was adopted, and the data were analyzed through five steps: sense of the whole, meaning units, transformation, structure, and essential structure. The essential structure that emerged was while secondary educators display genuine interest in learning how to successfully incorporate CRE practices, they perceive it to be a challenge (and not a threat) due to lack of exposure which diminishes educator capacity, comfort, and confidence in employing CRE practices. These findings reveal the value of attending to emotional valence and perception of CRE in promoting this social justice pedagogical practice. Findings also reveal the importance of appropriately resourcing educators with CRE support to ensure they develop and utilize this practice.

Keywords: culturally relevant education, descriptive phenomenology, social justice practice, US secondary education

Procedia PDF Downloads 150
45 Conceptualizing a Biomimetic Fablab Based on the Makerspace Concept and Biomimetics Design Research

Authors: Petra Gruber, Ariana Rupp, Peter Niewiarowski

Abstract:

This paper presents a concept for a biomimetic fablab as a physical space for education, research and development of innovation inspired by nature. Biomimetics as a discipline finds increasing recognition in academia and has started to be institutionalized at universities in programs and centers. The Biomimicry Research and Innovation Center was founded in 2012 at the University of Akron as an interdisciplinary venture for the advancement of innovation inspired by nature and is part of a larger community fostering the approach of bioimimicry in the Great Lakes region of the US. With 30 faculty members the center has representatives from Colleges of Arts and Sciences (e.g., biology, chemistry, geoscience, and philosophy) Engineering (e.g., mechanical, civil, and biomedical), Polymer Science, and Myers School of Arts. A platform for training PhDs in Biomimicry (17 students currently enrolled) is co-funded by educational institutions and industry partners. Research at the center touches on many areas but is also currently biased towards materials and structures, with highlights being materials based on principles found in spider silk and gecko attachment mechanisms. As biomimetics is also a novel scientific discipline, there is little standardisation in programming and the equipment of research facilities. As a field targeting innovation, design and prototyping processes are fundamental parts of the developments. For experimental design and prototyping, MIT's maker space concept seems to fit well to the requirements, but facilities need to be more specialised in terms of accessing biological systems and knowledge, specific research, production or conservation requirements. For the education and research facility BRIC we conceptualize the concept of a biomimicry fablab, that ties into the existing maker space concept and creates the setting for interdisciplinary research and development carried out in the program. The concept takes on the process of biomimetics as a guideline to define core activities that shall be enhanced by the allocation of specific spaces and tools. The limitations of such a facility and the intersections to further specialised labs housed in the classical departments are of special interest. As a preliminary proof of concept two biomimetic design courses carried out in 2016 are investigated in terms of needed tools and infrastructure. The spring course was a problem based biomimetic design challenge in collaboration with an innovation company interested in product design for assisted living and medical devices. The fall course was a solution based biomimetic design course focusing on order and hierarchy in nature with the goal of finding meaningful translations into art and technology. The paper describes the background of the BRIC center, identifies and discusses the process of biomimetics, evaluates the classical maker space concept and explores how these elements can shape the proposed research facility of a biomimetic fablab by examining two examples of design courses held in 2016.

Keywords: biomimetics, biomimicry, design, biomimetic fablab

Procedia PDF Downloads 248
44 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 100
43 Engineering Economic Analysis of Implementing a Materials Recovery Facility in Jamaica: A Green Industry Approach towards a Sustainable Developing Economy

Authors: Damian Graham, Ashleigh H. Hall, Damani R. Sulph, Michael A. James, Shawn B. Vassell

Abstract:

This paper assesses the design and feasibility of a Materials Recovery Facility (MRF) in Jamaica as a possible green industry approach to the nation’s economic and solid waste management problems. Jamaica is a developing nation that is vulnerable to climate change that can affect its blue economy and tourism on which it is heavily reliant. Jamaica’s National Solid Waste Management Authority (NSWMA) collects only a fraction of all the solid waste produced annually which is then transported to dumpsites. The remainder is either burnt by the population or disposed of illegally. These practices negatively impact the environment, threaten the sustainability of economic growth from blue economy and tourism and its waste management system is predominantly a cost centre. The implementation of an MRF could boost the manufacturing sector, contribute to economic growth, and be a catalyst in creating a green industry with multiple downstream value chains with supply chain linkages. Globally, there is a trend to reuse and recycle that created an international market for recycled solid waste. MRFs enable the efficient sorting of solid waste into desired recoverable materials thus providing a gateway for entrance to the international trading of recycled waste. Research into the current state and effort to improve waste management in Jamaica in contrast with the similar and more advanced territories are outlined. The study explores the concept of green industrialization and its applicability to vulnerable small state economies like Jamaica. The study highlights the possible contributions and benefits derived from MRFs as a seeding factory that can anchor the reverse and forward logistics of other green industries as part of a logistic-cantered economy. Further, the study showcases an engineering economic analysis that assesses the viability of the implementation of an MRF in Jamaica. This research outlines the potential cost of constructing and operating an MRF and provides a realistic cash flow estimate to establish a baseline for profitability. The approach considers quantitative and qualitative data, assumptions, and modelling using industrial engineering tools and techniques that are outlined. Techniques of facility planning, system analysis and operations research with a focus on linear programming techniques are expressed. Approaches to overcome some implementation challenges including policy, technology and public education are detailed. The results of this study present a reasonable judgment of the prospects of incorporating an MRF to improve Jamaica’s solid waste management and contribute to socioeconomic and environmental benefits and an alternate pathway for economic sustainability.

Keywords: engineering-economic analysis, facility design, green industry, MRF, manufacturing, plant layout, solid-waste management, sustainability, waste disposal

Procedia PDF Downloads 189
42 Co-Movement between Financial Assets: An Empirical Study on Effects of the Depreciation of Yen on Asia Markets

Authors: Yih-Wenn Laih

Abstract:

In recent times, the dependence and co-movement among international financial markets have become stronger than in the past, as evidenced by commentaries in the news media and the financial sections of newspapers. Studying the co-movement between returns in financial markets is an important issue for portfolio management and risk management. The realization of co-movement helps investors to identify the opportunities for international portfolio management in terms of asset allocation and pricing. Since the election of the new Prime Minister, Shinzo Abe, in November 2012, the yen has weakened against the US dollar from the 80 to the 120 level. The policies, known as “Abenomics,” are to encourage private investment through a more aggressive mix of monetary and fiscal policy. Given the close economic relations and competitions among Asia markets, it is interesting to discover the co-movement relations, affected by the depreciation of yen, between stock market of Japan and 5 major Asia stock markets, including China, Hong Kong, Korea, Singapore, and Taiwan. Specifically, we devote ourselves to measure the co-movement of stock markets between Japan and each one of the 5 Asia stock markets in terms of rank correlation coefficients. To compute the coefficients, return series of each stock market is first fitted by a skewed-t GARCH (generalized autoregressive conditional heteroscedasticity) model. Secondly, to measure the dependence structure between matched stock markets, we employ the symmetrized Joe-Clayton (SJC) copula to calculate the probability density function of paired skewed-t distributions. The joint probability density function is then utilized as the scoring scheme to optimize the sequence alignment by dynamic programming method. Finally, we compute the rank correlation coefficients (Kendall's  and Spearman's ) between matched stock markets based on their aligned sequences. We collect empirical data of 6 stock indexes from Taiwan Economic Journal. The data is sampled at a daily frequency covering the period from January 1, 2013 to July 31, 2015. The empirical distributions of returns indicate fatter tails than the normal distribution. Therefore, the skewed-t distribution and SJC copula are appropriate for characterizing the data. According to the computed Kendall’s τ, Korea has the strongest co-movement relation with Japan, followed by Taiwan, China, and Singapore; the weakest is Hong Kong. On the other hand, the Spearman’s ρ reveals that the strength of co-movement between markets with Japan in decreasing order are Korea, China, Taiwan, Singapore, and Hong Kong. We explore the effects of “Abenomics” on Asia stock markets by measuring the co-movement relation between Japan and five major Asia stock markets in terms of rank correlation coefficients. The matched markets are aligned by a hybrid method consisting of GARCH, copula and sequence alignment. Empirical experiments indicate that Korea has the strongest co-movement relation with Japan. The strength of China and Taiwan are better than Singapore. The Hong Kong market has the weakest co-movement relation with Japan.

Keywords: co-movement, depreciation of Yen, rank correlation, stock market

Procedia PDF Downloads 211
41 Tectono-Stratigraphic Architecture, Depositional Systems and Salt Tectonics to Strike-Slip Faulting in Kribi-Campo-Cameroon Atlantic Margin with an Unsupervised Machine Learning Approach (West African Margin)

Authors: Joseph Bertrand Iboum Kissaaka, Charles Fonyuy Ngum Tchioben, Paul Gustave Fowe Kwetche, Jeannette Ngo Elogan Ntem, Joseph Binyet Njebakal, Ribert Yvan Makosso-Tchapi, François Mvondo Owono, Marie Joseph Ntamak-Nida

Abstract:

Located in the Gulf of Guinea, the Kribi-Campo sub-basin belongs to the Aptian salt basins along the West African Margin. In this paper, we investigated the tectono-stratigraphic architecture of the basin, focusing on the role of salt tectonics and strike-slip faults along the Kribi Fracture Zone with implications for reservoir prediction. Using 2D seismic data and well data interpreted through sequence stratigraphy with integrated seismic attributes analysis with Python Programming and unsupervised Machine Learning, at least six second-order sequences, indicating three main stages of tectono-stratigraphic evolution, were determined: pre-salt syn-rift, post-salt rift climax and post-rift stages. The pre-salt syn-rift stage with KTS1 tectonosequence (Barremian-Aptian) reveals a transform rifting along NE-SW transfer faults associated with N-S to NNE-SSW syn-rift longitudinal faults bounding a NW-SE half-graben filled with alluvial to lacustrine-fan delta deposits. The post-salt rift-climax stage (Lower to Upper Cretaceous) includes two second-order tectonosequences (KTS2 and KTS3) associated with the salt tectonics and Campo High uplift. During the rift-climax stage, the growth of salt diapirs developed syncline withdrawal basins filled by early forced regression, mid transgressive and late normal regressive systems tracts. The early rift climax underlines some fine-grained hangingwall fans or delta deposits and coarse-grained fans from the footwall of fault scarps. The post-rift stage (Paleogene to Neogene) contains at least three main tectonosequences KTS4, KTS5 and KTS6-7. The first one developed some turbiditic lobe complexes considered as mass transport complexes and feeder channel-lobe complexes cutting the unstable shelf edge of the Campo High. The last two developed submarine Channel Complexes associated with lobes towards the southern part and braided delta to tidal channels towards the northern part of the Kribi-Campo sub-basin. The reservoir distribution in the Kribi-Campo sub-basin reveals some channels, fan lobes reservoirs and stacked channels reaching up to the polygonal fault systems.

Keywords: tectono-stratigraphic architecture, Kribi-Campo sub-basin, machine learning, pre-salt sequences, post-salt sequences

Procedia PDF Downloads 14
40 Assessing of Social Comfort of the Russian Population with Big Data

Authors: Marina Shakleina, Konstantin Shaklein, Stanislav Yakiro

Abstract:

The digitalization of modern human life over the last decade has facilitated the acquisition, storage, and processing of data, which are used to detect changes in consumer preferences and to improve the internal efficiency of the production process. This emerging trend has attracted academic interest in the use of big data in research. The study focuses on modeling the social comfort of the Russian population for the period 2010-2021 using big data. Big data provides enormous opportunities for understanding human interactions at the scale of society with plenty of space and time dynamics. One of the most popular big data sources is Google Trends. The methodology for assessing social comfort using big data involves several steps: 1. 574 words were selected based on the Harvard IV-4 Dictionary adjusted to fit the reality of everyday Russian life. The set of keywords was further cleansed by excluding queries consisting of verbs and words with several lexical meanings. 2. Search queries were processed to ensure comparability of results: the transformation of data to a 10-point scale, elimination of popularity peaks, detrending, and deseasoning. The proposed methodology for keyword search and Google Trends processing was implemented in the form of a script in the Python programming language. 3. Block and summary integral indicators of social comfort were constructed using the first modified principal component resulting in weighting coefficients values of block components. According to the study, social comfort is described by 12 blocks: ‘health’, ‘education’, ‘social support’, ‘financial situation’, ‘employment’, ‘housing’, ‘ethical norms’, ‘security’, ‘political stability’, ‘leisure’, ‘environment’, ‘infrastructure’. According to the model, the summary integral indicator increased by 54% and was 4.631 points; the average annual rate was 3.6%, which is higher than the rate of economic growth by 2.7 p.p. The value of the indicator describing social comfort in Russia is determined by 26% by ‘social support’, 24% by ‘education’, 12% by ‘infrastructure’, 10% by ‘leisure’, and the remaining 28% by others. Among 25% of the most popular searches, 85% are of negative nature and are mainly related to the blocks ‘security’, ‘political stability’, ‘health’, for example, ‘crime rate’, ‘vulnerability’. Among the 25% most unpopular queries, 99% of the queries were positive and mostly related to the blocks ‘ethical norms’, ‘education’, ‘employment’, for example, ‘social package’, ‘recycling’. In conclusion, the introduction of the latent category ‘social comfort’ into the scientific vocabulary deepens the theory of the quality of life of the population in terms of the study of the involvement of an individual in the society and expanding the subjective aspect of the measurements of various indicators. Integral assessment of social comfort demonstrates the overall picture of the development of the phenomenon over time and space and quantitatively evaluates ongoing socio-economic policy. The application of big data in the assessment of latent categories gives stable results, which opens up possibilities for their practical implementation.

Keywords: big data, Google trends, integral indicator, social comfort

Procedia PDF Downloads 170
39 Global Supply Chain Tuning: Role of National Culture

Authors: Aleksandr S. Demin, Anastasiia V. Ivanova

Abstract:

Purpose: The current economy tends to increase the influence of digital technologies and diminish the human role in management. However, it is impossible to deny that a person still leads a business with its own set of values and priorities. The article presented aims to incorporate the peculiarities of the national culture and the characteristics of the supply chain using the quantitative values of the national culture obtained by the scholars of comparative management (Hofstede, House, and others). Design/Methodology/Approach: The conducted research is based on the secondary data in the field of cross-country comparison achieved by Prof. Hofstede and received in the GLOBE project. The data mentioned are used to design different aspects of the supply chain both on the cross-functional and inter-organizational levels. The connection between a range of principles in general (roles assignment, customer service prioritization, coordination of supply chain partners) and in comparative management (acknowledgment of the national peculiarities of the country in which the company operates) is shown over economic and mathematical models, mainly linear programming models. Findings: The combination of the team management wheel concept, the business processes of the global supply chain, and the national culture characteristics let a transnational corporation to form a supply chain crew balanced in costs, functions, and personality. To elaborate on an effective customer service policy and logistics strategy in goods and services distribution in the country under review, two approaches are offered. The first approach relies exceptionally on the customer’s interest in the place of operation, while the second one takes into account the position of the transnational corporation and its previous experience in order to accord both organizational and national cultures. The effect of integration practice on the achievement of a specific supply chain goal in a specific location is advised to assess via types of correlation (positive, negative, non) and the value of national culture indices. Research Limitations: The models developed are intended to be used by transnational companies and business forms located in several nationally different areas. Some of the inputs to illustrate the application of the methods offered are simulated. That is why the numerical measurements should be used with caution. Practical Implications: The research can be of great interest for the supply chain managers who are responsible for the engineering of global supply chains in a transnational corporation and the further activities in doing business on the international area. As well, the methods, tools, and approaches suggested can be used by top managers searching for new ways of competitiveness and can be suitable for all staff members who are keen on the national culture traits topic. Originality/Value: The elaborated methods of decision-making with regard to the national environment suggest the mathematical and economic base to find a comprehensive solution.

Keywords: logistics integration, logistics services, multinational corporation, national culture, team management, service policy, supply chain management

Procedia PDF Downloads 82
38 Designing Agile Product Development Processes by Transferring Mechanisms of Action Used in Agile Software Development

Authors: Guenther Schuh, Michael Riesener, Jan Kantelberg

Abstract:

Due to the fugacity of markets and the reduction of product lifecycles, manufacturing companies from high-wage countries are nowadays faced with the challenge to place more innovative products within even shorter development time on the market. At the same time, volatile customer requirements have to be satisfied in order to successfully differentiate from market competitors. One potential approach to address the explained challenges is provided by agile values and principles. These agile values and principles already proofed their success within software development projects in the form of management frameworks like Scrum or concrete procedure models such as Extreme Programming or Crystal Clear. Those models lead to significant improvements regarding quality, costs and development time and are therefore used within most software development projects. Motivated by the success within the software industry, manufacturing companies have tried to transfer agile mechanisms of action to the development of hardware products ever since. Though first empirical studies show similar effects in the agile development of hardware products, no comprehensive procedure model for the design of development iterations has been developed for hardware development yet due to different constraints of the domains. For this reason, this paper focusses on the design of agile product development processes by transferring mechanisms of action used in agile software development towards product development. This is conducted by decomposing the individual systems 'product development' and 'agile software development' into relevant elements and symbiotically composing the elements of both systems in respect of the design of agile product development processes afterwards. In a first step, existing product development processes are described following existing approaches of the system theory. By analyzing existing case studies from industrial companies as well as academic approaches, characteristic objectives, activities and artefacts are identified within a target-, action- and object-system. In partial model two, mechanisms of action are derived from existing procedure models of agile software development. These mechanisms of action are classified in a superior strategy level, in a system level comprising characteristic, domain-independent activities and their cause-effect relationships as well as in an activity-based element level. Within partial model three, the influence of the identified agile mechanism of action towards the characteristic system elements of product development processes is analyzed. For this reason, target-, action- and object-system of the product development are compared with the strategy-, system- and element-level of agile mechanism of action by using the graph theory. Furthermore, the necessity of existence of activities within iteration can be determined by defining activity-specific degrees of freedom. Based on this analysis, agile product development processes are designed in form of different types of iterations within a last step. By defining iteration-differentiating characteristics and their interdependencies, a logic for the configuration of activities, their form of execution as well as relevant artefacts for the specific iteration is developed. Furthermore, characteristic types of iteration for the agile product development are identified.

Keywords: activity-based process model, agile mechanisms of action, agile product development, degrees of freedom

Procedia PDF Downloads 174
37 Navigating States of Emergency: A Preliminary Comparison of Online Public Reaction to COVID-19 and Monkeypox on Twitter

Authors: Antonia Egli, Theo Lynn, Pierangelo Rosati, Gary Sinclair

Abstract:

The World Health Organization (WHO) defines vaccine hesitancy as the postponement or complete denial of vaccines and estimates a direct linkage to approximately 1.5 million avoidable deaths annually. This figure is not immune to public health developments, as has become evident since the global spread of COVID-19 from Wuhan, China in early 2020. Since then, the proliferation of influential, but oftentimes inaccurate, outdated, incomplete, or false vaccine-related information on social media has impacted hesitancy levels to a degree described by the WHO as an infodemic. The COVID-19 pandemic and related vaccine hesitancy levels have in 2022 resulted in the largest drop in childhood vaccinations of the 21st century, while the prevalence of online stigma towards vaccine hesitant consumers continues to grow. Simultaneously, a second disease has risen to global importance: Monkeypox is an infection originating from west and central Africa and, due to racially motivated online hate, was in August 2022 set to be renamed by the WHO. To better understand public reactions towards two viral infections that became global threats to public health no two years apart, this research examines user replies to threads published by the WHO on Twitter. Replies to two Tweets from the @WHO account declaring COVID-19 and Monkeypox as ‘public health emergencies of international concern’ on January 30, 2020, and July 23, 2022, are gathered using the Twitter application programming interface and user mention timeline endpoint. Research methodology is unique in its analysis of stigmatizing, racist, and hateful content shared on social media within the vaccine discourse over the course of two disease outbreaks. Three distinct analyses are conducted to provide insight into (i) the most prevalent topics and sub-topics among user reactions, (ii) changes in sentiment towards the spread of the two diseases, and (iii) the presence of stigma, racism, and online hate. Findings indicate an increase in hesitancy to accept further vaccines and social distancing measures, the presence of stigmatizing content aimed primarily at anti-vaccine cohorts and racially motivated abusive messages, and a prevalent fatigue towards disease-related news overall. This research provides value to non-profit organizations or government agencies associated with vaccines and vaccination programs in emphasizing the need for public health communication fitted to consumers' vaccine sentiments, levels of health information literacy, and degrees of trust towards public health institutions. Considering the importance of addressing fears among the vaccine hesitant, findings also illustrate the risk of alienation through stigmatization, lead future research in probing the relatively underexamined field of online, vaccine-related stigma, and discuss the potential effects of stigma towards vaccine hesitant Twitter users in their decisions to vaccinate.

Keywords: social marketing, social media, public health communication, vaccines

Procedia PDF Downloads 73
36 An Action Toolkit for Health Care Services Driving Disability Inclusion in Universal Health Coverage

Authors: Jill Hanass-Hancock, Bradley Carpenter, Samantha Willan, Kristin Dunkle

Abstract:

Access to quality health care for persons with disabilities is the litmus test in our strive toward universal health coverage. Persons with disabilities experience a variety of health disparities related to increased health risks, greater socioeconomic challenges, and persistent ableism in the provision of health care. In low- and middle-income countries, the support needed to address the diverse needs of persons with disabilities and close the gaps in inclusive and accessible health care can appear overwhelming to staff with little knowledge and tools available. An action-orientated disability inclusion toolkit for health facilities was developed through consensus-building consultations and field testing in South Africa. The co-creation of the toolkit followed a bottom-up approach with healthcare staff and persons with disabilities in two developmental cycles. In cycle one, a disability facility assessment tool was developed to increase awareness of disability accessibility and service delivery gaps in primary healthcare services in a simple and action-orientated way. In cycle two, an intervention menu was created, enabling staff to respond to identified gaps and improve accessibility and inclusion. Each cycle followed five distinct steps of development: a review of needs and existing tools, design of the draft tool, consensus discussion to adapt the tool, pilot-testing and adaptation of the tool, and identification of the next steps. The continued consultations, adaptations, and field-testing allowed the team to discuss and test several adaptations while co-creating a meaningful and feasible toolkit with healthcare staff and persons with disabilities. This approach led to a simplified tool design with ‘key elements’ needed to achieve universal health coverage: universal design of health facilities, reasonable accommodation, health care worker training, and care pathway linkages. The toolkit was adapted for paper or digital data entry, produces automated, instant facility reports, and has easy-to-use training guides and online modules. The cyclic approach enabled the team to respond to emerging needs. The pilot testing of the facility assessment tool revealed that healthcare workers took significant actions to change their facilities after an assessment. However, staff needed information on how to improve disability accessibility and inclusion, where to acquire accredited training, and how to improve disability data collection, referrals, and follow-up. Hence, intervention options were needed for each ‘key element’. In consultation with representatives from the health and disability sectors, tangible and feasible solutions/interventions were identified. This process included the development of immediate/low-cost and long-term solutions. The approach gained buy-in from both sectors, who called for including the toolkit in the standard quality assessments for South Africa’s health care services. Furthermore, the process identified tangible solutions for each ‘key element’ and highlighted where research and development are urgently needed. The cyclic and consultative approach enabled the development of a feasible facility assessment tool and a complementary intervention menu, moving facilities toward universal health coverage for and persons with disabilities in low- or better-resourced contexts while identifying gaps in the availability of interventions.

Keywords: public health, disability, accessibility, inclusive health care, universal health coverage

Procedia PDF Downloads 43
35 Statistical Models and Time Series Forecasting on Crime Data in Nepal

Authors: Dila Ram Bhandari

Abstract:

Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.

Keywords: time series analysis, forecasting, ARIMA, machine learning

Procedia PDF Downloads 131
34 Cognitive Decline in People Living with HIV in India and Correlation with Neurometabolites Using 3T Magnetic Resonance Spectroscopy (MRS): A Cross-Sectional Study

Authors: Kartik Gupta, Virendra Kumar, Sanjeev Sinha, N. Jagannathan

Abstract:

Introduction: A significant number of patients having human immunodeficiency virus (HIV) infection show a neurocognitive decline (NCD) ranging from minor cognitive impairment to severe dementia. The possible causes of NCD in HIV-infected patients include brain injury by HIV before cART, neurotoxic viral proteins and metabolic abnormalities. In the present study, we compared the level of NCD in asymptomatic HIV-infected patients with changes in brain metabolites measured by using magnetic resonance spectroscopy (MRS). Methods: 43 HIV-positive patients (30 males and 13 females) coming to ART center of the hospital and HIV-seronegative healthy subjects were recruited for the study. All the participants completed MRI and MRS examination, detailed clinical assessments and a battery of neuropsychological tests. All the MR investigations were carried out at 3.0T MRI scanner (Ingenia/Achieva, Philips, Netherlands). MRI examination protocol included the acquisition of T2-weighted imaging in axial, coronal and sagittal planes, T1-weighted, FLAIR, and DWI images in the axial plane. Patients who showed any apparent lesion on MRI were excluded from the study. T2-weighted images in three orthogonal planes were used to localize the voxel in left frontal lobe white matter (FWM) and left basal ganglia (BG) for single voxel MRS. Single voxel MRS spectra were acquired with a point resolved spectroscopy (PRESS) localization pulse sequence at an echo time (TE) of 35 ms and a repetition time (TR) of 2000 ms with 64 or 128 scans. Automated preprocessing and determination of absolute concentrations of metabolites were estimated using LCModel by water scaling method and the Cramer-Rao lower bounds for all metabolites analyzed in the study were below 15\%. Levels of total N-acetyl aspartate (tNAA), total choline (tCho), glutamate + glutamine (Glx), total creatine (tCr), were measured. Cognition was tested using a battery of tests validated for Indian population. The cognitive domains tested were the memory, attention-information processing, abstraction-executive, simple and complex perceptual motor skills. Z-scores normalized according to age, sex and education standard were used to calculate dysfunction in these individual domains. The NCD was defined as dysfunction with Z-score ≤ 2 in at least two domains. One-way ANOVA was used to compare the difference in brain metabolites between the patients and healthy subjects. Results: NCD was found in 23 (53%) patients. There was no significant difference in age, CD4 count and viral load between the two groups. Maximum impairment was found in the domains of memory and simple motor skills i.e., 19/43 (44%). The prevalence of deficit in attention-information processing, complex perceptual motor skills and abstraction-executive function was 37%, 35%, 33% respectively. Subjects with NCD had a higher level of Glutamate in the Frontal region (8.03 ± 2.30 v/s. 10.26 ± 5.24, p-value 0.001). Conclusion: Among newly diagnosed, ART-naïve retroviral disease patients from India, cognitive decline was found in 53\% patients using tests validated for this population. Those with neurocognitive decline had a significantly higher level of Glutamate in the left frontal region. There was no significant difference in age, CD4 count and viral load at initiation of ART between the two groups.

Keywords: HIV, neurocognitive decline, neurometabolites, magnetic resonance spectroscopy

Procedia PDF Downloads 157
33 Optimizing Productivity and Quality through the Establishment of a Learning Management System for an Agency-Based Graduate School

Authors: Maria Corazon Tapang-Lopez, Alyn Joy Dela Cruz Baltazar, Bobby Jones Villanueva Domdom

Abstract:

The requisite for an organization implementing quality management system to sustain its compliance to the requirements and commitment for continuous improvement is even higher. It is expected that the offices and units has high and consistent compliance to the established processes and procedures. The Development Academy of the Philippines has been operating under project management to which is has a quality management certification. To further realize its mandate as a think-tank and capacity builder of the government, DAP expanded its operation and started to grant graduate degree through its Graduate School of Public and Development Management (GSPDM). As the academic arm of the Academy, GSPDM offers graduate degree programs on public management and productivity & quality aligned to the institutional trusts. For a time, the documented procedures and processes of a project management seem to fit the Graduate School. However, there has been a significant growth in the operations of the GSPDM in terms of the graduate programs offered that directly increase the number of students. There is an apparent necessity to align the project management system into a more educational system otherwise it will no longer be responsive to the development that are taking place. The strongly advocate and encourage its students to pursue internal and external improvement to cope up with the challenges of providing quality service to their own clients and to our country. If innovation will not take roots in the grounds of GSPDM, then how will it serve the purpose of “walking the talk”? This research was conducted to assess the diverse flow of the existing internal operations and processes of the DAP’s project management and GSPDM’s school management that will serve as basis to develop a system that will harmonize into one, the Learning Management System. The study documented the existing process of GSPDM following the project management phases of conceptualization & development, negotiation & contracting, mobilization, implementation, and closure into different flow charts of the key activities. The primary source of information as respondents were the different groups involved into the delivery of graduate programs - the executive, learning management team and administrative support offices. The Learning Management System (LMS) shall capture the unique and critical processes of the GSPDM as a degree-granting unit of the Academy. The LMS is the harmonized project management and school management system that shall serve as the standard system and procedure for all the programs within the GSPDM. The unique processes cover the three important areas of school management – student, curriculum, and faculty. The required processes of these main areas such as enrolment, course syllabus development, and faculty evaluation were appropriately placed within the phases of the project management system. Further, the research shall identify critical reports and generate manageable documents and records to ensure accuracy, consistency and reliable information. The researchers had an in-depth review of the DAP-GSDPM’s mandate, analyze the various documents, and conducted series of focused group discussions. A comprehensive review on flow chart system prior and various models of school management systems were made. Subsequently, the final output of the research is a work instructions manual that will be presented to the Academy’s Quality Management Council and eventually an additional scope for ISO certification. The manual shall include documented forms, iterative flow charts and program Gantt chart that will have a parallel development of automated systems.

Keywords: productivity, quality, learning management system, agency-based graduate school

Procedia PDF Downloads 292
32 An Efficient Process Analysis and Control Method for Tire Mixing Operation

Authors: Hwang Ho Kim, Do Gyun Kim, Jin Young Choi, Sang Chul Park

Abstract:

Since tire production process is very complicated, company-wide management of it is very difficult, necessitating considerable amounts of capital and labors. Thus, productivity should be enhanced and maintained competitive by developing and applying effective production plans. Among major processes for tire manufacturing, consisting of mixing component preparation, building and curing, the mixing process is an essential and important step because the main component of tire, called compound, is formed at this step. Compound as a rubber synthesis with various characteristics plays its own role required for a tire as a finished product. Meanwhile, scheduling tire mixing process is similar to flexible job shop scheduling problem (FJSSP) because various kinds of compounds have their unique orders of operations, and a set of alternative machines can be used to process each operation. In addition, setup time required for different operations may differ due to alteration of additives. In other words, each operation of mixing processes requires different setup time depending on the previous one, and this kind of feature, called sequence dependent setup time (SDST), is a very important issue in traditional scheduling problems such as flexible job shop scheduling problems. However, despite of its importance, there exist few research works dealing with the tire mixing process. Thus, in this paper, we consider the scheduling problem for tire mixing process and suggest an efficient particle swarm optimization (PSO) algorithm to minimize the makespan for completing all the required jobs belonging to the process. Specifically, we design a particle encoding scheme for the considered scheduling problem, including a processing sequence for compounds and machine allocation information for each job operation, and a method for generating a tire mixing schedule from a given particle. At each iteration, the coordination and velocity of particles are updated, and the current solution is compared with new solution. This procedure is repeated until a stopping condition is satisfied. The performance of the proposed algorithm is validated through a numerical experiment by using some small-sized problem instances expressing the tire mixing process. Furthermore, we compare the solution of the proposed algorithm with it obtained by solving a mixed integer linear programming (MILP) model developed in previous research work. As for performance measure, we define an error rate which can evaluate the difference between two solutions. As a result, we show that PSO algorithm proposed in this paper outperforms MILP model with respect to the effectiveness and efficiency. As the direction for future work, we plan to consider scheduling problems in other processes such as building, curing. We can also extend our current work by considering other performance measures such as weighted makespan or processing times affected by aging or learning effects.

Keywords: compound, error rate, flexible job shop scheduling problem, makespan, particle encoding scheme, particle swarm optimization, sequence dependent setup time, tire mixing process

Procedia PDF Downloads 235
31 Linguistic Insights Improve Semantic Technology in Medical Research and Patient Self-Management Contexts

Authors: William Michael Short

Abstract:

Semantic Web’ technologies such as the Unified Medical Language System Metathesaurus, SNOMED-CT, and MeSH have been touted as transformational for the way users access online medical and health information, enabling both the automated analysis of natural-language data and the integration of heterogeneous healthrelated resources distributed across the Internet through the use of standardized terminologies that capture concepts and relationships between concepts that are expressed differently across datasets. However, the approaches that have so far characterized ‘semantic bioinformatics’ have not yet fulfilled the promise of the Semantic Web for medical and health information retrieval applications. This paper argues within the perspective of cognitive linguistics and cognitive anthropology that four features of human meaning-making must be taken into account before the potential of semantic technologies can be realized for this domain. First, many semantic technologies operate exclusively at the level of the word. However, texts convey meanings in ways beyond lexical semantics. For example, transitivity patterns (distributions of active or passive voice) and modality patterns (configurations of modal constituents like may, might, could, would, should) convey experiential and epistemic meanings that are not captured by single words. Language users also naturally associate stretches of text with discrete meanings, so that whole sentences can be ascribed senses similar to the senses of words (so-called ‘discourse topics’). Second, natural language processing systems tend to operate according to the principle of ‘one token, one tag’. For instance, occurrences of the word sound must be disambiguated for part of speech: in context, is sound a noun or a verb or an adjective? In syntactic analysis, deterministic annotation methods may be acceptable. But because natural language utterances are typically characterized by polyvalency and ambiguities of all kinds (including intentional ambiguities), such methods leave the meanings of texts highly impoverished. Third, ontologies tend to be disconnected from everyday language use and so struggle in cases where single concepts are captured through complex lexicalizations that involve profile shifts or other embodied representations. More problematically, concept graphs tend to capture ‘expert’ technical models rather than ‘folk’ models of knowledge and so may not match users’ common-sense intuitions about the organization of concepts in prototypical structures rather than Aristotelian categories. Fourth, and finally, most ontologies do not recognize the pervasively figurative character of human language. However, since the time of Galen the widespread use of metaphor in the linguistic usage of both medical professionals and lay persons has been recognized. In particular, metaphor is a well-documented linguistic tool for communicating experiences of pain. Because semantic medical knowledge-bases are designed to help capture variations within technical vocabularies – rather than the kinds of conventionalized figurative semantics that practitioners as well as patients actually utilize in clinical description and diagnosis – they fail to capture this dimension of linguistic usage. The failure of semantic technologies in these respects degrades the efficiency and efficacy not only of medical research, where information retrieval inefficiencies can lead to direct financial costs to organizations, but also of care provision, especially in contexts of patients’ self-management of complex medical conditions.

Keywords: ambiguity, bioinformatics, language, meaning, metaphor, ontology, semantic web, semantics

Procedia PDF Downloads 99
30 Surviral: An Agent-Based Simulation Framework for Sars-Cov-2 Outcome Prediction

Authors: Sabrina Neururer, Marco Schweitzer, Werner Hackl, Bernhard Tilg, Patrick Raudaschl, Andreas Huber, Bernhard Pfeifer

Abstract:

History and the current outbreak of Covid-19 have shown the deadly potential of infectious diseases. However, infectious diseases also have a serious impact on areas other than health and healthcare, such as the economy or social life. These areas are strongly codependent. Therefore, disease control measures, such as social distancing, quarantines, curfews, or lockdowns, have to be adopted in a very considerate manner. Infectious disease modeling can support policy and decision-makers with adequate information regarding the dynamics of the pandemic and therefore assist in planning and enforcing appropriate measures that will prevent the healthcare system from collapsing. In this work, an agent-based simulation package named “survival” for simulating infectious diseases is presented. A special focus is put on SARS-Cov-2. The presented simulation package was used in Austria to model the SARS-Cov-2 outbreak from the beginning of 2020. Agent-based modeling is a relatively recent modeling approach. Since our world is getting more and more complex, the complexity of the underlying systems is also increasing. The development of tools and frameworks and increasing computational power advance the application of agent-based models. For parametrizing the presented model, different data sources, such as known infections, wastewater virus load, blood donor antibodies, circulating virus variants and the used capacity for hospitalization, as well as the availability of medical materials like ventilators, were integrated with a database system and used. The simulation result of the model was used for predicting the dynamics and the possible outcomes and was used by the health authorities to decide on the measures to be taken in order to control the pandemic situation. The survival package was implemented in the programming language Java and the analytics were performed with R Studio. During the first run in March 2020, the simulation showed that without measures other than individual personal behavior and appropriate medication, the death toll would have been about 27 million people worldwide within the first year. The model predicted the hospitalization rates (standard and intensive care) for Tyrol and South Tyrol with an accuracy of about 1.5% average error. They were calculated to provide 10-days forecasts. The state government and the hospitals were provided with the 10-days models to support their decision-making. This ensured that standard care was maintained for as long as possible without restrictions. Furthermore, various measures were estimated and thereafter enforced. Among other things, communities were quarantined based on the calculations while, in accordance with the calculations, the curfews for the entire population were reduced. With this framework, which is used in the national crisis team of the Austrian province of Tyrol, a very accurate model could be created on the federal state level as well as on the district and municipal level, which was able to provide decision-makers with a solid information basis. This framework can be transferred to various infectious diseases and thus can be used as a basis for future monitoring.

Keywords: modelling, simulation, agent-based, SARS-Cov-2, COVID-19

Procedia PDF Downloads 147
29 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines

Authors: Kamyar Tolouei, Ehsan Moosavi

Abstract:

In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.

Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization

Procedia PDF Downloads 69
28 Numerical Solution of Momentum Equations Using Finite Difference Method for Newtonian Flows in Two-Dimensional Cartesian Coordinate System

Authors: Ali Ateş, Ansar B. Mwimbo, Ali H. Abdulkarim

Abstract:

General transport equation has a wide range of application in Fluid Mechanics and Heat Transfer problems. In this equation, generally when φ variable which represents a flow property is used to represent fluid velocity component, general transport equation turns into momentum equations or with its well known name Navier-Stokes equations. In these non-linear differential equations instead of seeking for analytic solutions, preferring numerical solutions is a more frequently used procedure. Finite difference method is a commonly used numerical solution method. In these equations using velocity and pressure gradients instead of stress tensors decreases the number of unknowns. Also, continuity equation, by integrating the system, number of equations is obtained as number of unknowns. In this situation, velocity and pressure components emerge as two important parameters. In the solution of differential equation system, velocities and pressures must be solved together. However, in the considered grid system, when pressure and velocity values are jointly solved for the same nodal points some problems confront us. To overcome this problem, using staggered grid system is a referred solution method. For the computerized solutions of the staggered grid system various algorithms were developed. From these, two most commonly used are SIMPLE and SIMPLER algorithms. In this study Navier-Stokes equations were numerically solved for Newtonian flow, whose mass or gravitational forces were neglected, for incompressible and laminar fluid, as a hydro dynamically fully developed region and in two dimensional cartesian coordinate system. Finite difference method was chosen as the solution method. This is a parametric study in which varying values of velocity components, pressure and Reynolds numbers were used. Differential equations were discritized using central difference and hybrid scheme. The discritized equation system was solved by Gauss-Siedel iteration method. SIMPLE and SIMPLER were used as solution algorithms. The obtained results, were compared for central difference and hybrid as discritization methods. Also, as solution algorithm, SIMPLE algorithm and SIMPLER algorithm were compared to each other. As a result, it was observed that hybrid discritization method gave better results over a larger area. Furthermore, as computer solution algorithm, besides some disadvantages, it can be said that SIMPLER algorithm is more practical and gave result in short time. For this study, a code was developed in DELPHI programming language. The values obtained in a computer program were converted into graphs and discussed. During sketching, the quality of the graph was increased by adding intermediate values to the obtained result values using Lagrange interpolation formula. For the solution of the system, number of grid and node was found as an estimated. At the same time, to indicate that the obtained results are satisfactory enough, by doing independent analysis from the grid (GCI analysis) for coarse, medium and fine grid system solution domain was obtained. It was observed that when graphs and program outputs were compared with similar studies highly satisfactory results were achieved.

Keywords: finite difference method, GCI analysis, numerical solution of the Navier-Stokes equations, SIMPLE and SIMPLER algoritms

Procedia PDF Downloads 362