Search results for: asphalt pavement construction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3969

Search results for: asphalt pavement construction

3699 Labor Productivity in the Construction Industry: Factors Influencing the Spanish Construction Labor Productivity

Authors: G. Robles, A. Stifi, José L. Ponz-Tienda, S. Gentes

Abstract:

This research paper aims to identify, analyze and rank factors affecting labor productivity in Spain with respect to their relative importance. Using a selected set of 35 factors, a structured questionnaire survey was utilized as the method to collect data from companies. Target population is comprised by a random representative sample of practitioners related with the Spanish construction industry. Findings reveal the top five ranked factors are as follows: (1) shortage or late supply of materials; (2) clarity of the drawings and project documents; (3) clear and daily task assignment; (4) tools or equipment shortages; (5) level of skill and experience of laborers. Additionally, this research also pretends to provide simple and comprehensive recommendations so that they could be implemented by construction managers for an effective management of construction labor forces.

Keywords: construction management, factors, improvement, labor productivity, lean construction

Procedia PDF Downloads 265
3698 LCA and Multi-Criteria Analysis of Fly Ash Concrete Pavements

Authors: Marcela Ondova, Adriana Estokova

Abstract:

Rapid industrialization results in increased use of natural resources bring along serious ecological and environmental imbalance due to the dumping of industrial wastes. Principles of sustainable construction have to be accepted with regard to the consumption of natural resources and the production of harmful emissions. Cement is a great importance raw material in the building industry and today is its large amount used in the construction of concrete pavements. Concerning raw materials cost and producing CO2 emission the replacing of cement in concrete mixtures with more sustainable materials is necessary. To reduce this environmental impact people all over the world are looking for a solution. Over a period of last ten years, the image of fly ash has completely been changed from a polluting waste to resource material and it can solve the major problems of cement use. Fly ash concretes are proposed as a potential approach for achieving substantial reductions in cement. It is known that it improves the workability of concrete, extends the life cycle of concrete roads, and reduces energy use and greenhouse gas as well as amount of coal combustion products that must be disposed in landfills. Life cycle assessment also proved that a concrete pavement with fly ash cement replacement is considerably more environmentally friendly compared to standard concrete roads. In addition, fly ash is cheap raw material, and the costs saving are guaranteed. The strength properties, resistance to a frost or de-icing salts, which are important characteristics in the construction of concrete pavements, have reached the required standards as well. In terms of human health it can´t be stated that a concrete cover with fly ash could be dangerous compared with a cover without fly ash. Final Multi-criteria analysis also pointed that a concrete with fly ash is a clearly proper solution.

Keywords: life cycle assessment, fly ash, waste, concrete pavements

Procedia PDF Downloads 385
3697 Exploring the Relationship between Building Construction Activity and Road-Related Expenditure in Victoria

Authors: Md. Aftabuzzaman, Md. Kamruzzaman

Abstract:

Road-related expenditure and building construction activity are two significant drivers of the Victorian economy. This paper investigates the relationship between building construction activity and road-related expenditure. Data for construction activities were collected from Victorian Building Authority, and road-related expenditure data were explored by the Bureau of Infrastructure and Transport Research Economics. The trend between these two sectors was compared. The analysis found a strong relationship between road-related expenditure and the volume of construction activity, i.e., the more construction activities, the greater the requirement of road-related expenditure, or vice-versa. The road-related expenditure has a two-year lag period, suggesting that the road sector requires two years to respond to the growth in the building sector.

Keywords: building construction activity, infrastructure, road expenditure, Victorian Building Authority

Procedia PDF Downloads 100
3696 Life Cycle Carbon Dioxide Emissions from the Construction Phase of Highway Sector in China

Authors: Yuanyuan Liu, Yuanqing Wang, Di Li

Abstract:

Carbon dioxide (CO2) emissions mitigation from road construction activities is one of the potential pathways to deal with climate change due to its higher use of materials, machinery energy consumption, and high quantity of vehicle and equipment fuels for transportation and on-site construction activities. Aiming to assess the environmental impact of the road infrastructure construction activities and to identify hotspots of emissions sources, this study developed a life-cycle CO2 emissions assessment framework covering three stages of material production, to-site and on-site transportation under the guidance of the principle of LCA ISO14040. Then streamlined inventory analysis on sub-processes of each stage was conducted based on the budget files from cases of highway projects in China. The calculation results were normalized into functional unit represented as ton per km per lane. Then a comparison between the amount of emissions from each stage, and sub-process was made to identify the major contributor in the whole highway lifecycle. In addition, the calculating results were used to be compared with results in other countries for understanding the level of CO2 emissions associated with Chinese road infrastructure in the world. The results showed that materials production stage produces the most of the CO2 emissions (for more than 80%), and the production of cement and steel accounts for large quantities of carbon emissions. Life cycle CO2 emissions of fuel and electric energy associated with to-site and on-site transportation vehicle and equipment are a minor component of total life cycle CO2 emissions from highway project construction activities. Bridges and tunnels are dominant large carbon contributor compared to the road segments. The life cycle CO2 emissions of road segment in highway project in China are slightly higher than the estimation results of highways in European countries and USA, about 1500 ton per km per lane. In particularly, the life cycle CO2 emissions of road pavement in majority cities all over the world are about 500 ton per km per lane. However, there is obvious difference between the cities when the estimation on life cycle CO2 emissions of highway projects included bridge and tunnel. The findings of the study could offer decision makers a more comprehensive reference to understand the contribution of road infrastructure to climate change, especially understand the contribution from road infrastructure construction activities in China. In addition, the identified hotspots of emissions sources provide the insights of how to reduce road carbon emissions for development of sustainable transportation.

Keywords: carbon dioxide emissions, construction activities, highway, life cycle assessment

Procedia PDF Downloads 235
3695 Conflict Causes within Construction Projects; Conflict Interaction across Project Phases

Authors: Abdullah Mohammed Alshehri

Abstract:

The projects in the construction industry have significantly increased, given its contribution to the overall Gross Domestic Product (GDP) of the countries. Reflecting upon the complex nature and involvement of various agents, the study aims to analyze the conflicts cause within construction projects. Therefore, the study strived to come out with understanding the levels of conflict interaction across project phases. However, this conducted by investigating the association between antecedents and apparent conflicts inherent in. The study used a qualitative approach for collecting the data through a quantitative, semi-structured method. Formation of a questionnaire survey has been conducted for over 30 respondents. However, the survey came out with the identification of 25 conflict cause categories, which can take place in different construction project phases, including pre-design phase, pre-construction phase, construction phase, commissioning, and completion phase. For example, conflicts associated with inconsistencies or discrepancies within or between project documents, which took place at tendering time in the pre-construction phase were relatable with the selection of material specifications that should be supplied or used in the construction projects at the construction phase. Its analysis can provide comprehensive understanding, trace the root of the problem, which offers a roadmap to deepen the understanding of the conflict conditions and ‘course of action’ necessary for project management strategy actions toward avoiding or minimizing conflict causes at project life.

Keywords: construction, conflict causes, levels, interaction, phases

Procedia PDF Downloads 147
3694 Building a Lean Construction Body of Knowledge

Authors: Jyoti Singh, Ahmed Stifi, Sascha Gentes

Abstract:

The process of construction significantly contributes to high level of risks, complexity and uncertainties leading to cost and time overrun, customer dissatisfaction etc. lean construction is important as it is a comprehensive system of tools and concepts focusing on moving closer to customer satisfaction by understanding the process, identifying the waste and eliminating it. The proposed work includes identification of knowledge areas from lean perspective, lean tools/concepts used in lean construction and establishing a relationship matrix between knowledge areas and lean tools/concepts, thus developing and building up a lean construction body of knowledge (LCBOK), i.e. a guide to lean construction, aiming to provide guidelines to manage individual projects and also helping construction industry to minimise waste and maximize value to the customer. In this study, we identified 8 knowledge areas and 62 lean tools/concepts from lean perspective and also one tool can help to manage two or more knowledge areas.

Keywords: knowledge areas, lean body matrix, lean construction, lean tools

Procedia PDF Downloads 406
3693 Past, Present, and Future of Robotics Technology in Construction Industry (Literature Review)

Authors: Samira Haghbin, Behnam Daryayelaal, Zeinab Amiri

Abstract:

As a result of rapid progress of technology in various industries, the only way to survive in a competitive market of business is to update one's situation along with the said developments. During recent decades, Robotics and automation of the construction operation has emerged as one of the important technologies grabbing the attention of various industries and specially the construction industry. Because of the coming labor shortage of the aging society in the near future, robots will be used in construction fields more than ever. By predicting the condition of Robotics in world's future construction industry, we can make necessary preparations to face with needs imposed by the time and stay ahead. This article takes a library study approach and presents a literature review of existing studies with an aim to investigate the use of robotics in past, present and future of construction industry and make predictions on its' growth and change process. Therefore, to make familiar with this kind of technology and its' requirements in the construction industry, the status of Robotics in construction industry of different countries of the world has been studied and necessary context for its' future progress is expressed. It is hoped that identifying needs and required contexts will facilitate further development of advanced technologies such as robotics industry and lead to more preparation for future.

Keywords: future of robotics, construction industry, construction automation, trends of automation

Procedia PDF Downloads 358
3692 Hidden Critical Risk in the Construction Industry’s Technological Adoption: Cybercrime

Authors: Nuruddeen Usman, Usman Mohammed Gidado, Muhammad Ahmad Ibrahim

Abstract:

Construction industry is one of the sectors that are eyeing adoption of ICT for its development due to the advancement in technology. Though, many manufacturing sectors had been using it, but construction industry was left behind, especially in the developing nation like Nigeria. On account of that, the objective of this study is to conceptually and quantitatively synthesise whether the slow adoption of ICT by the construction industries can be attributable to cybercrime threats. The result of the investigation found that, the risk of cybercrime, and lack of adequate cyber security policies that can enforce and punish defaulters are among the things that hinder ICT adoption of the Nigerian construction industries. Therefore, there is need for the nations to educate their citizens on cybercrime risk, and to establish cybercrime police units that can be monitoring and controlling all online communications.

Keywords: construction industry, cybercrime, information and communication technology adoption, risk

Procedia PDF Downloads 473
3691 Managing Construction Wastes in Nigeria for Sustainable Development

Authors: Ezekiel Ejiofor Nnadi

Abstract:

Nigeria construction industry is known for its active construction activities. This has earmarked the industry to be the key to economic growth of the nation. It has largest employer of labour and gives sustenance to other industries like manufacturing industry. While this is a sign of growth and prosperity; the waste generated by the industry has always been a problem and a serious concern. It results in wastage of economic gain and has resultant health effect on the populace apart from injury being sustained on sites. This work provides a platform to learn more about construction waste, its management strategy and how to reduce waste production in Nigeria construction industry. Construction sites, waste management authority and public health institutions in Lagos as the centre of most construction activities in Nigeria were selected, and a set of questionnaire was administered to using the systematic sampling technique. Descriptive statistics and relative importance index (RII) technique were employed for the analysis of the data gathered. The findings of the analysis show that excessive wastes reduce contractors’ profit margin and also that some construction wastes contain hazardous and toxic elements such as lead, asbestos or radioactive materials which required proper handling and effective disposal. The conclusion was drawn that the check on waste on construction sites starts with the designers to the contractors who execute on site.

Keywords: construction cost, construction industry, economic growth, materials wastes

Procedia PDF Downloads 245
3690 Flooring Solution for Sports Courts Such as Ecological Mortar

Authors: Helida T. G. Soares, Antonio J. P. da Silva

Abstract:

As the society develops, the accumulation of solid waste in landfills, in the environment, and the depletion of the raw material increases. In this way, there is relevance in researching the interaction between the environmental management and civil construction; therefore, this project has for scope the analysis and the effects of the rubber microparticles use as a small aggregate added to the sand, producing an ecological mortar for the pavement constitution, from the mixture of a paste, composed of Portland cement and water, and its application in sports courts. It was used the detailed reutilization of micro rubber in its most primordial, micro form, highlighting the powder pattern as the additional balancing of the mortar, analyzing the evolution of the mechanical properties. Percentages of 5, 10 and 15% rubber were used based on the total mass of the trace, where there is no removal of aggregates or cement, only increment of the rubber. The results obtained through the mechanical test of simple compression showed that the rubber, added to the mortar, presents low mechanical resistance compared to the reference trait, the study of this subject is vast of possibilities to be explored. In this sense, we seek sustainability and innovation from the use of an ecological material, thus adding value and reducing the impact of this material on the environment. The manufacturing process takes place from the direct mixing of cement paste and rubber, whether manually, mechanically or industrially. It results in the production of a low-cost mortar, through the use of recycled rubber, with high efficiency in general properties, such as compressive strength and friction coefficient, allowing its use for the construction of floors for sports courts with high durability. Thus, it is possible to reuse this micro rubber residue in other applications in simple concrete artifacts.

Keywords: civil construction, ecological mortar, high efficiency, rubber

Procedia PDF Downloads 116
3689 An Electromechanical Device to Use in Road Pavements to Convert Vehicles Mechanical Energy into Electrical Energy

Authors: Francisco Duarte, Adelino Ferreira, Paulo Fael

Abstract:

With the growing need for alternative energy sources, research into energy harvesting technologies has increased considerably in recent years. The particular case of energy harvesting on road pavements is a very recent area of research, with different technologies having been developed in recent years. However, none of them have presented high conversion efficiencies nor technical or economic viability. This paper deals with the development of a mechanical system to implement on a road pavement energy harvesting electromechanical device, to transmit energy from the device surface to an electrical generator. The main goal is to quantify the energy harvesting, transmission and conversion efficiency of the proposed system and compare it with existing systems. Conclusions about the system’s efficiency are presented.

Keywords: road pavement, energy harvesting, energy conversion, system modelling

Procedia PDF Downloads 298
3688 Hydraulic Conductivity Prediction of Cement Stabilized Pavement Base Incorporating Recycled Plastics and Recycled Aggregates

Authors: Md. Shams Razi Shopnil, Tanvir Imtiaz, Sabrina Mahjabin, Md. Sahadat Hossain

Abstract:

Saturated hydraulic conductivity is one of the most significant attributes of pavement base course. Determination of hydraulic conductivity is a routine procedure for regular aggregate base courses. However, in many cases, a cement-stabilized base course is used with compromised drainage ability. Traditional hydraulic conductivity testing procedure is a readily available option which leads to two consequential drawbacks, i.e., the time required for the specimen to be saturated and extruding the sample after completion of the laboratory test. To overcome these complications, this study aims at formulating an empirical approach to predicting hydraulic conductivity based on Unconfined Compressive Strength test results. To do so, this study comprises two separate experiments (Constant Head Permeability test and Unconfined Compressive Strength test) conducted concurrently on a specimen having the same physical credentials. Data obtained from the two experiments were then used to devise a correlation between hydraulic conductivity and unconfined compressive strength. This correlation in the form of a polynomial equation helps to predict the hydraulic conductivity of cement-treated pavement base course, bypassing the cumbrous process of traditional permeability and less commonly used horizontal permeability tests. The correlation was further corroborated by a different set of data, and it has been found that the derived polynomial equation is deemed to be a viable tool to predict hydraulic conductivity.

Keywords: hydraulic conductivity, unconfined compressive strength, recycled plastics, recycled concrete aggregates

Procedia PDF Downloads 61
3687 Innovation in Lean Thinking to Achieve Rapid Construction

Authors: Muhamad Azani Yahya, Vikneswaran Munikanan, Mohammed Alias Yusof

Abstract:

Lean thinking holds the potential for improving the construction sector, and therefore, it is a concept that should be adopted by construction sector players and academicians in the real industry. Bridging from that, a learning process for construction sector players regarding this matter should be the agenda in gaining the knowledge in preparation for their career. Lean principles offer opportunities for reducing lead times, eliminating non-value adding activities, reducing variability, and are facilitated by methods such as pull scheduling, simplified operations and buffer reduction. Thus, the drive for rapid construction, which is a systematic approach in enhancing efficiency to deliver a project using time reduction, while lean is the continuous process of eliminating waste, meeting or exceeding all customer requirements, focusing on the entire value stream and pursuing perfection in the execution of a constructed project. The methodology presented is shown to be valid through literature, interviews and questionnaire. The results show that the majority of construction sector players unfamiliar with lean thinking and they agreed that it can improve the construction process flow. With this background knowledge established and identified, best practices and recommended action are drawn.

Keywords: construction improvement, rapid construction, time reduction, lean construction

Procedia PDF Downloads 341
3686 Lean Thinking and E-Commerce as New Opportunities to Improve Partnership in Supply Chain of Construction Industries

Authors: Kaustav Kundu, Alberto Portioli Staudacher

Abstract:

Construction industry plays a vital role in the economy of the world. But due to high uncertainty and variability in the industry, its performance is not as efficient in terms of quality, lead times, productivity and costs as of other industries. Moreover, there are continuous conflicts among the different actors in the construction supply chains in terms of profit sharing. Previous studies suggested partnership as an important approach to promote cooperation among the different actors in the construction supply chains and thereby it improves the overall performance. Construction practitioners tried to focus on partnership which can enhance the performance of construction supply chains but they are not fully aware of different approaches and techniques for improving partnership. In this research, a systematic review on partnership in relation to construction supply chains is carried out to understand different elements influencing the partnership. The research development of this domain is analyzed by reviewing selected articles published from 1996 to 2015. Based on the papers, three major elements influencing partnership in construction supply chains are identified: “Lean approach”, “Relationship building” and “E-commerce applications”. This study analyses the contributions in the areas within each element and provides suggestions for future developments of partnership in construction supply chains.

Keywords: partnership, construction, lean, SCM, supply chain management

Procedia PDF Downloads 405
3685 Feature of Employment Injuries and Maintenance Works of Construction Machinery

Authors: Naoko Kanazawa, Tran Thi Bich Nguyet, Yoshiyuki Higuchi, Hideki Hamada

Abstract:

Construction machines’ condition is maintained with the regularly inspections, preventive maintenance and repairs by skillful and qualified engineers. If an accident occurs, there will be enormous influence such as human injuries, delays in the term of construction. In this paper, we revealed the characteristics such as inspection, maintenance and repair works for construction machines, and we also clarified the trends of employment injuries based on actual data by simple and cross tabulation methods, and investigated the relation with their works, injured body parts and accident types.

Keywords: construction machines, employment injuries, maintenance and repair, safety and health

Procedia PDF Downloads 270
3684 Modern Methods of Technology and Organization of Production of Construction Works during the Implementation of Construction 3D Printers

Authors: Azizakhanim Maharramli

Abstract:

The gradual transition from entrenched traditional technology and organization of construction production to innovative additive construction technology inevitably meets technological, technical, organizational, labour, and, finally, social difficulties. Therefore, the chosen nodal method will lead to the elimination of the above difficulties, combining some of the usual methods of construction and the myth in world practice that the labour force is subjected to a strong stream of reduction. The nodal method of additive technology will create favourable conditions for the optimal degree of distribution of labour across facilities due to the consistent performance of homogeneous work and the introduction of additive technology and traditional technology into construction production.

Keywords: parallel method, sequential method, stream method, combined method, nodal method

Procedia PDF Downloads 52
3683 Analysis of Delay Causes in Construction Projects in Saudi Arabia

Authors: Ibrahim Mahamid, A. Al-Ghonamy, M. Aichouni

Abstract:

This study aims at identifying the risk matrix for delay causes in construction projects in Saudi Arabia from consultants’ viewpoint. A questionnaire survey was undertaken of 51 consultants working on construction projects in the Northern Province of Saudi Arabia. 35 delay causes were identified through a literature review. The study concluded that the top delay causes in construction projects in Saudi Arabia from consultants’ perspective are: bid award for lowest price, changes in material types and specifications during construction, contract management, duration of contract period, fluctuation of prices of materials, frequent changes in design, improper planning, inflationary pressure, lack of adequate manpower, long period of design and time of implementation, payments delay, poor labor productivity, and rework.

Keywords: delays, construction, consultants, contributors, risk map

Procedia PDF Downloads 504
3682 Deterioration Prediction of Pavement Load Bearing Capacity from FWD Data

Authors: Kotaro Sasai, Daijiro Mizutani, Kiyoyuki Kaito

Abstract:

Expressways in Japan have been built in an accelerating manner since the 1960s with the aid of rapid economic growth. About 40 percent in length of expressways in Japan is now 30 years and older and has become superannuated. Time-related deterioration has therefore reached to a degree that administrators, from a standpoint of operation and maintenance, are forced to take prompt measures on a large scale aiming at repairing inner damage deep in pavements. These measures have already been performed for bridge management in Japan and are also expected to be embodied for pavement management. Thus, planning methods for the measures are increasingly demanded. Deterioration of layers around road surface such as surface course and binder course is brought about at the early stages of whole pavement deterioration process, around 10 to 30 years after construction. These layers have been repaired primarily because inner damage usually becomes significant after outer damage, and because surveys for measuring inner damage such as Falling Weight Deflectometer (FWD) survey and open-cut survey are costly and time-consuming process, which has made it difficult for administrators to focus on inner damage as much as they have been supposed to. As expressways today have serious time-related deterioration within them deriving from the long time span since they started to be used, it is obvious the idea of repairing layers deep in pavements such as base course and subgrade must be taken into consideration when planning maintenance on a large scale. This sort of maintenance requires precisely predicting degrees of deterioration as well as grasping the present situations of pavements. Methods for predicting deterioration are determined to be either mechanical or statistical. While few mechanical models have been presented, as far as the authors know of, previous studies have presented statistical methods for predicting deterioration in pavements. One describes deterioration process by estimating Markov deterioration hazard model, while another study illustrates it by estimating Proportional deterioration hazard model. Both of the studies analyze deflection data obtained from FWD surveys and present statistical methods for predicting deterioration process of layers around road surface. However, layers of base course and subgrade remain unanalyzed. In this study, data collected from FWD surveys are analyzed to predict deterioration process of layers deep in pavements in addition to surface layers by a means of estimating a deterioration hazard model using continuous indexes. This model can prevent the loss of information of data when setting rating categories in Markov deterioration hazard model when evaluating degrees of deterioration in roadbeds and subgrades. As a result of portraying continuous indexes, the model can predict deterioration in each layer of pavements and evaluate it quantitatively. Additionally, as the model can also depict probability distribution of the indexes at an arbitrary point and establish a risk control level arbitrarily, it is expected that this study will provide knowledge like life cycle cost and informative content during decision making process referring to where to do maintenance on as well as when.

Keywords: deterioration hazard model, falling weight deflectometer, inner damage, load bearing capacity, pavement

Procedia PDF Downloads 355
3681 High Purity Lignin for Asphalt Applications: Using the Dawn Technology™ Wood Fractionation Process

Authors: Ed de Jong

Abstract:

Avantium is a leading technology development company and a frontrunner in renewable chemistry. Avantium develops disruptive technologies that enable the production of sustainable high value products from renewable materials and actively seek out collaborations and partnerships with like-minded companies and academic institutions globally, to speed up introductions of chemical innovations in the marketplace. In addition, Avantium helps companies to accelerate their catalysis R&D to improve efficiencies and deliver increased sustainability, growth, and profits, by providing proprietary systems and services to this regard. Many chemical building blocks and materials can be produced from biomass, nowadays mainly from 1st generation based carbohydrates, but potential for competition with the human food chain leads brand-owners to look for strategies to transition from 1st to 2nd generation feedstock. The use of non-edible lignocellulosic feedstock is an equally attractive source to produce chemical intermediates and an important part of the solution addressing these global issues (Paris targets). Avantium’s Dawn Technology™ separates the glucose, mixed sugars, and lignin available in non-food agricultural and forestry residues such as wood chips, wheat straw, bagasse, empty fruit bunches or corn stover. The resulting very pure lignin is dense in energy and can be used for energy generation. However, such a material might preferably be deployed in higher added value applications. Bitumen, which is fossil based, are mostly used for paving applications. Traditional hot mix asphalt emits large quantities of the GHG’s CO₂, CH₄, and N₂O, which is unfavorable for obvious environmental reasons. Another challenge for the bitumen industry is that the petrochemical industry is becoming more and more efficient in breaking down higher chain hydrocarbons to lower chain hydrocarbons with higher added value than bitumen. This has a negative effect on the availability of bitumen. The asphalt market, as well as governments, are looking for alternatives with higher sustainability in terms of GHG emission. The usage of alternative sustainable binders, which can (partly) replace the bitumen, contributes to reduce GHG emissions and at the same time broadens the availability of binders. As lignin is a major component (around 25-30%) of lignocellulosic material, which includes terrestrial plants (e.g., trees, bushes, and grass) and agricultural residues (e.g., empty fruit bunches, corn stover, sugarcane bagasse, straw, etc.), it is globally highly available. The chemical structure shows resemblance with the structure of bitumen and could, therefore, be used as an alternative for bitumen in applications like roofing or asphalt. Applications such as the use of lignin in asphalt need both fundamental research as well as practical proof under relevant use conditions. From a fundamental point of view, rheological aspects, as well as mixing, are key criteria. From a practical point of view, behavior in real road conditions is key (how easy can the asphalt be prepared, how easy can it be applied on the road, what is the durability, etc.). The paper will discuss the fundamentals of the use of lignin as bitumen replacement as well as the status of the different demonstration projects in Europe using lignin as a partial bitumen replacement in asphalts and will especially present the results of using Dawn Technology™ lignin as partial replacement of bitumen.

Keywords: biorefinery, wood fractionation, lignin, asphalt, bitumen, sustainability

Procedia PDF Downloads 127
3680 The Sustainability of Human Resource Planning for Construction Projects

Authors: Adegbenga Ashiru, Adebimpe L. Ashiru

Abstract:

The construction industry is considered to work by diversifying personnel. Hence managing human resource is an issue considered to be a highly challenging task. Nonetheless, HR planning for the construction project is a very critical aspect of managing human resource within an expanding nature of construction industry, and there are rising concerns over the failure of construction planning to achieve its goals in spite of the substantial resources allocated to it and as a result of different planning strategies. To justify the above statement, this research was carried out to examine the sustainability of HR planning for construction project. Based on the researcher’s experience, a quantitative approach was adopted that provided a broader understanding of the research and was analysed using descriptive statistics and inferential statistics. The Statistical Package for the Social Sciences (SPSS) was used to obtain the descriptive and inferential statistical analysis. However, research findings showed that literature sources agreed with varying challenges of HR planning on construction projects which were justified by empirical findings. Also, the paper identified four major factors and the key consideration for Project HR Planning (Organisation’s structure with right individuals at right positions and evaluation current resources) will lead to the efficient utilisation implementation of new HR Planning technique and tools for a construction project. Essentially the main reoccurring theme identified was that management of the construction organisations needs to look into the essential factors needed to be considered at the strategic level. Furthermore, leaders leading a construction project team should consider those essential factors needed at the operational level to clarify the numerous functions of HRM in the construction organisations and avoid inconsistencies among several practices on construction projects. The Sustainability of HR planning for construction project policy was indicated and recommendations were made for further future research.

Keywords: construction industry, HRM planning in construction, SHRM in construction, HR planning in construction

Procedia PDF Downloads 319
3679 Construction Information Visualization System Using nD CAD Model

Authors: Hyeon-seoung Kim, Sang-mi Park, Sun-ju Han, Leen-seok Kang

Abstract:

The visualization technology of construction information using 3D and nD modeling can satisfy the visualization needs of each construction project participant. The nD CAD system is a tool that the construction information, such as construction schedule, cost and resource utilization, are simulated by 4D, 5D and 6D object formats based on 3D object. This study developed a methodology and simulation engine for nD CAD system for construction project management. It has improved functions such as built-in schedule generation, cost simulation of changed budget and built-in resource allocation comparing with the current systems. To develop an integrated nD CAD system, this study attempts an integrated method to link 5D and 6D objects based on 4D object.

Keywords: building information modeling, visual simulation, 3D object, nD CAD augmented reality

Procedia PDF Downloads 275
3678 Recycling Construction Waste Materials to Reduce the Environmental Pollutants

Authors: Mehrdad Abkenari, Alireza Rezaei, Naghmeh Pournayeb

Abstract:

There have recently been many studies and investments in developed and developing countries regarding the possibility of recycling construction waste, which are still ongoing. Since the term 'construction waste' covers a vast spectrum of materials in constructing buildings, roads and etc., many investigations are required to measure their technical performance in use as well as their time and place of use. Concrete is among the major and fundamental materials used in current construction industry. Along with the rise of population in developing countries, it is desperately required to meet the people's primary need in construction industry and on the other hand, dispose existing wastes for reducing the amount of environmental pollutants. Restrictions of natural resources and environmental pollution are the most important problems encountered by civil engineers. Reusing construction waste is an important and economic approach that not only assists the preservation of environment but also, provides us with primary raw materials. In line with consistent municipal development in disposal and reuse of construction waste, several approaches including, management of construction waste and materials, materials recycling and innovation and new inventions in materials have been predicted. This article has accordingly attempted to study the activities related to recycling of construction wastes and then, stated the economic, quantitative, qualitative and environmental results obtained.

Keywords: civil engineering, environment, recycling, construction waste

Procedia PDF Downloads 271
3677 BIM-based Construction Noise Management Approach With a Focus on Inner-City Construction

Authors: Nasim Babazadeh

Abstract:

Growing demand for a quieter dwelling environment has turned the attention of construction companies to reducing the propagated noise of their project. In inner-city constructions, close distance between the construction site and surrounding buildings lessens the efficiency of passive noise control methods. Dwellers of the nearby areas may file complaints and lawsuits against the construction companies due to the emitted construction noise, thereby leading to the interruption of processes, compensation costs, or even suspension of the project. Therefore, construction noise should be predicted along with the project schedule. The advantage of managing the noise in the pre-construction phase is two-fold. Firstly, changes in the time plan and construction methods can be applied more flexibly. Thus, the costs related to rescheduling can be avoided. Secondly, noise-related legal problems are expected to be reduced. To implement noise mapping methods for the mentioned prediction, the required detailed information (such as the location of the noisy process, duration of the noisy work) can be exported from the 4D BIM model. The results obtained from the noise maps would be used to help the planners to define different work scenarios. The proposed approach has been applied for the foundation and earthwork of a site located in a residential area, and the obtained results are discussed.

Keywords: building information modeling, construction noise management, noise mapping, 4D BIM

Procedia PDF Downloads 140
3676 A Review: Recycled Materials Used in Construction

Authors: Oghenerukome Akponovo, Lynda I. Onyebuchukwu

Abstract:

Construction waste, along with that of many other industries, contributes significantly to the world's annual solid waste totals. Most of these materials, such as ash from rice hulls, slags, cement kiln dust, tire ash, plastic waste (PW), and silica fumes, end up in landfills or waterways. Some of them might even end up polluting the air from high in the atmosphere. It's sustainable, cheap, and environmentally friendly to recycle these items into new building supplies. When constructing a "Green" structure, the materials employed have the potential to either exacerbate environmental imbalance or maintain a stable ecosystem. The purpose of this research is to take stock of what is already known about recycling's potential in the construction industry and to identify its deficiencies. Therefore, this study systematically reviews the wide range of recycled materials that go into building construction. Recognizing that the construction industry's use of recycled materials has an influence on the environment and that investigating these materials may have a substantial economic impact if they were discovered

Keywords: building, construction, recycled materials, waste management

Procedia PDF Downloads 72
3675 Growth of Public Listed Construction Companies in Malaysia

Authors: M. C. Theong, F. L. Ang, G. J. Muga

Abstract:

Growth of firms is influenced by environmental changes such as the global and national economy. On the other hand, it indicates the economic situation of a country. Therefore, it is imperative for firms to be sensitive to changes and to stay competitive and remain compatible with the environment. The Malaysian construction industry is prone to environmental changes due to its complexity. In order to survive in the construction industry, focus on the development of the firms themselves to achieve long term their long term goals is vital besides maximizing profits. The objective of this paper is to measure growth of the public listed construction companies in Malaysia and to investigate the development of the companies with highest, moderate and lowest growth. Growth is measured based on the companies' sales between year 2008 and 2012 collected via secondary data collection method. Findings show that the highest average growth created is 235.20 % while the lowest average growth is -22.75%. The construction companies remained active in the construction industry by implementing different sets of strategies and involving in several types of construction projects.

Keywords: growth, Malaysian construction industry, public listed companies, sales

Procedia PDF Downloads 345
3674 A Study of Carbon Emissions during Building Construction

Authors: Jonggeon Lee, Sungho Tae, Sungjoon Suk, Keunhyeok Yang, George Ford, Michael E. Smith, Omidreza Shoghli

Abstract:

In recent years, research to reduce carbon emissions through quantitative assessment of building life cycle carbon emissions has been performed as it relates to the construction industry. However, most research efforts related to building carbon emissions assessment have been focused on evaluation during the operational phase of a building’s life span. Few comprehensive studies of the carbon emissions during a building’s construction phase have been performed. The purpose of this study is to propose an assessment method that quantitatively evaluates the carbon emissions of buildings during the construction phase. The study analysed the amount of carbon emissions produced by 17 construction trades, and selected four construction trades that result in high levels of carbon emissions: reinforced concrete work; sheathing work; foundation work; and form work. Building materials, and construction and transport equipment used for the selected construction trades were identified, and carbon emissions produced by the identified materials and equipment were calculated for these four construction trades. The energy consumption of construction and transport equipment was calculated by analysing fuel efficiency and equipment productivity rates. The combination of the expected levels of carbon emissions associated with the utilization of building materials and construction equipment provides means for estimating the quantity of carbon emissions related to the construction phase of a building’s life cycle. The proposed carbon emissions assessment method was validated by case studies.

Keywords: building construction phase, carbon emissions assessment, building life cycle

Procedia PDF Downloads 716
3673 Comparative Life Cycle Analysis of Selected Modular Timber Construction and Assembly Typologies

Authors: Benjamin Goldsmith, Felix Heisel

Abstract:

The building industry must reduce its emissions in order to meet 2030 neutrality targets, and modular and/or offsite construction is seen as an alternative to conventional construction methods which could help achieve this goal. Modular construction has previously been shown to be less wasteful and has a lower global warming potential (GWP). While many studies have been conducted investigating the life cycle impacts of modular and conventional construction, few studies have compared different types of modular assembly and construction in order to determine which offer the greatest environmental benefits over their whole life cycle. This study seeks to investigate three different modular construction types -infill frame, core, and podium- in order to determine environmental impacts such as GWP as well as circularity indicators. The study will focus on the emissions of the production, construction, and end-of-life phases. The circularity of the various approaches will be taken into consideration in order to acknowledge the potential benefits of the ability to reuse and/or reclaim materials, products, and assemblies. The study will conduct hypothetical case studies for the three different modular construction types, and in doing so, control the parameters of location, climate, program, and client. By looking in-depth at the GWP of the beginning and end phases of various simulated modular buildings, it will be possible to make suggestions on which type of construction has the lowest global warming potential.

Keywords: modular construction, offsite construction, life cycle analysis, global warming potential, environmental impact, circular economy

Procedia PDF Downloads 131
3672 Anti-Corruption, an Important Challenge for the Construction Industry!

Authors: Ahmed Stifi, Sascha Gentes, Fritz Gehbauer

Abstract:

The construction industry is perhaps one of the oldest industry of the world. The ancient monuments like the egyptian pyramids, the temples of Greeks and Romans like Parthenon and Pantheon, the robust bridges, old Roman theatres, the citadels and many more are the best testament to that. The industry also has a symbiotic relationship with other . Some of the heavy engineering industry provide construction machineries, chemical industry develop innovative construction materials, finance sector provides fund solutions for complex construction projects and many more. Construction Industry is not only mammoth but also very complex in nature. Because of the complexity, construction industry is prone to various tribulations which may have the propensity to hamper its growth. The comparitive study of this industry with other depicts that it is associated with a state of tardiness and delay especially when we focus on the managerial aspects and the study of triple constraint (time, cost and scope). While some institutes says the complexity associated with it as a major reason, others like lean construction, refers to the wastes produced across the construction process as the prime reason. This paper introduces corruption as one of the prime factors for such delays.To support this many international reports and studies are available depicting that construction industry is one of the most corrupt sectors worldwide, and the corruption can take place throught the project cycle comprising project selection, planning, design, funding, pre-qualification, tendering, execution, operation and maintenance, and even through the reconstrction phase. It also happens in many forms such as bribe, fraud, extortion, collusion, embezzlement and conflict of interest and the self-sufficient. As a solution to cope the corruption in construction industry, the paper introduces the integrity as a key factor and build a new integrity framework to develop and implement an integrity management system for construction companies and construction projects.

Keywords: corruption, construction industry, integrity, lean construction

Procedia PDF Downloads 345
3671 Hydro-Mechanical Behavior of a Tuff and Calcareous Sand Mixture for Use in Pavement in Arid Region

Authors: I. Goual, M. S. Goual, M. K. Gueddouda, Taïbi Saïd, Abou-Bekr Nabil, A. Ferhat

Abstract:

The aim of the paper is to study the hydro-mechanical behavior of a tuff and calcareous sand mixture. A first experimental phase was carried out in order to find the optimal mixture. This showed that the material composed of 80% tuff and 20% calcareous sand provides the maximum mechanical strength. The second experimental phase concerns the study of the drying-wetting behavior of the optimal mixture was carried out on slurry samples and compacted samples at the MPO. Experimental results let to deduce the parameters necessary for the prediction of the hydro-mechanical behavior of pavement formulated from tuff and calcareous sand mixtures, related to moisture. This optimal mixture satisfies the regulation rules and hence constitutes a good local eco-material, abundantly available, for the conception of pavements.

Keywords: tuff, sandy calcareous, road engineering, hydro mechanical behaviour, suction

Procedia PDF Downloads 408
3670 Laboratory Investigation on the Waste Road Construction Material Using Conventional and Chemical Additives

Authors: Paulos Meles Yihdego

Abstract:

To address the environmental impact of the cement industry and road building waste, the use of chemical stabilizers in conjunction with recycled asphalt and cement components was investigated. The silica-based chemical stabilizers and their potential effects on the base layer stabilized by cement are discussed in this paper. Strength, moisture compaction interaction, and microstructural characteristics are all examined. According to the outcome, using this stabilizer has improved the mechanical properties. The inclusion of chemical stabilizers in the combination, which is responsible for the mixture's improved strength, raised the intensity of the C-S-H (Calcium Silicate Hydrate) gel, according to a microstructural study. The design was demonstrated to be durable by the little ettringites found in the later phases. The application of this stabilizer ensures a strong, eco-friendly, durable base layer.

Keywords: ettringites, microstructure analysis, durability properties, cement stabilized base

Procedia PDF Downloads 33