Search results for: air-processed solar cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4466

Search results for: air-processed solar cells

4466 Morphology Optimization and Photophysics Study in Air-Processed Perovskite Solar Cells

Authors: Soumitra Satapathi, Anubhav Raghav

Abstract:

Perovskite solar cell technology has passed through a phase of unprecedented growth in the efficiency scale from 3.8% to above 22% within a half decade. This technology has drawn tremendous research interest. It has been observed that performances of perovskite based solar cells are extremely dependent on the morphology and crystallinity of the perovskite layer. It has also been observed that device lifetime depends on the perovskite morphology; devices with larger perovskite grains degrade slowly than those of the smaller ones. Various methods of perovskite growth have been applied to achieve the most appropriate morphology necessary for high efficient solar cells. The recent progress in morphology optimization by various methods emphasizing on grain sizes, stoichiometry, and ambient compatibility as well as photophysics study in air-processed perovskite solar cells will be discussed.

Keywords: perovskite solar cells, morphology optimization, photophysics study, air-processed solar cells

Procedia PDF Downloads 166
4465 Absorption Control of Organic Solar Cells under LED Light for High Efficiency Indoor Power System

Authors: Premkumar Vincent, Hyeok Kim, Jin-Hyuk Bae

Abstract:

Organic solar cells have high potential which enables these to absorb much weaker light than 1-sun in indoor environment. They also have several practical advantages, such as flexibility, cost-advantage, and semi-transparency that can have superiority in indoor solar energy harvesting. We investigate organic solar cells based on poly(3-hexylthiophene) (P3HT) and indene-C60 bisadduct (ICBA) for indoor application while Finite Difference Time Domain (FDTD) simulations were run to find the optimized structure. This may provide the highest short-circuit current density to acquire high efficiency under indoor illumination.

Keywords: indoor solar cells, indoor light harvesting, organic solar cells, P3HT:ICBA, renewable energy

Procedia PDF Downloads 310
4464 Investigation of Length Effect on Power Conversion Efficiency of Perovskite Solar Cells Composed of ZnO Nanowires

Authors: W. S. Li, S. T. Yang, H. C. Cheng

Abstract:

The power conversion efficiency (PCE) of the perovskite solar cells has been achieved by inserting vertically-aligned ZnO nanowires (NWs) between the cathode and the active layer and shows better solar cells performance. Perovskite solar cells have drawn significant attention due to the superb efficiency and low-cost fabrication process. In this experiment, ZnO nanowires are used as the electron transport layer (ETL) due to its low temperature process. The main idea of this thesis is utilizing the 3D structures of the hydrothermally-grown ZnO nanowires to increase the junction area to improve the photovoltaic performance of the perovskite solar cells. The infiltration and the surface coverage of the perovskite precursor solution changed as tuning the length of the ZnO nanowires. It is revealed that the devices with ZnO nanowires of 150 nm demonstrated the best PCE of 8.46 % under the AM 1.5G illumination (100 mW/cm2).

Keywords: hydrothermally-grown ZnO nanowires, perovskite solar cells, low temperature process, pinholes

Procedia PDF Downloads 332
4463 Numerical Simulation of Multijunction GaAs/CIGS Solar Cell by AMPS-1D

Authors: Hassane Ben Slimane, Benmoussa Dennai, Abderrahman Hemmani, Abderrachid Helmaoui

Abstract:

During the past few years a great variety of multi-junction solar cells has been developed with the aim of a further increase in efficiency beyond the limits of single junction devices. This paper analyzes the GaAs/CIGS based tandem solar cell performance by AMPS-1D numerical modeling. Various factors which affect the solar cell’s performance are investigated, carefully referring to practical cells, to obtain the optimum parameters for the GaAs and CIGS top and bottom solar cells. Among the factors studied are thickness and band gap energy of dual junction cells.

Keywords: multijunction solar cell, GaAs, CIGS, AMPS-1D

Procedia PDF Downloads 521
4462 A Compilation of Nanotechnology in Thin Film Solar Cell Devices

Authors: Nurul Amziah Md Yunus, Izhal Abdul Halin, Nasri Sulaiman, Noor Faezah Ismail, Nik Hasniza Nik Aman

Abstract:

Nanotechnology has become the world attention in various applications including the solar cells devices due to the uniqueness and benefits of achieving low cost and better performances of devices. Recently, thin film solar cells such as cadmium telluride (CdTe), copper-indium-gallium-diSelenide (CIGS), copper-zinc-tin-sulphide (CZTS), and dye-sensitized solar cells (DSSC) enhanced by nanotechnology have attracted much attention. Thus, a compilation of nanotechnology devices giving the progress in the solar cells has been presented. It is much related to nanoparticles or nanocrystallines, carbon nanotubes, and nanowires or nanorods structures.

Keywords: nanotechnology, nanocrystalline, nanowires, carbon nanotubes, nanorods, thin film solar cells

Procedia PDF Downloads 627
4461 Solar Building Design Using GaAs PV Cells for Optimum Energy Consumption

Authors: Hadis Pouyafar, D. Matin Alaghmandan

Abstract:

Gallium arsenide (GaAs) solar cells are widely used in applications like spacecraft and satellites because they have a high absorption coefficient and efficiency and can withstand high-energy particles such as electrons and protons. With the energy crisis, there's a growing need for efficiency and cost-effective solar cells. GaAs cells, with their 46% efficiency compared to silicon cells 23% can be utilized in buildings to achieve nearly zero emissions. This way, we can use irradiation and convert more solar energy into electricity. III V semiconductors used in these cells offer performance compared to other technologies available. However, despite these advantages, Si cells dominate the market due to their prices. In our study, we took an approach by using software from the start to gather all information. By doing so, we aimed to design the optimal building that harnesses the full potential of solar energy. Our modeling results reveal a future; for GaAs cells, we utilized the Grasshopper plugin for modeling and optimization purposes. To assess radiation, weather data, solar energy levels and other factors, we relied on the Ladybug and Honeybee plugins. We have shown that silicon solar cells may not always be the choice for meeting electricity demands, particularly when higher power output is required. Therefore, when it comes to power consumption and the available surface area for photovoltaic (PV) installation, it may be necessary to consider efficient solar cell options, like GaAs solar cells. By considering the building requirements and utilizing GaAs technology, we were able to optimize the PV surface area.

Keywords: gallium arsenide (GaAs), optimization, sustainable building, GaAs solar cells

Procedia PDF Downloads 96
4460 Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles

Authors: Nidal H. Abu-Zahra, Aruna P. Wanninayake

Abstract:

Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles.

Keywords: copper oxide nanoparticle, UV-visible spectroscopy, polymer solar cells, P3HT/PCBM

Procedia PDF Downloads 426
4459 The Conjugated Polymers in improving the Organic Solar Cells Efficiency

Authors: Samia Moulebhar, Chahrazed Bendenia, Souhila Bendenia, Hanaa Merad-dib, Sarra Merabet, Sid Ahmed Khantar, Baghdad Hadri

Abstract:

The photovoltaic solar field is today experiencing exponential advancement with the exploitation of new technological sectors of nanoparticles, namely the field of solar cells based on organic polymer materials. These cells are flexible, easy to process and low cost. This work includes a presentation of the conjugated polymer materials used in the design of photovoltaic technology devices while determining their properties and then the models used for the modeling of thin film photovoltaic cells heterojunction.

Keywords: photovoltaic, cells, nanoparticles, organic

Procedia PDF Downloads 87
4458 Practical Evaluation of High-Efficiency Si-based Tandem Solar Cells

Authors: Sue-Yi Chen, Wei-Chun Hsu, Jon-Yiew Gan

Abstract:

Si-based double-junction tandem solar cells have become a popular research topic because of the advantages of low manufacturing cost and high energy conversion efficiency. However, there is no set of calculations to select the appropriate top cell materials. Therefore, this paper will propose a simple but practical selection method. First of all, we calculate the S-Q limit and explain the reasons for developing tandem solar cells. Secondly, we calculate the theoretical energy conversion efficiency of the double-junction tandem solar cells while combining the commercial monocrystalline Si and materials' practical efficiency to consider the actual situation. Finally, we conservatively conclude that if considering 75% performance of the theoretical energy conversion efficiency of the top cell, the suitable bandgap energy range will fall between 1.38eV to 2.5eV. Besides, we also briefly describe some improvements of several proper materials, CZTS, CdSe, Cu2O, ZnTe, and CdS, hoping that future research can select and manufacture high-efficiency Si-based tandem solar cells based on this paper successfully. Most importantly, our calculation method is not limited to silicon solely. If other materials’ performances match or surpass silicon's ability in the future, researchers can also apply this set of deduction processes.

Keywords: high-efficiency solar cells, material selection, Si-based double-junction solar cells, Tandem solar cells, photovoltaics.

Procedia PDF Downloads 117
4457 The Stability and Performances of Terminalia Catappa L. Dye-Sensitized Solar Cell

Authors: A. O. Boyo, A. T. Akinwunmi

Abstract:

The effect of extracting solvent and adjustment of pHs on the stability of Terminalia catappa L. dye-sensitized solar cell was investigated. We introduced ZnO as an alternative to TiO2 in the dye sensitized solar cells (DSSCs) due to its band gap similar to TiO2, higher electron mobility, and flexible procedures of preparations. Dye-sensitized solar cells (DSSCs) based on Terminalia catappa L. was extracted in water (A), ethanol (B) and the mixture of ethanol and water in the ratio 1:1by volume (C). The best performance Solar cells sensitized was from extracts A and achieved up to Jsc 1.51 mAcm−2, Voc 0.75V, FF 0.88 and η 0.63%. We notice that as pHs decreases there is the increase in DSSC efficiency. There is Long period stability in efficiency of the cells prepared using A than in C and a fair stability in efficiency of B cell. The results obtained with extracts B and C confirmed that Ethanol with water could not be considered as a suitable solvent for the extraction of natural dye.

Keywords: zinc oxide, dye-sensitized solar cell, terminalia catappa L., TiO2

Procedia PDF Downloads 405
4456 Performance and Lifetime of Tandem Organic Solar Cells

Authors: Guillaume Schuchardt, Solenn Berson, Gerard Perrier

Abstract:

Multi-junction solar cell configurations, where two sub-cells with complementary absorption are stacked and connected in series, offer an exciting approach to tackle the single junction limitations of organic solar cells and improve their power conversion efficiency. However, the augmentation of the number of layers has, as a consequence, to increase the risk of reducing the lifetime of the cell due to the ageing phenomena present at the interfaces. In this work, we study the intrinsic degradation mechanisms, under continuous illumination AM1.5G, inert atmosphere and room temperature, in single and tandem organic solar cells using Impedance Spectroscopy, IV Curves, External Quantum Efficiency, Steady-State Photocarrier Grating, Scanning Kelvin Probe and UV-Visible light.

Keywords: single and tandem organic solar cells, intrinsic degradation mechanisms, characterization: SKP, EQE, SSPG, UV-Visible, Impedance Spectroscopy, optical simulation

Procedia PDF Downloads 362
4455 The Effect of Global Solar Variations on the Performance of n- AlGaAs/ p-GaAs Solar Cells

Authors: A. Guechi, M. Chegaar

Abstract:

This study investigates how AlGaAs/GaAs thin film solar cells perform under varying global solar spectrum due to the changes of environmental parameters such as the air mass and the atmospheric turbidity. The solar irradiance striking the solar cell is simulated using the spectral irradiance model SMARTS2 (Simple Model of the Atmospheric Radiative Transfer of Sunshine) for clear skies on the site of Setif (Algeria). The results show a reduction in the short circuit current due to increasing atmospheric turbidity, it is 63.09% under global radiation. However increasing air mass leads to a reduction in the short circuit current of 81.73%.The efficiency decrease with increasing atmospheric turbidity and air mass.

Keywords: AlGaAs/GaAs, solar cells, environmental parameters, spectral variation, SMARTS

Procedia PDF Downloads 397
4454 Fabrication of Silicon Solar Cells Using All Sputtering Process

Authors: Ching-Hua Li, Sheng-Hui Chen

Abstract:

Sputtering is a popular technique with many advantages for thin film deposition. To fabricate a hydrogenated silicon thin film using sputtering process for solar cell applications, the ion bombardment during sputtering will generate microstructures (voids and columnar structures) to form silicon dihydride bodings as defects. The properties of heterojunction silicon solar cells were studied by using boron grains and silicon-boron targets. Finally, an 11.7% efficiency of solar cell was achieved by using all sputtering process.

Keywords: solar cell, sputtering process, pvd, alloy target

Procedia PDF Downloads 580
4453 Graphene Materials for Efficient Hybrid Solar Cells: A Spectroscopic Investigation

Authors: Mohammed Khenfouch, Fokotsa V. Molefe, Bakang M. Mothudi

Abstract:

Nowadays, graphene and its composites are universally known as promising materials. They show their potential in a large field of applications including photovoltaics. This study reports on the role of nanohybrids and nanosystems known as strong light harvesters in the efficiency of graphene hybrid solar cells. Our system included Graphene/ZnO/Porphyrin/P3HT layers. Moreover, the physical properties including surface/interface, optical and vibrational properties were also studied. Our investigations confirmed the interaction between the different components as well as the sensitivity of their photonics to the synthesis conditions. Remarkable energy and charge transfer were detected and deeply investigated. Hence, the optimization of the conditions will lead to the fabrication of higher conversion efficiency in graphene solar cells.

Keywords: graphene, optoelectronics, nanohybrids, solar cells

Procedia PDF Downloads 169
4452 Enhancement in the Absorption Efficiency of GaAs/InAs Nanowire Solar Cells through a Decrease in Light Reflection

Authors: Latef M. Ali, Farah A. Abed, Zheen L. Mohammed

Abstract:

In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV. it explore the design and optimization of high-efficiency solar cells on low-reflective absorption efficiency of GaAs/InAs using simulation software tool. The changes in the core and shell diameters profoundly affects the generation and recombination process, thus affecting the conversion efficiency of solar cells.

Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, FDTD simulation

Procedia PDF Downloads 50
4451 Semiconductor Nanofilm Based Schottky-Barrier Solar Cells

Authors: Mariyappan Shanmugam, Bin Yu

Abstract:

Schottky-barrier solar cells are demonstrated employing 2D-layered MoS2 and WS2 semiconductor nanofilms as photo-active material candidates synthesized by chemical vapor deposition method. Large area MoS2 and WS2 nanofilms are stacked by layer transfer process to achieve thicker photo-active material studied by atomic force microscopy showing a thickness in the range of ~200 nm. Two major vibrational active modes associated with 2D-layered MoS2 and WS2 are studied by Raman spectroscopic technique to estimate the quality of the nanofilms. Schottky-barrier solar cells employed MoS2 and WS2 active materials exhibited photoconversion efficiency of 1.8 % and 1.7 % respectively. Fermi-level pinning at metal/semiconductor interface, electronic transport and possible recombination mechanisms are studied in the Schottky-barrier solar cells.

Keywords: two-dimensional nanosheet, graphene, hexagonal boron nitride, solar cell, Schottky barrier

Procedia PDF Downloads 331
4450 Implementation of Industrial Ecology Principles in the Production and Recycling of Solar Cells and Solar Modules

Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas

Abstract:

Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of silicon nitride coating production step. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) also used solar modules are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.

Keywords: manufacturing, process optimisation, recycling, solar cells, solar modules, waste prevention

Procedia PDF Downloads 143
4449 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules

Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.

Keywords: solar cell, aging, spectral response measurement

Procedia PDF Downloads 103
4448 Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence

Authors: H. Mazouz, A. Belghachi, F. Hadjaj

Abstract:

Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of gaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current.

Keywords: gaAs solar cell, MeV electron irradiation, irradiation fluence, short circuit

Procedia PDF Downloads 476
4447 Synthesis of Novel Organic Dyes Based on Indigo for Dye-Sensitized Solar Cells

Authors: M. Hosseinnejad, K. Gharanjig, S. Moradian

Abstract:

A novel metal free organic dyes based on indigo was prepared and used as sensitizers in dye-sensitized solar cells. The synthesized dye together with its corresponding intermediates were purified and characterized by analytical techniques. Such techniques confirmed the corresponding structures of dye and its intermediate and the yield of all the stages of dye preparation were calculated to be above 85%. Fluorometric analyses show fluorescence in the green region of the visible spectrum for dye. Oxidation potential measurements for dye ensured an energetically permissible and thermodynamically favourable charge transfer throughout the continuous cycle of photo-electric conversion. Finally, dye sensitized solar cells were fabricated in order to determine the photovoltaic behaviour and conversion efficiencies of dye. Such evaluations demonstrate rather medium conversion efficiencies of 2.33% for such simple structured synthesized dye. Such conversion efficiencies demonstrate the potentiality of future use of such dye structures in dye-sensitized solar cells with respect to low material costs, ease of molecular tailoring, high yields of reactions, high performance and ease of recyclability.

Keywords: conversion efficiency, Dye-sensitized solar cells, indigo, photonic material

Procedia PDF Downloads 369
4446 The Use of Industrial Ecology Principles in the Production of Solar Cells and Solar Modules

Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas

Abstract:

Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of SiNx coating production step. This work was performed in the frame of Eco-Solar project, where Soli Tek R&D is collaborating together with the partners from ISC-Konstanz institute. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.

Keywords: solar cells and solar modules, manufacturing, waste prevention, recycling

Procedia PDF Downloads 214
4445 The Effect of Acid Treatment of PEDOT: PSS Anode for Organic Solar Cells

Authors: Ismail Borazan, Ayse Celik Bedeloglu, Ali Demir, David Carroll

Abstract:

In this project, PEDOT:PSS layer was treated with formic acid, sulphuric acid, and hydrochloric acid, methanol, acetone, and dichlorobenzene:methanol. The resistivity measurements with 2-probes were carried out and the best-chosen method was employed to make an organic solar cell device.

Keywords: organic solar cells, PEDOT:PSS, polymer electrodes, resistivity

Procedia PDF Downloads 815
4444 Sensitivity Studies for a Pin Homojunction a-Si:H Solar Cell

Authors: Leila Ayat, Afak Meftah

Abstract:

Amorphous-silicon alloys have great promise as low cost solar cell materials. They have excellent photo-conductivity and high optical absorption to sunlight. Now PIN a-Si:H based solar cells are widely used in power generation modules. However, to improve the performance of these cells further, a better fundamental under-standing of the factors limiting cell performance in the homo junction PIN structure is necessary. In this paper we discuss the sensitivity of light J-V characteristics to various device and material parameters in PIN homo junction solar cells. This work is a numerical simulation of the output parameters of a PIN a-Si:H solar cell under AM1.5 spectrum. These parameters are the short circuit current (Jsc), the open circuit voltage (Voc), the fill factor (FF), the conversion efficiency. The simulation was performed with SCAPS-1D software version 3.3 developed at ELIS in Belgium by Marc Burgelman et al. The obtained results are in agreement with experiment. In addition, the effect of the thickness, doping density, capture cross sections of the gap states and the band microscopic mobilities on the output parameters of the cell are also presented.

Keywords: amorphous silicon p-i-n junctions, thin film, solar cells, sensitivity

Procedia PDF Downloads 521
4443 Enhancing Power Conversion Efficiency of P3HT/PCBM Polymer Solar Cells

Authors: Nidal H. Abu-Zahra, Mahmoud Algazzar

Abstract:

In this research, n-dodecylthiol was added to P3HT/PC70BM polymer solar cells to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. The improved crystallinity of P3HT/PC70BM doped with 0-5% by volume of n-dodecylthiol resulted in improving the power conversion efficiency of polymer solar cells by 33%. In addition, thermal annealing of the P3HT/PC70MB/n-dodecylthiolcompound showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2nm, after annealing at 150°C for 30 minutes under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive.

Keywords: n-dodecylthiol, congugated PSC, P3HT/PCBM, polymer solar cells

Procedia PDF Downloads 283
4442 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells

Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi

Abstract:

Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.

Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM

Procedia PDF Downloads 387
4441 Design of a Controlled BHJ Solar Cell Using Modified Organic Vapor Spray Deposition Technique

Authors: F. Stephen Joe, V. Sathya Narayanan, V. R. Sanal Kumar

Abstract:

A comprehensive review of the literature on photovoltaic cells has been carried out for exploring the better options for cost efficient technologies for future solar cell applications. Literature review reveals that the Bulk Heterojunction (BHJ) Polymer Solar cells offer special opportunities as renewable energy resources. It is evident from the previous studies that the device fabricated with TiOx layer shows better power conversion efficiency than that of the device without TiOx layer. In this paper, authors designed a controlled BHJ solar cell using a modified organic vapor spray deposition technique facilitated with a vertical-moving gun named as 'Stephen Joe Technique' for getting a desirable surface pattern over the substrate to improving its efficiency over the years for industrial applications. We comprehended that the efficient processing and the interface engineering of these solar cells could increase the efficiency up to 5-10 %.

Keywords: BHJ polymer solar cell, photovoltaic cell, solar cell, Stephen Joe technique

Procedia PDF Downloads 543
4440 Modeling and Simulation of InAs/GaAs and GaSb/GaAS Quantum Dot Solar Cells in SILVACO TCAD

Authors: Fethi Benyettou, Abdelkader Aissat, M. A. Benammar

Abstract:

In this work, we use Silvaco TCAD software for modeling and simulations of standard GaAs solar cell, InAs/GaAs and GaSb/GaAs p-i-n quantum dot solar cell. When comparing 20-layer InAs/GaAs, GaSb/GaAs quantum dots solar cells with standard GaAs solar cell, the conversion efficiency in simulation results increased from 16.48 % to 22.6% and 16.48% to 22.42% respectively. Also, the absorption range edge of photons with low energies extended from 900 nm to 1200 nm.

Keywords: SILVACO TCAD, the quantum dot, simulation, materials engineering

Procedia PDF Downloads 509
4439 Modelling and Simulation of Light and Temperature Efficient Interdigitated Back- Surface-Contact Solar Cell with 28.81% Efficiency Rate

Authors: Mahfuzur Rahman

Abstract:

Back-contact solar cells improve optical properties by moving all electrically conducting parts to the back of the cell. The cell's structure allows silicon solar cells to surpass the 25% efficiency barrier and interdigitated solar cells are now the most efficient. In this work, the fabrication of a light, efficient and temperature resistant interdigitated back contact (IBC) solar cell is investigated. This form of solar cell differs from a conventional solar cell in that the electrodes are located at the back of the cell, eliminating the need for grids on the top, allowing the full surface area of the cell to receive sunlight, resulting in increased efficiency. In this project, we will use SILVACO TCAD, an optoelectronic device simulator, to construct a very thin solar cell with dimensions of 100x250um in 2D Luminous. The influence of sunlight intensity and atmospheric temperature on solar cell output power is highly essential and it has been explored in this work. The cell's optimum performance with 150um bulk thickness provides 28.81% efficiency with an 87.68% fill factor rate making it very thin, flexible and resilient, providing diverse operational capabilities.

Keywords: interdigitated, shading, recombination loss, incident-plane, drift-diffusion, luminous, SILVACO

Procedia PDF Downloads 146
4438 Fabrication and Properties of Al2O3/Si Quantum Well-Structured Silicon Solar Cells

Authors: Kwang-Ho Kim, Kwan-Hong Min, Pyungwoo Jang, Chisup Jung, Kyu Seomoon

Abstract:

By restricting the dimensions of silicon to less than Bohr radius of bulk crystalline silicon (∼5 nm), quantum confinement causes its effective bandgap to increase. Therefore, silicon quantum wells (QWs) using these quantum phenomena could be a good candidate to achieve high performance silicon solar cells. The Al2O3/Si QW structures were fabricated by using the successive deposition technique, as a quantum confinement device to increase the effective energy bandgap and passivation effect in Si surface for the 3rd generation solar cell applications. In Si/Al2O3 QWs, the thicknesses of Si layers and Al2O3 layers were varied between 1 to 5 nm, respectively. The roughness of deposited Si on Al2O3 was less than 4 Å in the thickness of 2 nm. By using the Al2O3/Si QW structures on Si surfaces, the lifetime measured by u-PCD technique increased as a result of passivated surface effects. The discussion about the other properties such as electrical and optical properties of the QWs structures as well as the fabricated solar cells will be presented in this paper.

Keywords: Al2O3/Si quantum well, quantum confinement, solar cells, third generation, successive deposition technique

Procedia PDF Downloads 340
4437 Charge Carrier Mobility Dependent Open-Circuit Voltage in Organic and Hybrid Solar Cells

Authors: David Ompong, Jai Singh

Abstract:

A better understanding of the open-circuit voltage (Voc) related losses in organic solar cells (OSCs) is desirable in order to assess the photovoltaic performance of these devices. We have derived Voc as a function of charge carrier mobilities (μe and μh) for organic and hybrid solar cells by optimizing the drift-diffusion current density. The optimum Voc thus obtained depends on the energy difference between the highest occupied molecular orbital (HOMO) level and the quasi-Fermi level of holes of the donor material. We have found that the Voc depends on the ratio of the electron (μe) and hole (μh) mobilities and when μh > μe the Voc increases. The most important loss term in the Voc arises from the energetics of the donor and acceptor materials, which will be discussed in detail in this paper.

Keywords: charge carrier mobility, open-circuit voltage, organic solar cells, quasi-fermi levels

Procedia PDF Downloads 451