Search results for: advancements
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 399

Search results for: advancements

189 Advancements in Laser Welding Process: A Comprehensive Model for Predictive Geometrical, Metallurgical, and Mechanical Characteristics

Authors: Seyedeh Fatemeh Nabavi, Hamid Dalir, Anooshiravan Farshidianfar

Abstract:

Laser welding is pivotal in modern manufacturing, offering unmatched precision, speed, and efficiency. Its versatility in minimizing heat-affected zones, seamlessly joining dissimilar materials, and working with various metals makes it indispensable for crafting intricate automotive components. Integration into automated systems ensures consistent delivery of high-quality welds, thereby enhancing overall production efficiency. Noteworthy are the safety benefits of laser welding, including reduced fumes and consumable materials, which align with industry standards and environmental sustainability goals. As the automotive sector increasingly demands advanced materials and stringent safety and quality standards, laser welding emerges as a cornerstone technology. A comprehensive model encompassing thermal dynamic and characteristics models accurately predicts geometrical, metallurgical, and mechanical aspects of the laser beam welding process. Notably, Model 2 showcases exceptional accuracy, achieving remarkably low error rates in predicting primary and secondary dendrite arm spacing (PDAS and SDAS). These findings underscore the model's reliability and effectiveness, providing invaluable insights and predictive capabilities crucial for optimizing welding processes and ensuring superior productivity, efficiency, and quality in the automotive industry.

Keywords: laser welding process, geometrical characteristics, mechanical characteristics, metallurgical characteristics, comprehensive model, thermal dynamic

Procedia PDF Downloads 22
188 The Impact of Technology on Media Content Regulation

Authors: Eugene Mashapa

Abstract:

The age of information has witnessed countless unprecedented technological developments, which signal the articulation of succinct technological capabilities that can match these cutting-edge technological trends. These changes have impacted patterns in the production, distribution, and consumption of media content, a space that the Film and Publication Board (FPB) is concerned with. Consequently, the FPB is keen to understand the nature and impact of these technological changes on media content regulation. This exploratory study sought to investigate how content regulators in high and middle-income economies have adapted to the changes in this space, seeking insights into innovations, technological and operational, that facilitate continued relevance during this fast-changing environment. The study is aimed at developing recommendations that could assist and inform the organisation in regulating media content as it evolves. Thus, the overall research strategy in this analysis is applied research, and the analytical model adopted is a mixed research design guided by both qualitative and quantitative research instruments. It was revealed in the study that the FPB was significantly impacted by the unprecedented technological advancements in the media regulation space. Additionally, there exists a need for the FPB to understand the current and future penetrations of 4IR technology in the industry and its impact on media governance and policy implementation. This will range from reskilling officials to align with the technological skills to developing technological innovations as well as adopting co-regulatory or self-regulatory arrangements together with content distributors, where more content is distributed in higher volumes and with increased frequency. Importantly, initiating an interactive learning process for both FPB employees and the general public can assist the regulator and improve FPB’s operational efficiency and effectiveness.

Keywords: media, regulation, technology, film and publications board

Procedia PDF Downloads 69
187 Enzyme Immobilization: A Strategy to Overcome Enzyme Limitations and Expand Their Applications

Authors: Charline Monnier, Rudolf Andrys, Irene Castellino, Lucie Zemanova

Abstract:

Due to their inherent sustainability and compatibility with green chemistry principles, enzymes are attracting increasing attention for various applications like bioremediation or biocatalysis. These natural catalysts boast remarkable substrate specificity and operate under mild biological conditions. However, their intrinsic limitations, such as instability at high temperatures or in organic solvents, impede their wider applicability. Enzyme immobilization on supportive matrices emerges as a promising strategy to address these challenges. This approach not only facilitates enzyme reusability but also offers the potential to modulate their stability, activity, and selectivity. The present study investigates the immobilization and application of two distinct groups of hydrolases on supportive matrices: PETases, naturally capable of PolyEthylene Terephthalate (PET) degradation, and cholinesterases (ChEs), key enzymes in neurotransmitter regulation. All tested enzymes will be immobilized on porous and non-porous particles using both covalent and non-covalent methods. Additionally, the stability of PETases and cholinesterases will be explored, followed by exposure to denaturing conditions to assess their resilience under harsh conditions. Furthermore, due to the exceptional catalytic efficiency and selectivity, their biocatalytic efficiency will be tested using xenobiotic substrates, aiming to establish them as replacements for conventional chemical catalysts in environmentally friendly processes. By exploiting the power of enzyme immobilization, this research strives to unlock the full potential of these biocatalysts for sustainable and efficient technological advancements.

Keywords: biocatalysis, bioremediation, enzyme efficiency, enzyme immobilization, green chemistry

Procedia PDF Downloads 22
186 Digital Employment of Disabled People: Empirical Study from Shanghai

Authors: Yan Zi, Han Xiao

Abstract:

Across the globe, ICTs are influencing employment both as an industry that creates jobs and as a tool that empowers disabled people to access new forms of work, in innovative and more flexible ways. The advancements in ICT and the number of apps and solutions that support persons with physical, cognitive and intellectual disabilities challenge traditional biased notions and offer a pathway out of traditional sheltered workshops. As the global leader in digital technology innovation, China is arguably a leader in the use of digital technology as a 'lever' in ending the economic and social marginalization of the disabled. This study investigates factors that influence adoption and use of employment-oriented ICT applications among disabled people in China and seeks to integrate three theoretical approaches: the technology acceptance model (TAM), the uses and gratifications (U&G) approach, and the social model of disability. To that end, the study used data from self-reported survey of 214 disabled adults who have been involved in two top-down 'Internet + employment' programs promoted by local disabled persons’ federation in Shanghai. A structural equation model employed in the study demonstrates that the use of employment-oriented ICT applications is affected by demographic factors of gender, categories of disability, education and marital status. The organizational support of local social organizations demonstrates significate effects on the motivations of disabled people. Results from the focus group interviews particularly suggested that to maximize the positive impact of ICTs on employment, there is significant need to build stakeholder capacity on how ICTs could benefits persons with disabilities.

Keywords: disabled people, ICTs, technology acceptance model, uses and gratifications, the social model of disability

Procedia PDF Downloads 87
185 Real-Time Generative Architecture for Mesh and Texture

Authors: Xi Liu, Fan Yuan

Abstract:

In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.

Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics

Procedia PDF Downloads 36
184 Component Level Flood Vulnerability Framework for the United Kingdom

Authors: Mohammad Shoraka, Francesco Preti, Karen Angeles, Raulina Wojtkiewicz, Karthik Ramanathan

Abstract:

Catastrophe modeling has evolved significantly over the last four decades. Verisk introduced its pioneering comprehensive inland flood model tailored for the U.K. in 2008. Over the course of the last 15 years, Verisk has built a suite of physically driven flood models for several countries and regions across the globe. This paper aims to spotlight a selection of these advancements tailored to the development of vulnerability estimation, which forms an integral part of a forthcoming update to Verisk’s U.K. inland flood model. Vulnerability functions are critical to evaluating and robust modeling flood-induced damage to buildings and contents. The subsequent damage assessments then allow for direct quantification of losses for entire building portfolios. Notably, today’s flood loss models more often prioritize enhanced development of hazard characterization, while vulnerability functions often lack sufficient granularity for a robust assessment. This study proposes a novel, engineering-driven, physically based component-level flood vulnerability framework for the U.K. Various aspects of the framework, including component classification and comprehensive cost analysis, meticulously tailored to capture the distinct building characteristics unique to the U.K., will be discussed. This analysis will elucidate how the cost distribution across individual components contributes to translating component-level damage functions into building-level damage functions. Furthermore, a succinct overview of essential datasets employed to gauge building regional vulnerability will be highlighted.

Keywords: catastrophe modeling, inland flood, vulnerability, cost analysis

Procedia PDF Downloads 38
183 Reconstruction of Visual Stimuli Using Stable Diffusion with Text Conditioning

Authors: ShyamKrishna Kirithivasan, Shreyas Battula, Aditi Soori, Richa Ramesh, Ramamoorthy Srinath

Abstract:

The human brain, among the most complex and mysterious aspects of the body, harbors vast potential for extensive exploration. Unraveling these enigmas, especially within neural perception and cognition, delves into the realm of neural decoding. Harnessing advancements in generative AI, particularly in Visual Computing, seeks to elucidate how the brain comprehends visual stimuli observed by humans. The paper endeavors to reconstruct human-perceived visual stimuli using Functional Magnetic Resonance Imaging (fMRI). This fMRI data is then processed through pre-trained deep-learning models to recreate the stimuli. Introducing a new architecture named LatentNeuroNet, the aim is to achieve the utmost semantic fidelity in stimuli reconstruction. The approach employs a Latent Diffusion Model (LDM) - Stable Diffusion v1.5, emphasizing semantic accuracy and generating superior quality outputs. This addresses the limitations of prior methods, such as GANs, known for poor semantic performance and inherent instability. Text conditioning within the LDM's denoising process is handled by extracting text from the brain's ventral visual cortex region. This extracted text undergoes processing through a Bootstrapping Language-Image Pre-training (BLIP) encoder before it is injected into the denoising process. In conclusion, a successful architecture is developed that reconstructs the visual stimuli perceived and finally, this research provides us with enough evidence to identify the most influential regions of the brain responsible for cognition and perception.

Keywords: BLIP, fMRI, latent diffusion model, neural perception.

Procedia PDF Downloads 43
182 Integration of GIS with Remote Sensing and GPS for Disaster Mitigation

Authors: Sikander Nawaz Khan

Abstract:

Natural disasters like flood, earthquake, cyclone, volcanic eruption and others are causing immense losses to the property and lives every year. Current status and actual loss information of natural hazards can be determined and also prediction for next probable disasters can be made using different remote sensing and mapping technologies. Global Positioning System (GPS) calculates the exact position of damage. It can also communicate with wireless sensor nodes embedded in potentially dangerous places. GPS provide precise and accurate locations and other related information like speed, track, direction and distance of target object to emergency responders. Remote Sensing facilitates to map damages without having physical contact with target area. Now with the addition of more remote sensing satellites and other advancements, early warning system is used very efficiently. Remote sensing is being used both at local and global scale. High Resolution Satellite Imagery (HRSI), airborne remote sensing and space-borne remote sensing is playing vital role in disaster management. Early on Geographic Information System (GIS) was used to collect, arrange, and map the spatial information but now it has capability to analyze spatial data. This analytical ability of GIS is the main cause of its adaption by different emergency services providers like police and ambulance service. Full potential of these so called 3S technologies cannot be used in alone. Integration of GPS and other remote sensing techniques with GIS has pointed new horizons in modeling of earth science activities. Many remote sensing cases including Asian Ocean Tsunami in 2004, Mount Mangart landslides and Pakistan-India earthquake in 2005 are described in this paper.

Keywords: disaster mitigation, GIS, GPS, remote sensing

Procedia PDF Downloads 438
181 Entrepreneurship Education and Student Entrepreneurial Intention: A Comprehensive Review, Synthesis of Empirical Findings, and Strategic Insights for Future Research Advancements

Authors: Abdul Waris Jalili, Yanqing Wang, Som Suor

Abstract:

This research paper explores the relationship between entrepreneurship education and students' entrepreneurial intentions. It aims to determine if entrepreneurship education reliably predicts students' intention to become entrepreneurs and how and when this relationship occurs. This study aims to investigate the predictive relationship between entrepreneurship education and student entrepreneurial intentions. The goal is to understand the factors that influence this relationship and to identify any mediating or moderating factors. A thorough and systematic search and review of empirical articles published between 2013 and 2023 were conducted. Three databases, Google Scholar, Science Direct, and PubMed, were explored to gather relevant studies. Criteria such as reporting empirical results, publication in English, and addressing the research questions were used to select 35 papers for analysis. The collective findings of the reviewed studies suggest a generally positive relationship between entrepreneurship education and student entrepreneurial intentions. However, recent findings indicate that this relationship may be more complex than previously thought. Mediators and moderators have been identified, highlighting instances where entrepreneurship education indirectly influences student entrepreneurial intentions. The review also emphasizes the need for more robust research designs to establish causality in this field. This research adds to the existing literature by providing a comprehensive review of the relationship between entrepreneurship education and student entrepreneurial intentions. It highlights the complexity of this relationship and the importance of considering mediators and moderators. The study also calls for future research to explore different facets of entrepreneurship education independently and examine complex relationships more comprehensively.

Keywords: entrepreneurship, entrepreneurship education, entrepreneurial intention, entrepreneurial self-efficacy

Procedia PDF Downloads 28
180 Genome Editing in Sorghum: Advancements and Future Possibilities: A Review

Authors: Micheale Yifter Weldemichael, Hailay Mehari Gebremedhn, Teklehaimanot Hailesslasie

Abstract:

The advancement of target-specific genome editing tools, including clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein9 (Cas9), mega-nucleases, base editing (BE), prime editing (PE), transcription activator-like endonucleases (TALENs), and zinc-finger nucleases (ZFNs), have paved the way for a modern era of gene editing. CRISPR/Cas9, as a versatile, simple, cost-effective and robust system for genome editing, has dominated the genome manipulation field over the last few years. The application of CRISPR/Cas9 in sorghum improvement is particularly vital in the context of ecological, environmental and agricultural challenges, as well as global climate change. In this context, gene editing using CRISPR/Cas9 can improve nutritional value, yield, resistance to pests and disease and tolerance to different abiotic stress. Moreover, CRISPR/Cas9 can potentially perform complex editing to reshape already available elite varieties and new genetic variations. However, existing research is targeted at improving even further the effectiveness of the CRISPR/Cas9 genome editing techniques to fruitfully edit endogenous sorghum genes. These findings suggest that genome editing is a feasible and successful venture in sorghum. Newer improvements and developments of CRISPR/Cas9 techniques have further qualified researchers to modify extra genes in sorghum with improved efficiency. The fruitful application and development of CRISPR techniques for genome editing in sorghum will not only help in gene discovery, creating new, improved traits in sorghum regulating gene expression sorghum functional genomics, but also in making site-specific integration events.

Keywords: CRISPR/Cas9, genome editing, quality, sorghum, stress, yield

Procedia PDF Downloads 34
179 Efficient Chess Board Representation: A Space-Efficient Protocol

Authors: Raghava Dhanya, Shashank S.

Abstract:

This paper delves into the intersection of chess and computer science, specifically focusing on the efficient representation of chess game states. We propose two methods: the Static Method and the Dynamic Method, each offering unique advantages in terms of space efficiency and computational complexity. The Static Method aims to represent the game state using a fixedlength encoding, allocating 192 bits to capture the positions of all pieces on the board. This method introduces a protocol for ordering and encoding piece positions, ensuring efficient storage and retrieval. However, it faces challenges in representing pieces no longer in play. In contrast, the Dynamic Method adapts to the evolving game state by dynamically adjusting the encoding length based on the number of pieces in play. By incorporating Alive Bits for each piece kind, this method achieves greater flexibility and space efficiency. Additionally, it includes provisions for encoding additional game state information such as castling rights and en passant squares. Our findings demonstrate that the Dynamic Method offers superior space efficiency compared to traditional Forsyth-Edwards Notation (FEN), particularly as the game progresses and pieces are captured. However, it comes with increased complexity in encoding and decoding processes. In conclusion, this study provides insights into optimizing the representation of chess game states, offering potential applications in chess engines, game databases, and artificial intelligence research. The proposed methods offer a balance between space efficiency and computational overhead, paving the way for further advancements in the field.

Keywords: chess, optimisation, encoding, bit manipulation

Procedia PDF Downloads 18
178 New Photosensitizers Encapsulated within Arene-Ruthenium Complexes Active in Photodynamic Therapy: Intracellular Signaling and Evaluation in Colorectal Cancer Models

Authors: Suzan Ghaddar, Aline Pinon, Manuel Gallardo-villagran, Mona Diab-assaf, Bruno Therrien, Bertrand Liagre

Abstract:

Colorectal cancer (CRC) is the third most common cancer and exhibits a consistently rising incidence worldwide. Despite notable advancements in CRC treatment, frequent occurrences of side effects and the development of therapy resistance persistently challenge current approaches. Eventually, innovations in focal therapies remain imperative to enhance the patient’s overall quality of life. Photodynamic therapy (PDT) emerges as a promising treatment modality, clinically used for the treatment of various cancer types. It relies on the use of photosensitive molecules called photosensitizers (PS), which are photoactivated after accumulation in cancer cells, to induce the production of reactive oxygen species (ROS) that cause cancer cell death. Among commonly used metal-based drugs in cancer therapy, ruthenium (Ru) possesses favorable attributes that demonstrate its selectivity towards cancer cells and render it suitable for anti-cancer drug design. In vitro studies using distinct arene-Ru complexes, encapsulating porphin PS, are conducted on human HCT116 and HT-29 colorectal cancer cell lines. These studies encompass the evaluation of the antiproliferative effect, ROS production, apoptosis, cell cycle progression, molecular localization, and protein expression. Preliminary results indicated that these complexes exert significant photocytotoxicity on the studied colorectal cancer cell lines, representing them as promising and potential candidates for anti- cancer agents.

Keywords: colorectal cancer, photodynamic therapy, photosensitizers, arene-ruthenium complexes, apoptosis

Procedia PDF Downloads 49
177 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain

Authors: Nitish Suvarna, Anjali Awasthi

Abstract:

In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.

Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix

Procedia PDF Downloads 27
176 The Three-dimensional Response of Mussel Plaque Anchoring to Wet Substrates under Directional Tensions

Authors: Yingwei Hou, Tao Liu, Yong Pang

Abstract:

The paper explored the three-dimensional deformation of mussel plaques anchor to wet polydimethylsiloxane (PDMS) substrates under tension stress with different angles. Mussel plaques exhibiting natural adhesive structures, have attracted significant attention for their remarkable adhesion properties. Understanding their behavior under mechanical stress, particularly in a three-dimensional context, holds immense relevance for biomimetic material design and bio-inspired adhesive development. This study employed a novel approach to investigate the 3D deformation of the PDMS substrates anchored by mussel plaques subjected to controlled tension. Utilizing our customized stereo digital image correlation technique and mechanical mechanics analyses, we found the distributions of the displacement and resultant force on the substrate became concentrated under the plaque. Adhesion and sucking mechanisms were analyzed for the mussel plaque-substrate system under tension until detachment. The experimental findings were compared with a developed model using finite element analysis and the results provide new insights into mussels’ attachment mechanism. This research not only contributes to the fundamental understanding of biological adhesion but also holds promising implications for the design of innovative adhesive materials with applications in fields such as medical adhesives, underwater technologies, and industrial bonding. The comprehensive exploration of mussel plaque behavior in three dimensions is important for advancements in biomimicry and materials science, fostering the development of adhesives that emulate nature's efficiency.

Keywords: adhesion mechanism, mytilus edulis, mussel plaque, stereo digital image correlation

Procedia PDF Downloads 29
175 The Effects of Social Media on the Dreams of Preadolescent Girls

Authors: Saveria Capecchi

Abstract:

The aim of the quali-quantitative research conducted in the spring of 2021 (still in the midst of the Covid-19 emergency) was to analyze the relationship between the imaginary of 142 girls aged 10-12 from two Italian cities in the Emilia-Romagna region (the capital, Bologna, and Parma) and the influence that various socialization agents can have on it, with particular attention to social media. In order to investigate the relationship between imagination and media, two tools were used: first, the girls wrote an essay in class about their future lives, imagining waking up one morning as a thirty-year-old adults. Six types of "dreams" reflecting the values and lifestyles characteristic of contemporary Italian society emerged. Additionally, the girls completed a questionnaire on their leisure time and, in particular, media consumption aimed at identifying their favorite characters. The results provided insights into understanding the reference values and lifestyles that define their subculture (they belong to the so-called Generation Z). Another interesting aspect of this research is the possibility of comparing the results with those of a similar study on preadolescent imaginary conducted in 1995, involving 292 girls from Milan and Bologna, belonging to the Millennial generation. The narratives about the imagined adult life reflect some crucial changes undergone by Italian society in a quarter of a century: there are advancements towards gender equality, and the imagined family is increasingly detached from tradition. There is a more persistent dream of a life marked by beauty, wealth, and fame, while at the same time, there is a greater social commitment, from solidarity with marginalized people to environmentalism. Furthermore, the mentioned new digital and robotic professions will project us into the near future.

Keywords: gender equality, gender stereotypes, imaginary, preadolescents, social media

Procedia PDF Downloads 26
174 Innovative Design Considerations for Adaptive Spacecraft

Authors: K. Parandhama Gowd

Abstract:

Space technologies have changed the way we live in the present day society and manage many aspects of our daily affairs through Remote sensing, Navigation & Communications. Further, defense and military usage of spacecraft has increased tremendously along with civilian purposes. The number of satellites deployed in space in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and the Geostationary Orbit (GEO) has gone up. The dependency on remote sensing and operational capabilities are most invariably to be exploited more and more in future. Every country is acquiring spacecraft in one way or other for their daily needs, and spacecraft numbers are likely to increase significantly and create spacecraft traffic problems. The aim of this research paper is to propose innovative design concepts for adaptive spacecraft. The main idea here is to improve existing design methods of spacecraft design and development to further improve upon design considerations for futuristic adaptive spacecraft with inbuilt features for automatic adaptability and self-protection. In other words, the innovative design considerations proposed here are to have future spacecraft with self-organizing capabilities for orbital control and protection from anti-satellite weapons (ASAT). Here, an attempt is made to propose design and develop futuristic spacecraft for 2030 and beyond due to tremendous advancements in VVLSI, miniaturization, and nano antenna array technologies, including nano technologies are expected.

Keywords: satellites, low earth orbit (LEO), medium earth orbit (MEO), geostationary earth orbit (GEO), self-organizing control system, anti-satellite weapons (ASAT), orbital control, radar warning receiver, missile warning receiver, laser warning receiver, attitude and orbit control systems (AOCS), command and data handling (CDH)

Procedia PDF Downloads 272
173 Digitizing Masterpieces in Italian Museums: Techniques, Challenges and Consequences from Giotto to Caravaggio

Authors: Ginevra Addis

Abstract:

The possibility of reproducing physical artifacts in a digital format is one of the opportunities offered by the technological advancements in information and communication most frequently promoted by museums. Indeed, the study and conservation of our cultural heritage have seen significant advancement due to the three-dimensional acquisition and modeling technology. A variety of laser scanning systems has been developed, based either on optical triangulation or on time-of-flight measurement, capable of producing digital 3D images of complex structures with high resolution and accuracy. It is necessary, however, to explore the challenges and opportunities that this practice brings within museums. The purpose of this paper is to understand what change is introduced by digital techniques in those museums that are hosting digital masterpieces. The methodology used will investigate three distinguished Italian exhibitions, related to the territory of Milan, trying to analyze the following issues about museum practices: 1) how digitizing art masterpieces increases the number of visitors; 2) what the need that calls for the digitization of artworks; 3) which techniques are most used; 4) what the setting is; 5) the consequences of a non-publication of hard copies of catalogues; 6) envision of these practices in the future. Findings will show how interconnection plays an important role in rebuilding a collection spread all over the world. Secondly how digital artwork duplication and extension of reality entail new forms of accessibility. Thirdly, that collection and preservation through digitization of images have both a social and educational mission. Fourthly, that convergence of the properties of different media (such as web, radio) is key to encourage people to get actively involved in digital exhibitions. The present analysis will suggest further research that should create museum models and interaction spaces that act as catalysts for innovation.

Keywords: digital masterpieces, education, interconnection, Italian museums, preservation

Procedia PDF Downloads 141
172 Attitudes of Secondary School Students towards Science and Technical Education in Yauri Metropolis Kebbi State, Nigeria

Authors: Ibrahim Alhassan Libata

Abstract:

This study was carried out to assess attitude of secondary school students towards science and technical education in Yauri metropolis, Kebbi State, Nigeria. The population of the study was 200. Proportionate random sampling method was used in selecting 132 as sample size. Science and technical education is the most powerful forces for change in the world today, and students who hope to have a hand in shaping a better future must participate for their advancements. Four Null hypotheses were generated to guide the conduct of the study, questionnaire was the only instrument used in the study; the instrument was subjected to test-retest reliability. The reliability index of the instrument was 0.69. Overall scores of the Students were analyzed and a mean score was determined, the mean score of students was 85. There were no significant differences between the attitudes of male and female students towards science and technical education. The results also revealed that there was significant difference between the attitude of boding and day school students towards science and technical education, personality constraints of students is one factor militating against the participation of students in science and technical education, socio-economic status of the parents over the years have been the dominant factor of student’s inadequate representation in the field of science and technical education. Based on the findings of this study, the researcher recommended that teachers should motivate students, which they can do through their teaching styles and by showing them the relevance of the learning topics to their everyday lives. Government and the school management should create the learning environment that helps motivate students not only to come to classes but also want to learn and enjoy learning science and technical education, establishment of more Science and Technical Colleges education, more Public enlightenment campaigns to motivate parents and the entire community to support their children in studying science and technical education.

Keywords: attitude, students, science, Yauri

Procedia PDF Downloads 218
171 Awareness among Medical Students and Faculty about Integration of Artifical Intelligence Literacy in Medical Curriculum

Authors: Fatima Faraz

Abstract:

BACKGROUND: While Artificial intelligence (AI) provides new opportunities across a wide variety of industries, healthcare is no exception. AI can lead to advancements in how the healthcare system functions and improves the quality of patient care. Developing countries like Pakistan are lagging in the implementation of AI-based solutions in healthcare. This demands increased knowledge and AI literacy among health care professionals. OBJECTIVES: To assess the level of awareness among medical students and faculty about AI in preparation for teaching AI basics and data science applications in clinical practice in an integrated medical curriculum. METHODS: An online 15-question semi-structured questionnaire, previously tested and validated, was delivered among participants through convenience sampling. The questionnaire composed of 3 parts: participant’s background knowledge, AI awareness, and attitudes toward AI applications in medicine. RESULTS: A total of 182 students and 39 faculty members from Rawalpindi Medical University, Pakistan, participated in the study. Only 26% of students and 46.2% of faculty members responded that they were aware of AI topics in clinical medicine. The major source of AI knowledge was social media (35.7%) for students and professional talks and colleagues (43.6%) for faculty members. 23.5% of participants answered that they personally had a basic understanding of AI. Students and faculty (60.1%) were interested in AI in patient care and teaching domain. These findings parallel similar published AI survey results. CONCLUSION: This survey concludes interest among students and faculty in AI developments and technology applications in healthcare. Further studies are required in order to correctly fit AI in the integrated modular curriculum of medical education.

Keywords: medical education, data science, artificial intelligence, curriculum

Procedia PDF Downloads 68
170 The Applications of Toyota Production System to Reduce Wastes in Agricultural Products Packing Process: A Study of Onion Packing Plant

Authors: P. Larpsomboonchai

Abstract:

Agro-industry is one of major industries that has strong impacts on national economic incomes, growth, stability, and sustainable development. Moreover, this industry also has strong influences on social, cultural and political issues. Furthermore, this industry, as producing primary and secondary products, is facing challenges from such diverse factors such as demand inconsistency, intense international competition, technological advancements and new competitors. In order to maintain and to improve industry’s competitiveness in both domestics and international markets, science and technology are key factors. Besides hard sciences and technologies, modern industrial engineering concepts such as Just in Time (JIT) Total Quality Management (TQM), Quick Response (QR), Supply Chain Management (SCM) and Lean can be very effective to supportant to increase efficiency and effectiveness of these agricultural products on world stage. Onion is one of Thailand’s major export products which brings back national incomes. But, it also facing challenges in many ways. This paper focused its interests in onion packing process and its related activities such as storage and shipment from one of major packing plant and storage in Mae Wang District, Chiang Mai, Thailand, by applying Toyota Production System (TPS) or Lean concepts, to improve process capability throughout the entire packing and distribution process which will be profitable for the whole onion supply chain. And it will be beneficial to other related agricultural products in Thailand and other ASEAN countries.

Keywords: packing process, Toyota Production System (TPS), lean concepts, waste reduction, lean in agro-industries activities

Procedia PDF Downloads 238
169 Classic Modelled Hybrid Electric Vehicles Using The Power of Internet Of Things

Authors: Venkatesh Krishna Murthy

Abstract:

The era before government-regulated automotive designs gave us some astonishing vehicles that are well worth to keep on the road. The fact that restoring an automobile in 2015 does not mean it will perform like one designed in 2021. This is one of the reasons that manufacturers continue to turn to vintage hardware for future enhancements in their vehicles. Now we need to understand that a modern chassis could possibly allow manufacturers to give vintage performance cars a level of braking capability, compatibility with tires, chassis rigidity, suspension sophistication, and steering response, an experience only racers got until now. However, half a century of advancements in engineering can have a great impact on design in any field, and the automotive realm which holds no exception. In the current situation, a growing number of companies offer chassis and braking components to onboard manufacturers to retrofit contemporary technology for their vintage vehicles to modernize them at the foundation level. The recent question arises on performance on lithium batteries, as opposed to simply bolting upgraded components, for ex. lithium batteries with graphene as superconductive material to enhance performance, an area deeply investigated. Serving as the “bones” of the vehicle, the chassis and frame play a central role in dictating how that automobile will perform. While the desire to maintain originality is alluring for many, the benefits of a modern chassis are vast. In some situations, it also allows builders to put cars back on the road that might otherwise be too far gone. “There’s a couple of different factors at play here – one of them being that these older cars from the ’40s, ’50s, and ’60s have seen a lot of weather and a lot of road miles over the years, more often than not,” says Craig Morrison of Art Morrison Enterprises.

Keywords: hybrid electric vehicles, internet of things, lithium graphene batteries, classic car chassis

Procedia PDF Downloads 147
168 The Use of Mobile Phone as Enhancement to Mark Multiple Choice Objectives English Grammar and Literature Examination: An Exploratory Case Study of Preliminary National Diploma Students, Abdu Gusau Polytechnic, Talata Mafara, Zamfara State, Nigeria

Authors: T. Abdulkadir

Abstract:

Most often, marking and assessment of multiple choice kinds of examinations have been opined by many as a cumbersome and herculean task to accomplished manually in Nigeria. Usually this may be in obvious nexus to the fact that mass numbers of candidates were known to take the same examination simultaneously. Eventually, marking such a mammoth number of booklets dared and dread even the fastest paid examiners who often undertake the job with the resulting consequences of stress and boredom. This paper explores the evolution, as well as the set aim to envision and transcend marking the Multiple Choice Objectives- type examination into a thing of creative recreation, or perhaps a more relaxing activity via the use of the mobile phone. A more “pragmatic” dimension method was employed to achieve this work, rather than the formal “in-depth research” based approach due to the “novelty” of the mobile-smartphone e-Marking Scheme discovery. Moreover, being an evolutionary scheme, no recent academic work shares a direct same topic concept with the ‘use of cell phone as an e-marking technique’ was found online; thus, the dearth of even miscellaneous citations in this work. Additional future advancements are what steered the anticipatory motive of this paper which laid the fundamental proposition. However, the paper introduces for the first time the concept of mobile-smart phone e-marking, the steps to achieve it, as well as the merits and demerits of the technique all spelt out in the subsequent pages.

Keywords: cell phone, e-marking scheme (eMS), mobile phone, mobile-smart phone, multiple choice objectives (MCO), smartphone

Procedia PDF Downloads 220
167 Computational Intelligence and Machine Learning for Urban Drainage Infrastructure Asset Management

Authors: Thewodros K. Geberemariam

Abstract:

The rapid physical expansion of urbanization coupled with aging infrastructure presents a unique decision and management challenges for many big city municipalities. Cities must therefore upgrade and maintain the existing aging urban drainage infrastructure systems to keep up with the demands. Given the overall contribution of assets to municipal revenue and the importance of infrastructure to the success of a livable city, many municipalities are currently looking for a robust and smart urban drainage infrastructure asset management solution that combines management, financial, engineering and technical practices. This robust decision-making shall rely on sound, complete, current and relevant data that enables asset valuation, impairment testing, lifecycle modeling, and forecasting across the multiple asset portfolios. On this paper, predictive computational intelligence (CI) and multi-class machine learning (ML) coupled with online, offline, and historical record data that are collected from an array of multi-parameter sensors are used for the extraction of different operational and non-conforming patterns hidden in structured and unstructured data to determine and produce actionable insight on the current and future states of the network. This paper aims to improve the strategic decision-making process by identifying all possible alternatives; evaluate the risk of each alternative, and choose the alternative most likely to attain the required goal in a cost-effective manner using historical and near real-time urban drainage infrastructure data for urban drainage infrastructures assets that have previously not benefited from computational intelligence and machine learning advancements.

Keywords: computational intelligence, machine learning, urban drainage infrastructure, machine learning, classification, prediction, asset management space

Procedia PDF Downloads 119
166 The Early Discovery and Confirmation of the Indus Valley Civilization

Authors: Muhammad Ishaqa, Quanchao Zhanga, Qian Wangb

Abstract:

The Indus Valley Civilization is predominantly found in the northeast of Afghanistan, Pakistan, and the northwest of India and is considered one of the four ancient civilizations of the Old World, as well as the first urban civilization in South Asia. In 1920, John Marshall and other archaeologists established the existence of this civilization. Over the course of a century, India and Pakistan have made significant advancements in their joint archaeological investigation and excavation, contributing to the study of the Indus Valley Civilization. Given the importance of early discovery and confirmation of this civilization, our research focuses on the academic history of its archaeology by gathering published research material. Our research begins by collecting research data associated with the Indus Valley Civilization and documenting the process of archaeological investigations and excavations from the 19th century until the present day. We also summarize the archaeological works conducted during different periods. Furthermore, we present the primary academic views on the Indus Civilization from the 19th century until the present, explaining their developmental process and highlighting recent research. This forms a foundation for further study. We discovered that the archaeological research of the Indus Civilization is significantly influenced by Western archaeology and has yet to establish an independent, local research system. We delve into the three primary sites of the Indus Valley Civilization - Harappa, Mohenjo-Daro, and Chanhudaro - discussing their history and archaeological excavation records. Our findings indicate that the Indus Civilization is solely dependent on archaeology, distinguishing it from the Sumerian Civilization and verifying that it originates from the Bronze Age of the Indus Valley. Lastly, we examine the primary academic issues associated with the Indus Civilization in greater depth. These issues include climate environment, political system, primitive religion, and academic contribution.

Keywords: Indus Valley civilization, archaeology, Harappa, Mohenjo-Daro

Procedia PDF Downloads 27
165 A Conceptual Framework of Impact of Lean on the Performance of Construction Industry

Authors: Jaber Shurrab, Matloub Hussain

Abstract:

The rapid pace of changes in the construction industry, technological advancements, and rising costs present tremendous challenges for project managers. Project managers are under severe pressure to minimize the waste, improve the efficiency of the entire operations and the philosophy of ‘lean thinking’ so that ‘more could be achieved with less’ is becoming very popular. Though, lean management has strong roots in manufacturing industry and over the last decade lean philosophy has started gaining attention in the service industry as well. However, little has been known in the context of waste minimization and lean implementation in the construction industry and this paper deals with this important issue. The primary objective of this paper is to propose a conceptual framework for the exploration of appropriate lean techniques applicable to medium and large construction companies and measure their impact on the competitiveness and economic performance of construction companies of United Arab Emirates (UAE). To this end, a comprehensive literature review and interviews with eight project managers of medium and large construction companies of UAE have been conducted. It has been found that competitive, reduce waste and costs are critical to the construction industry. This is an ongoing research in lean management, giving project managers a practical framework for improving the efficiency of their project through various lean techniques. Originality/value: Research significance emphasizes increasing the effectiveness of the construction industry, influences the development of lean construction framework which improves lean construction practices using the lean techniques. This contributes to the effort of applying lean techniques in the construction industry. Limited publications were done in the construction industry mainly in United Arab Emirates (UAE) compared to the lean manufacturing. This research will recommend a systematic approach for the implementing of the anticipated framework within a cyclical look-ahead period and emphasizes the practical implications of the proposed approach.

Keywords: construction, lean, lean manufacturing, waste

Procedia PDF Downloads 257
164 Applications of Evolutionary Optimization Methods in Reinforcement Learning

Authors: Rahul Paul, Kedar Nath Das

Abstract:

The paradigm of Reinforcement Learning (RL) has become prominent in training intelligent agents to make decisions in environments that are both dynamic and uncertain. The primary objective of RL is to optimize the policy of an agent in order to maximize the cumulative reward it receives throughout a given period. Nevertheless, the process of optimization presents notable difficulties as a result of the inherent trade-off between exploration and exploitation, the presence of extensive state-action spaces, and the intricate nature of the dynamics involved. Evolutionary Optimization Methods (EOMs) have garnered considerable attention as a supplementary approach to tackle these challenges, providing distinct capabilities for optimizing RL policies and value functions. The ongoing advancement of research in both RL and EOMs presents an opportunity for significant advancements in autonomous decision-making systems. The convergence of these two fields has the potential to have a transformative impact on various domains of artificial intelligence (AI) applications. This article highlights the considerable influence of EOMs in enhancing the capabilities of RL. Taking advantage of evolutionary principles enables RL algorithms to effectively traverse extensive action spaces and discover optimal solutions within intricate environments. Moreover, this paper emphasizes the practical implementations of EOMs in the field of RL, specifically in areas such as robotic control, autonomous systems, inventory problems, and multi-agent scenarios. The article highlights the utilization of EOMs in facilitating RL agents to effectively adapt, evolve, and uncover proficient strategies for complex tasks that may pose challenges for conventional RL approaches.

Keywords: machine learning, reinforcement learning, loss function, optimization techniques, evolutionary optimization methods

Procedia PDF Downloads 52
163 Machine Learning-Based Techniques for Detecting and Mitigating Cyber-attacks on Automatic Generation Control in Smart Grids

Authors: Sami M. Alshareef

Abstract:

The rapid growth of smart grid technology has brought significant advancements to the power industry. However, with the increasing interconnectivity and reliance on information and communication technologies, smart grids have become vulnerable to cyber-attacks, posing significant threats to the reliable operation of power systems. Among the critical components of smart grids, the Automatic Generation Control (AGC) system plays a vital role in maintaining the balance between generation and load demand. Therefore, protecting the AGC system from cyber threats is of paramount importance to maintain grid stability and prevent disruptions. Traditional security measures often fall short in addressing sophisticated and evolving cyber threats, necessitating the exploration of innovative approaches. Machine learning, with its ability to analyze vast amounts of data and learn patterns, has emerged as a promising solution to enhance AGC system security. Therefore, this research proposal aims to address the challenges associated with detecting and mitigating cyber-attacks on AGC in smart grids by leveraging machine learning techniques on automatic generation control of two-area power systems. By utilizing historical data, the proposed system will learn the normal behavior patterns of AGC and identify deviations caused by cyber-attacks. Once an attack is detected, appropriate mitigation strategies will be employed to safeguard the AGC system. The outcomes of this research will provide power system operators and administrators with valuable insights into the vulnerabilities of AGC systems in smart grids and offer practical solutions to enhance their cyber resilience.

Keywords: machine learning, cyber-attacks, automatic generation control, smart grid

Procedia PDF Downloads 57
162 Enhancing Construction Project Management through Cognitive Science and Neuroimaging: A Comprehensive Literature Review

Authors: Krishna Kisi, Tulio Sulbaran

Abstract:

This literature review offers valuable insights into integrating cognitive science and neuroimaging with project management practices, presenting a crucial resource for leadership within the construction industry. This paper highlights the significant benefits of applying interdisciplinary approaches to enhance project management effectiveness and project outcomes by exploring the intricate connections between cognitive processes, decision-making, and project management. Key findings emphasize the critical role of cognitive status in determining the performance and project outcomes of construction workers, underlining the necessity for leadership to prioritize cognitive well-being and mental health as central components of project management strategies. The review identifies a gap in current practices, particularly the need for more objective tools for assessing cognitive status within the construction sector, and proposes the adoption of neuroimaging technologies to bridge this gap. The study highlights how integrating cognitive psychology and neuroscience clarifies decision-making processes, aiding leaders in comprehending the mental constraints and biases that influence project decisions. By integrating neuroscientific insights with traditional management practices, leaders can enhance their strategies for training, team dynamics, and risk assessment, ultimately leading to more informed, efficient, and productive construction project management. This comprehensive literature review underscores the importance of adopting an interdisciplinary approach to leadership and management within high-risk industries. It provides a foundation for construction project managers to leverage cognitive science and neuroimaging advancements to improve efficiency, productivity, and decision-making in construction projects' complex and dynamic environments.

Keywords: decision making, literature review, neuroimaging, project management

Procedia PDF Downloads 16
161 Beyond Diagnosis: Innovative Instructional Methods for Children with Multiple Disabilities

Authors: Patricia Kopetz

Abstract:

Too often our youngest children with disabilities receive diagnostic labels and accompanying treatment plans based upon perceptions that the children are of limited aptitude and/or ambition. However, children of varied-ability levels who are diagnosed with ‘multiple disabilities,’ can participate and excel in school-based instruction that aligns with their desires, interests, and fortitude – criteria components not foretold by scores on standardized assessments. The paper represents theoretical work in Special Education Innovative Instruction, and includes presenting research materials, some developed by the author herself. The majority of students with disabilities are now served in general education settings in the United States, embracing inclusive practices in our schools. ‘There is now a stronger call for special education to step up and improve efficiency, implement evidence-based practices, and provide greater accountability on key performance indicators that support successful academic and post-school outcomes for students with disabilities.’ For example, in the United States, the Office of Special Education Programs (OSEP) is focusing on results-driven indicators to improve outcomes for students with disabilities. School personnel are appreciating the implications of research-driven approaches for students diagnosed with multiple disabilities, and aim to align their practices toward such focus. The paper presented will provide updates on current theoretical principles and perspectives, and explore advancements in latest, evidence-based and results-driven instructional practices that can motivate children with multiple disabilities to advance their skills and engage in learning activities that as nonconventional, innovative, and proven successful.

Keywords: childhood special education, educational technology , innovative instruction, multiple disabilities

Procedia PDF Downloads 222
160 Artificial Intelligence Techniques for Enhancing Supply Chain Resilience: A Systematic Literature Review, Holistic Framework, and Future Research

Authors: Adane Kassa Shikur

Abstract:

Today’s supply chains (SC) have become vulnerable to unexpected and ever-intensifying disruptions from myriad sources. Consequently, the concept of supply chain resilience (SCRes) has become crucial to complement the conventional risk management paradigm, which has failed to cope with unexpected SC disruptions, resulting in severe consequences affecting SC performances and making business continuity questionable. Advancements in cutting-edge technologies like artificial intelligence (AI) and their potential to enhance SCRes by improving critical antecedents in the different phases have attracted the attention of scholars and practitioners. The research from academia and the practical interest of the industry have yielded significant publications at the nexus of AI and SCRes during the last two decades. However, the applications and examinations have been primarily conducted independently, and the extant literature is dispersed into research streams despite the complex nature of SCRes. To close this research gap, this study conducts a systematic literature review of 106 peer-reviewed articles by curating, synthesizing, and consolidating up-to-date literature and presents the state-of-the-art development from 2010 to 2022. Bayesian networks are the most topical ones among the 13 AI techniques evaluated. Concerning the critical antecedents, visibility is the first ranking to be realized by the techniques. The study revealed that AI techniques support only the first 3 phases of SCRes (readiness, response, and recovery), and readiness is the most popular one, while no evidence has been found for the growth phase. The study proposed an AI-SCRes framework to inform research and practice to approach SCRes holistically. It also provided implications for practice, policy, and theory as well as gaps for impactful future research.

Keywords: ANNs, risk, Bauesian networks, vulnerability, resilience

Procedia PDF Downloads 47