Search results for: active and passive flow control methods
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28731

Search results for: active and passive flow control methods

28641 Passive Solar-Driven Membrane Distiller for Desalination: Effect of Middle Layer Material and Thickness on Desalination Performance

Authors: Glebert C. Dadol, Camila Flor Y. Lobarbio, Noel Peter B. Tan

Abstract:

Water scarcity is a global problem. One of the promising solutions to this challenge is the use of membrane-based desalination technologies. In this study, a passive solar-driven membrane (PSDM) distillation was employed to test its desalination performance. The PSDM was fabricated using a TiNOX sheet solar absorber, cellulose-based hydrophilic top and bottom layers, and a middle layer. The effects of the middle layer material and thickness on the desalination performance in terms of distillate flow rate, productivity, and salinity were investigated. An air-gap screen mesh (2 mm, 4 mm, 6 mm thickness) and a hydrophobic PTFE membrane (0.3 mm thickness) were used as middle-layer materials. Saltwater input (35 g/L NaCl) was used for the PSDM distiller on a rooftop setting at the University of San Carlos, Cebu City, Philippines. The highest distillate flow rate and productivity of 1.08 L/m²-h and 1.47 L/kWh, respectively, were achieved using a 2 mm air-gap middle layer, but it also resulted in a high salinity of 25.20 g/L. Increasing the air gap lowered the salinity but also decreased the flow rate and productivity. The lowest salinity of 1.07 g/L was achieved using 6 mm air gap, but the flow rate and productivity were reduced to 0.08 L/m²-h and 0.17 L/kWh, respectively. The use of a hydrophobic PTFE membrane, on the other hand, did not offer a significant improvement in its performance. A PDSM distiller with a thick air gap as the middle layer can deliver a distillate with low salinity and is preferred over a thin hydrophobic PTFE membrane. Various modifications and optimizations to the distiller can be done to improve its performance further.

Keywords: desalination, membrane distillation, passive solar-driven membrane distiller, solar distillation

Procedia PDF Downloads 88
28640 Retrofitted Semi-Active Suspension System for a Eelectric Model Vehicle

Authors: Shiuh-Jer Huang, Yun-Han Yeh

Abstract:

A 40 steps manual adjusting shock absorber was refitted with DC motor driving mechanism to construct as a semi-active suspension system for a four-wheel drive electric vehicle. Accelerometer and potentiometer sensors are installed to measure the sprung mass acceleration and suspension system compression or rebound states for control purpose. A fuzzy logic controller was designed to derive appropriate damping target based on vehicle running condition for semi-active suspension system to follow. The damping ratio control of each wheel axis suspension system is executed with a robust fuzzy sliding mode controller (FSMC). Different road surface conditions are chosen to evaluate the control performance of this semi-active suspension system based on wheel axis acceleration signal.

Keywords: semi-active suspension, electric vehicle, fuzzy sliding mode control, accelerometer

Procedia PDF Downloads 450
28639 Design and Development of an Innovative MR Damper Based on Intelligent Active Suspension Control of a Malaysia's Model Vehicle

Authors: L. Wei Sheng, M. T. Noor Syazwanee, C. J. Carolyna, M. Amiruddin, M. Pauziah

Abstract:

This paper exhibits the alternatives towards active suspension systems revised based on the classical passive suspension system to improve comfort and handling performance. An active Magneto rheological (MR) suspension system is proposed as to explore the active based suspension system to enhance performance given its freedom to independently specify the characteristics of load carrying, handling, and ride quality. Malaysian quarter car with two degrees of freedom (2DOF) system is designed and constructed to simulate the actions of an active vehicle suspension system. The structure of a conventional twin-tube shock absorber is modified both internally and externally to comprehend with the active suspension system. The shock absorber peripheral structure is altered to enable the assembling and disassembling of the damper through a non-permanent joint whereby the stress analysis of the designed joint is simulated using Finite Element Analysis. Simulation on the internal part where an electrified copper coil of 24AWG is winded is done using Finite Element Method Magnetics to measure the magnetic flux density inside the MR damper. The primary purpose of this approach is to reduce the vibration transmitted from the effects of road surface irregularities while maintaining solid manoeuvrability. The aim of this research is to develop an intelligent control system of a consecutive damping automotive suspension system. The ride quality is improved by means of the reduction of the vertical body acceleration caused by the car body when it experiences disturbances from speed bump and random road roughness. Findings from this research are expected to enhance the quality of ride which in return can prevent the deteriorating effect of vibration on the vehicle condition as well as the passengers’ well-being.

Keywords: active suspension, FEA, magneto rheological damper, Malaysian quarter car model, vibration control

Procedia PDF Downloads 185
28638 CFD Analysis of Passive Cooling Building by Using Solar Chimney for Mild or Warm Climates

Authors: Naci Kalkan, Ihsan Dagtekin

Abstract:

This research presents the design and analysis of solar air-conditioning systems particularly solar chimney which is a passive strategy for natural ventilation, and demonstrates the structures of these systems’ using Computational Fluid Dynamic (CFD) and finally compares the results with several examples, which have been studied experimentally and carried out previously. In order to improve the performance of solar chimney system, highly efficient sub-system components are considered for the design. The general purpose of the research is to understand how efficiently solar chimney systems generate cooling, and is to improve the efficient of such systems for integration with existing and future domestic buildings.

Keywords: active and passive solar technologies, solar cooling system, solar chimney, natural ventilation, cavity depth, CFD models for solar chimney

Procedia PDF Downloads 541
28637 The Spatial and Temporal Distribution of Ambient Benzene, Toluene, Ethylbenzene and Xylene Concentrations at an International Airport in South Africa

Authors: Ryan S. Johnson, Raeesa Moolla

Abstract:

Airports are known air pollution hotspots due to the variety of fuel driven activities that take place within the confines of them. As such, people working within airports are particularly vulnerable to exposure of hazardous air pollutants, including hundreds of aromatic hydrocarbons, and more specifically a group of compounds known as BTEX (viz. benzene, toluene, ethyl-benzene and xylenes). These compounds have been identified as being harmful to human and environmental health. Through the use of passive and active sampling methods, the spatial and temporal variability of benzene, toluene, ethyl-benzene and xylene concentrations within the international airport was investigated. Two sampling campaigns were conducted. In order to quantify the temporal variability of concentrations within the airport, an active sampling strategy using the Synspec Spectras Gas Chromatography 955 instrument was used. Furthermore, a passive sampling campaign, using Radiello Passive Samplers was used to quantify the spatial variability of these compounds. In addition, meteorological factors are known to affect the dispersal and dilution of pollution. Thus a Davis Pro-Weather 2 station was utilised in order to measure in situ weather parameters (viz. wind speed, wind direction and temperature). Results indicated that toluene varied on a daily, temporal scale considerably more than other concentrations. Toluene further exhibited a strong correlation with regards to the meteorological parameters, inferring that toluene was affected by these parameters to a greater degree than the other pollutants. The passive sampling campaign revealed BTEXtotal concentrations ranged between 12.95 – 124.04 µg m-3. From the results obtained it is clear that benzene, toluene, ethyl-benzene and xylene concentrations are heterogeneously spatially dispersed within the airport. Due to the slow wind speeds recorded over the passive sampling campaign (1.13 m s-1.), the hotspots were located close to the main concentration sources. The most significant hotspot was located over the main apron of the airport. It is recommended that further, extensive investigations into the seasonality of hazardous air pollutants at the airport is necessary in order for sound conclusions to be made about the temporal and spatial distribution of benzene, toluene, ethyl-benzene and xylene concentrations within the airport.

Keywords: airport, air pollution hotspot, BTEX concentrations, meteorology

Procedia PDF Downloads 171
28636 A Passive Reaction Force Compensation for a Linear Motor Motion Stage Using Pre-Compressed Springs

Authors: Kim Duc Hoang, Hyeong Joon Ahn

Abstract:

Residual vibration of the system base due to a high-acceleration motion of a stage may reduce life and productivity of the manufacturing device. Although a passive RFC can reduce vibration of the system base, spring or dummy mass should be replaced to tune performance of the RFC. In this paper, we develop a novel concept of the passive RFC mechanism for a linear motor motion stage using pre-compressed springs. Dynamic characteristic of the passive RFC can be adjusted by pre-compression of the spring without exchanging the spring or dummy mass. First, we build a linear motor motion stage with pre-compressed springs. Then, the effect of the pre-compressed spring on the passive RFC is investigated by changing both pre-compressions and stiffness of springs. Finally, the effectiveness of the passive RFC using pre-compressed springs was verified with both simulations and experiments.

Keywords: linear motor motion stage, residual vibration, passive RFC, pre-compressed spring

Procedia PDF Downloads 317
28635 Passive Heat Exchanger for Proton Exchange Membrane Fuel Cell Cooling

Authors: Ivan Tolj

Abstract:

Water produced during electrochemical reaction in Proton Exchange Membrane (PEM) fuel cell can be used for internal humidification of reactant gases; hydrogen and air. On such a way it is possible to eliminate expensive external humidifiers and simplify fuel cell balance-of-plant (BoP). When fuel cell operates at constant temperature (usually between 60 °C and 80 °C) relatively cold and dry ambient air heats up quickly upon entering channels which cause further drop in relative humidity (below 20%). Low relative humidity of reactant gases dries up polymer membrane and decrease its proton conductivity which results in fuel cell performance drop. It is possible to maintain such temperature profile throughout fuel cell cathode channel which will result in close to 100 % RH. In order to achieve this, passive heat exchanger was designed using commercial CFD software (ANSYS Fluent). Such passive heat exchanger (with variable surface area) is suitable for small scale PEM fuel cells. In this study, passive heat exchanger for single PEM fuel cell segment (with 20 x 1 cm active area) was developed. Results show close to 100 % RH of air throughout cathode channel with increased fuel cell performance (mainly improved polarization curve) and improved durability.

Keywords: PEM fuel cell, passive heat exchange, relative humidity, thermal management

Procedia PDF Downloads 243
28634 Building on Previous Microvalving Approaches for Highly Reliable Actuation in Centrifugal Microfluidic Platforms

Authors: Ivan Maguire, Ciprian Briciu, Alan Barrett, Dara Kervick, Jens Ducrèe, Fiona Regan

Abstract:

With the ever-increasing myriad of applications of which microfluidic devices are capable, reliable fluidic actuation development has remained fundamental to the success of these microfluidic platforms. There are a number of approaches which can be taken in order to integrate liquid actuation on microfluidic platforms, which can usually be split into two primary categories; active microvalves and passive microvalves. Active microvalves are microfluidic valves which require a physical parameter change by external, or separate interaction, for actuation to occur. Passive microvalves are microfluidic valves which don’t require external interaction for actuation due to the valve’s natural physical parameters, which can be overcome through sample interaction. The purpose of this paper is to illustrate how further improvements to past microvalve solutions can largely enhance systematic reliability and performance, with both novel active and passive microvalves demonstrated. Covered within this scope will be two alternative and novel microvalve solutions for centrifugal microfluidic platforms; a revamped pneumatic-dissolvable film active microvalve (PAM) strategy and a spray-on Sol-Gel based hydrophobic passive microvalve (HPM) approach. Both the PAM and the HPM mechanisms were demonstrated on a centrifugal microfluidic platform consisting of alternating layers of 1.5 mm poly(methyl methacrylate) (PMMA) (for reagent storage) sheets and ~150 μm pressure sensitive adhesive (PSA) (for microchannel fabrication) sheets. The PAM approach differs from previous SOLUBON™ dissolvable film methods by introducing a more reliable and predictable liquid delivery mechanism to microvalve site, thus significantly reducing premature activation. This approach has also shown excellent synchronicity when performed in a multiplexed form. The HPM method utilises a new spray-on and low curing temperature (70°C) sol-gel material. The resultant double layer coating comprises a PMMA adherent sol-gel as the bottom layer and an ultra hydrophobic silica nano-particles (SNPs) film as the top layer. The optimal coating was integrated to microfluidic channels with varying cross-sectional area for assessing microvalve burst frequencies consistency. It is hoped that these microvalving solutions, which can be easily added to centrifugal microfluidic platforms, will significantly improve automation reliability.

Keywords: centrifugal microfluidics, hydrophobic microvalves, lab-on-a-disc, pneumatic microvalves

Procedia PDF Downloads 166
28633 Experimental Study of Complete Loss of Coolant Flow (CLOF) Test by System–Integrated Modular Advanced Reactor Integral Test Loop (SMART-ITL) with Passive Residual Heat Removal System (PRHRS)

Authors: Jin Hwa Yang, Hwang Bae, Sung Uk Ryu, Byong Guk Jeon, Sung Jae Yi, Hyun Sik Park

Abstract:

Experimental studies using a large-scale thermal-hydraulic integral test facility, System–integrated Modular Advanced Reactor Integral Test Loop (SMART-ITL), have been carried out to validate the performance of the prototype, SMART. After Fukushima accident, the passive safety systems have been dealt as important designs for retaining of nuclear safety. One of the concerned scenarios for evaluating the passive safety system is a Complete Loss of Coolant Flow (CLOF). The flowrate of coolant in the primary system is maintained by Reactor Coolant Pump (RCP). When the supply of electric power of RCP is shut off, the flowrate of coolant decreases sharply, and the temperature of the coolant increases rapidly. Therefore, the reactor trip signal is activated to prevent the over-heating of the core. In this situation, Passive Residual Heat Removal System (PRHRS) plays a significant role to assure the soundness of the SMART. The PRHRS using a two-phase natural circulation is a passive safety system in the SMART to eliminate the heat of steam generator in the secondary system with heat exchanger submarined in the Emergency Cooling Tank (ECT). As the RCPs continue to coast down, inherent natural circulation in the primary system transfers heat to the secondary system. The transferred heat is removed by PRHRS in the secondary system. In this paper, the progress of the CLOF accident is described with experimental data of transient condition performed by SMART-ITL. Finally, the capability of passive safety system and inherent natural circulation will be evaluated.

Keywords: CLOF, natural circulation, PRHRS, SMART-ITL

Procedia PDF Downloads 417
28632 BodeACD: Buffer Overflow Vulnerabilities Detecting Based on Abstract Syntax Tree, Control Flow Graph, and Data Dependency Graph

Authors: Xinghang Lv, Tao Peng, Jia Chen, Junping Liu, Xinrong Hu, Ruhan He, Minghua Jiang, Wenli Cao

Abstract:

As one of the most dangerous vulnerabilities, effective detection of buffer overflow vulnerabilities is extremely necessary. Traditional detection methods are not accurate enough and consume more resources to meet complex and enormous code environment at present. In order to resolve the above problems, we propose the method for Buffer overflow detection based on Abstract syntax tree, Control flow graph, and Data dependency graph (BodeACD) in C/C++ programs with source code. Firstly, BodeACD constructs the function samples of buffer overflow that are available on Github, then represents them as code representation sequences, which fuse control flow, data dependency, and syntax structure of source code to reduce information loss during code representation. Finally, BodeACD learns vulnerability patterns for vulnerability detection through deep learning. The results of the experiments show that BodeACD has increased the precision and recall by 6.3% and 8.5% respectively compared with the latest methods, which can effectively improve vulnerability detection and reduce False-positive rate and False-negative rate.

Keywords: vulnerability detection, abstract syntax tree, control flow graph, data dependency graph, code representation, deep learning

Procedia PDF Downloads 142
28631 Reductions of Control Flow Graphs

Authors: Robert Gold

Abstract:

Control flow graphs are a well-known representation of the sequential control flow structure of programs with a multitude of applications. Not only single functions but also sets of functions or complete programs can be modelled by control flow graphs. In this case the size of the graphs can grow considerably and thus makes it difficult for software engineers to analyse the control flow. Graph reductions are helpful in this situation. In this paper we define reductions to subsets of nodes. Since executions of programs are represented by paths through the control flow graphs, paths should be preserved. Furthermore, the composition of reductions makes a stepwise analysis approach possible.

Keywords: control flow graph, graph reduction, software engineering, software applications

Procedia PDF Downloads 517
28630 Linear Semi Active Controller of Magneto-Rheological Damper for Seismic Vibration Attenuation

Authors: Zizouni Khaled, Fali Leyla, Sadek Younes, Bousserhane Ismail Khalil

Abstract:

In structural vibration caused principally by an earthquake excitation, the most vibration’s attenuation system used recently is the semi active control with a Magneto Rheological Damper device. This control was a subject of many researches and works in the last years. The big challenges of searchers in this case is to propose an adequate controller with a robust algorithm of current or tension adjustment. In this present paper, a linear controller is proposed to control the MR damper using to reduce a vibrations of three story structure exposed to El Centro’s 1940 and Boumerdès 2003 earthquakes. In this example, the MR damper is installed in the first floor of the structure. The numerical simulations results of the proposed linear control with a feedback law based on clipped optimal algorithm showed the feasibility of the semi active control to protecting civil structures. The comparison of the controlled structure and uncontrolled structures responses illustrate clearly the performance and the effectiveness of the simple proposed approach.

Keywords: MR damper, seismic vibration, semi-active control

Procedia PDF Downloads 257
28629 Dilation Effect on 3D Passive Earth Pressure Coefficients for Retaining Wall

Authors: Khelifa Tarek, Benmebarek Sadok

Abstract:

The 2D passive earth pressures acting on rigid retaining walls problem has been widely treated in the literature using different approaches (limit equilibrium, limit analysis, slip line and numerical computation), however, the 3D passive earth pressures problem has received less attention. This paper is concerned with the numerical study of 3D passive earth pressures induced by the translation of a rigid rough retaining wall for associated and non-associated soils. Using the explicit finite difference code FLAC3D, the increase of the passive earth pressures due to the decrease of the wall breadth is investigated. The results given by the present numerical analysis are compared with other investigation. The influence of the angle of dilation on the coefficients is also studied.

Keywords: numerical modeling, FLAC3D, retaining wall, passive earth pressures, angle of dilation

Procedia PDF Downloads 295
28628 Design, Optimize the Damping System for Optical Scanning Equipment

Authors: Duy Nhat Tran, Van Tien Pham, Quang Trung Trinh, Tien Hai Tran, Van Cong Bui

Abstract:

In recent years, artificial intelligence and the Internet of Things have experienced significant advancements. Collecting image data and real-time analysis and processing of tasks have become increasingly popular in various aspects of life. Optical scanning devices are widely used to observe and analyze different environments, whether fixed outdoors, mounted on mobile devices, or used in unmanned aerial vehicles. As a result, the interaction between the physical environment and these devices has become more critical in terms of safety. Two commonly used methods for addressing these challenges are active and passive approaches. Each method has its advantages and disadvantages, but combining both methods can lead to higher efficiency. One solution is to utilize direct-drive motors for position control and real-time feedback within the operational range to determine appropriate control parameters with high precision. If the maximum motor torque is smaller than the inertial torque and the rotor reaches the operational limit, the spring system absorbs the impact force. Numerous experiments have been conducted to demonstrate the effectiveness of device protection during operation.

Keywords: optical device, collision safety, collision absorption, precise mechanics

Procedia PDF Downloads 28
28627 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller

Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou

Abstract:

This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.

Keywords: wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller

Procedia PDF Downloads 389
28626 Performance Evaluation of Dynamic Signal Control System for Mixed Traffic Conditions

Authors: Aneesh Babu, S. P. Anusha

Abstract:

A dynamic signal control system combines traditional traffic lights with an array of sensors to intelligently control vehicle and pedestrian traffic. The present study focus on evaluating the performance of dynamic signal control systems for mixed traffic conditions. Data collected from four different approaches to a typical four-legged signalized intersection at Trivandrum city in the Kerala state of India is used for the study. Performance of three other dynamic signal control methods, namely (i) Non-sequential method (ii) Webster design for consecutive signal cycle using flow as input, and (iii) dynamic signal control using RFID delay as input, were evaluated. The evaluation of the dynamic signal control systems was carried out using a calibrated VISSIM microsimulation model. Python programming was used to integrate the dynamic signal control algorithm through the COM interface in VISSIM. The intersection delay obtained from different dynamic signal control methods was compared with the delay obtained from fixed signal control. Based on the study results, it was observed that the intersection delay was reduced significantly by using dynamic signal control methods. The dynamic signal control method using delay from RFID sensors resulted in a higher percentage reduction in delay and hence is a suitable choice for implementation under mixed traffic conditions. The developed dynamic signal control strategies can be implemented in ITS applications under mixed traffic conditions.

Keywords: dynamic signal control, intersection delay, mixed traffic conditions, RFID sensors

Procedia PDF Downloads 76
28625 Flow Control Optimisation Using Vortex Generators in Turbine Blade

Authors: J. Karthik, G. Vinayagamurthy

Abstract:

Aerodynamic flow control is achieved by interaction of flowing medium with corresponding structure so that its natural flow state is disturbed to delay the transition point. This paper explains the aerodynamic effect and optimized design of Vortex Generators on the turbine blade to achieve maximum flow control. The airfoil is chosen from NREL [National Renewable Energy Laboratory] S-series airfoil as they are characterized with good lift characteristics and lower noise. Vortex generators typically chosen are Ogival, Rectangular, Triangular and Tapered Fin shapes attached near leading edge. Vortex generators are typically distributed from the primary to tip of the blade section. The design wind speed is taken as 6m/s and the computational analysis is executed. The blade surface is simulated using k- ɛ SST model and results are compared with X-FOIL results. The computational results are validated using Wind Tunnel Testing of the blade corresponding to the design speed. The effect of Vortex generators on the flow characteristics is studied from the results of analysis. By comparing the computational and test results of all shapes of Vortex generators; the optimized design is achieved for effective flow control corresponding to the blade.

Keywords: flow control, vortex generators, design optimisation, CFD

Procedia PDF Downloads 375
28624 Integrating Ergonomics at Design Stage in Development of Continuous Passive Motion Machine

Authors: Mahesh S. Harne, Sunil V. Deshmukh

Abstract:

A continuous passive motion machine improves and helps the patient to restore range of motion in various physiotherapy activities. The paper presents a concept for portable CPM. The device is used for various joint for upper and lower body extremities. The device is designed so that the active and passive motion is incorporated. During development, the physiotherapist and patient need is integrated with designer aspects. Various tools such as Analytical Higher Hierarchy process (AHP) and Quality Function Deployment (QFD) is used to integrate the need at the design stage. With market survey of various commercial CPM the gaps are identified, and efforts are made to fill the gaps with ergonomic need. Indian anthropomorphic dimension is referred. The device is modular to best suit for all the anthropomorphic need of different human. Experimentation is carried under the observation of physiotherapist and doctor on volunteer patient. We reported better results are compare to conventional CPM with comfort and less pain. We concluded that the concept will be helpful to reduces therapy cost and wide utility of device for various joint and physiotherapy exercise.

Keywords: continuous passive motion machine, ergonomics, physiotherapy, quality function deployment

Procedia PDF Downloads 151
28623 Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 528
28622 Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator with Active Disturbance Rejection Control

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 475
28621 The Active Subject and the Victim of Trafficking in Human Beings: Material and Procedural Criminal Law Approaches

Authors: Andrei Nastas, Sergiu Cernomopret

Abstract:

This research addresses trafficking in human beings, in terms of the active subject and the victim of this crime, through the prism of national and international regulations in material and procedural criminal matters. For the correlative approach of both mentioned aspects, the active subject and the victim of trafficking in human beings, the research addresses both its constituent elements and the way to prevent and combat this phenomenon through criminal proceedings. As follows, trafficking in human beings, from a material criminal point of view, involves two subjects of this crime (active subject - offender and passive subject - victim), while their procedural status differs depending on the case (victim or injured party). The result of the research highlights some clarifications, which find a theoretical-practical basis in the legal provisions, the specialized doctrine, and the judicial practice.

Keywords: victim, active subject, abuse, injured party, crime

Procedia PDF Downloads 102
28620 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator

Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss

Abstract:

This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.

Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking

Procedia PDF Downloads 501
28619 Channels Splitting Strategy for Optical Local Area Networks of Passive Star Topology

Authors: Peristera Baziana

Abstract:

In this paper, we present a network configuration for a WDM LANs of passive star topology that assume that the set of data WDM channels is split into two separate sets of channels, with different access rights over them. Especially, a synchronous transmission WDMA access algorithm is adopted in order to increase the probability of successful transmission over the data channels and consequently to reduce the probability of data packets transmission cancellation in order to avoid the data channels collisions. Thus, a control pre-transmission access scheme is followed over a separate control channel. An analytical Markovian model is studied and the average throughput is mathematically derived. The performance is studied for several numbers of data channels and various values of control phase duration.

Keywords: access algorithm, channels division, collisions avoidance, wavelength division multiplexing

Procedia PDF Downloads 266
28618 Auto Surgical-Emissive Hand

Authors: Abhit Kumar

Abstract:

The world is full of master slave Telemanipulator where the doctor’s masters the console and the surgical arm perform the operations, i.e. these robots are passive robots, what the world needs to focus is that in use of these passive robots we are acquiring doctors for operating these console hence the utilization of the concept of robotics is still not fully utilized ,hence the focus should be on active robots, Auto Surgical-Emissive Hand use the similar concept of active robotics where this anthropomorphic hand focuses on the autonomous surgical, emissive and scanning operation, enabled with the vision of 3 way emission of Laser Beam/-5°C < ICY Steam < 5°C/ TIC embedded in palm of the anthropomorphic hand and structured in a form of 3 way disc. Fingers of AS-EH (Auto Surgical-Emissive Hand) as called, will have tactile, force, pressure sensor rooted to it so that the mechanical mechanism of force, pressure and physical presence on the external subject can be maintained, conversely our main focus is on the concept of “emission” the question arises how all the 3 non related methods will work together that to merged in a single programmed hand, all the 3 methods will be utilized according to the need of the external subject, the laser if considered will be emitted via a pin sized outlet, this radiation is channelized via a thin channel which further connect to the palm of the surgical hand internally leading to the pin sized outlet, here the laser is used to emit radiation enough to cut open the skin for removal of metal scrap or any other foreign material while the patient is in under anesthesia, keeping the complexity of the operation very low, at the same time the TIC fitted with accurate temperature compensator will be providing us the real time feed of the surgery in the form of heat image, this gives us the chance to analyze the level, also ATC will help us to determine the elevated body temperature while the operation is being proceeded, the thermal imaging camera in rooted internally in the AS-EH while also being connected to the real time software externally to provide us live feedback. The ICY steam will provide the cooling effect before and after the operation, however for more utilization of this concept we can understand the working of simple procedure in which If a finger remain in icy water for a long time it freezes the blood flow stops and the portion become numb and isolated hence even if you try to pinch it will not provide any sensation as the nerve impulse did not coordinated with the brain hence sensory receptor did not got active which means no sense of touch was observed utilizing the same concept we can use the icy stem to be emitted via a pin sized hole on the area of concern ,temperature below 273K which will frost the area after which operation can be done, this steam can also be use to desensitized the pain while the operation in under process. The mathematical calculation, algorithm, programming of working and movement of this hand will be installed in the system prior to the procedure, since this AS-EH is a programmable hand it comes with the limitation hence this AS-EH robot will perform surgical process of low complexity only.

Keywords: active robots, algorithm, emission, icy steam, TIC, laser

Procedia PDF Downloads 331
28617 The Effects of Passive and Active Recoveries on Responses of Platelet Indices and Hemodynamic Variables to Resistance Exercise

Authors: Mohammad Soltani, Sajad Ahmadizad, Fatemeh Hoseinzadeh, Atefe Sarvestan

Abstract:

The exercise recovery is an important variable in designing resistance exercise training. This study determined the effects of passive and active recoveries on responses of platelet indices and hemodynamic variables to resistance exercise. Twelve healthy subjects (six men and six women, age, 25.4 ±2.5 yrs) performed two types of resistance exercise protocols (six exercises including upper- and lower-body parts) at two separate sessions with one-week intervening. First resistance protocol included three sets of six repetitions at 80% of 1RM with 2 min passive rest between sets and exercises; while, the second protocol included three sets of six repetitions at 60% of 1RM followed by active recovery included six repetitions of the same exercise at 20% of 1RM. The exercise volume was equalized. Three blood samples were taken before exercise, immediately after exercise and after 1-hour recovery, and analyzed for fibrinogen and platelet indices. Blood pressure (BP), heart rate (HR) and rate pressure product (RPP), were measured before, immediately after exercise and every 5 minutes during recovery. Data analyzes showed a significant increase in SBP (systolic blood pressure), HR, rate of pressure product (RPP) and PLT in response to resistance exercise (P<0.05) and that changes for HR and RPP were significantly different between two protocols (P<0.05). Furthermore, MPV and P_LCR did not change in response to resistance exercise, though significant reductions were observed after 1h recovery compared to before and after exercise (P<0.05). No significant changes in fibrinogen and PDW following two types of resistance exercise protocols were observed (P>0.05). On the other hand, no significant differences in platelet indices were found between the two protocols (P>0.05). Resistance exercise induces changes in platelet indices and hemodynamic variables, and that these changes are not related to the type of recovery and returned to normal levels after 1h recovery.

Keywords: hemodynamic variables, platelet indices, resistance exercise, recovery intensity

Procedia PDF Downloads 106
28616 Various Perspectives for the Concept of the Emotion Labor

Authors: Jae Soo Do, Kyoung-Seok Kim

Abstract:

Radical changes in the industrial environment, and spectacular developments of IT have changed the current of managements from people-centered to technology- or IT-centered. Interpersonal emotion exchanges have long become insipid and interactive services have also come as mechanical reactions. This study offers various concepts for the emotional labor based on traditional studies on emotional labor. Especially the present day, on which human emotions are subject to being served as machinized thing, is the time when the study on human emotions comes momentous. Precedent researches on emotional labors commonly and basically dealt with the relationship between the active group who performs actions and the passive group who is done with the action. This study focuses on the passive group and tries to offer a new perspective of 'liquid emotion' as a defence mechanism for the passive group from the external environment. Especially, this addresses a concrete discussion on directions of following studies on the liquid labor as a newly suggested perspective.

Keywords: emotion labor, surface acting, deep acting, liquid emotion

Procedia PDF Downloads 318
28615 Experimental Study of Reflective Roof as a Passive Cooling Method in Homes Under the Paradigm of Appropriate Technology

Authors: Javier Ascanio Villabona, Brayan Eduardo Tarazona Romero, Camilo Leonardo Sandoval Rodriguez, Arly Dario Rincon, Omar Lengerke Perez

Abstract:

Efficient energy consumption in the housing sector in relation to refrigeration is a concern in the construction and rehabilitation of houses in tropical areas. Thermal comfort is aggravated by heat gain on the roof surface by heat gains. Thus, in the group of passive cooling techniques, one of the practices and technologies in solar control that provide improvements in comfortable conditions are thermal insulation or geometric changes of the roofs. On the other hand, methods with reflection and radiation are the methods used to decrease heat gain by facilitating the removal of excess heat inside a building to maintain a comfortable environment. Since the potential of these techniques varies in different climatic zones, their application in different zones should be examined. This research is based on the experimental study of a prototype of a roof radiator as a method of passive cooling in homes, which was developed through an experimental research methodology making measurements in a prototype built by means of the paradigm of appropriate technology, with the aim of establishing an initial behavior of the internal temperature resulting from the climate of the external environment. As a starting point, a selection matrix was made to identify the typologies of passive cooling systems to model the system and its subsequent implementation, establishing its constructive characteristics. Step followed by the measurement of the climatic variables (outside the prototype) and microclimatic variables (inside the prototype) to obtain a database to be analyzed. As a final result, the decrease in temperature that occurs inside the chamber with respect to the outside temperature was evidenced. likewise, a linearity in its behavior in relation to the variations of the climatic variables.

Keywords: appropriate technology, enveloping, energy efficiency, passive cooling

Procedia PDF Downloads 70
28614 Development of 3D Neck Muscle to Analyze the Effect of Active Muscle Contraction in Whiplash Injury

Authors: Nisha Nandlal Sharma, Julaluk Carmai, Saiprasit Koetniyom, Bernd Markert

Abstract:

Whiplash Injuries are mostly experienced in car accidents. Symptoms of whiplash are commonly reported in studies, neck pain and headaches are two most common symptoms observed. The whiplash Injury mechanism is poorly understood. In present study, hybrid neck muscle model were developed with a combination of solid tetrahedral elements and 1D beam elements. Solid tetrahedral elements represents passive part of the muscle whereas, 1D beam elements represents active part. To simulate the active behavior of the muscle, Hill-type muscle model was applied to beam elements. To simulate non-linear passive properties of muscle, solid elements were modeled with rubber/foam material model. Some important muscles were then inserted into THUMS (Total Human Model for Safety) THUMS was given a boundary conditions similar to experimental tests. The model was exposed to 4g and 7g rear impacts as these load impacts are close to low speed impacts causing whiplash. The effect of muscle activation level on occupant kinematics during whiplash was analyzed.

Keywords: finite element model, muscle activation, THUMS, whiplash injury mechanism

Procedia PDF Downloads 307
28613 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon

Authors: Nadine Yehya, Chantal Maatouk

Abstract:

Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.

Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach

Procedia PDF Downloads 187
28612 Bandwidth Control Using Reconfigurable Antenna Elements

Authors: Sudhina H. K, Ravi M. Yadahalli, N. M. Shetti

Abstract:

Reconfigurable antennas represent a recent innovation in antenna design that changes from classical fixed-form, Fixed function antennas to modifiable structures that can be adapted to fit the requirements of a time varying system. The ability to control the operating band of an antenna system can have many useful applications. Systems that operate in an acquire-and-track configuration would see a benefit from active bandwidth control. In such systems a wide band search mode is first employed to find a desired signal, Then a narrow band track mode is used to follow only that signal. Utilizing active antenna bandwidth control, A single antenna would function for both the wide band and narrow band configurations providing the rejection of unwanted signals with the antenna hardware. This ability to move a portion of the RF filtering out of the receiver and onto the antenna itself will also aid in reducing the complexity of the often expensive RF processing subsystems.

Keywords: designing methods, mems, stack, reconfigurable elements

Procedia PDF Downloads 242