Search results for: a breathing crack
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 592

Search results for: a breathing crack

472 Fracture Mechanics Modeling of a Shear-Cracked RC Beams Shear-Strengthened with FRP Sheets

Authors: Shahriar Shahbazpanahi, Alaleh Kamgar

Abstract:

So far, the conventional experimental and theoretical analysis in fracture mechanics have been applied to study concrete flexural- cracked beams, which are strengthened using fiber reinforced polymer (FRP) composite sheets. However, there is still little knowledge about the shear capacity of a side face FRP- strengthened shear-cracked beam. A numerical analysis is herein presented to model the fracture mechanics of a four-point RC beam, with two inclined initial notch on the supports, which is strengthened with side face FRP sheets. In the present study, the shear crack is forced to conduct by using an initial notch in supports. The ABAQUS software is used to model crack propagation by conventional cohesive elements. It is observed that the FRP sheets play important roles in preventing the propagation of shear cracks.

Keywords: crack, FRP, shear, strengthening

Procedia PDF Downloads 518
471 Crack Initiation Assessment during Fracture of Heat Treated Duplex Stainless Steels

Authors: Faraj Ahmed E. Alhegagi, Anagia M. Khamkam Mohamed, Bassam F. Alhajaji

Abstract:

Duplex stainless steels (DSS) are widely employed in industry for apparatus working with sea water in petroleum, refineries and in chemical plants. Fracture of DSS takes place by cleavage of the ferrite phase and the austenite phase ductile tear off. Pop-in is an important feature takes place during fracture of DSS. The procedure of Pop-ins assessment plays an important role in fracture toughness studies. In present work, Zeron100 DSS specimens were heat treated at different temperatures, cooled and pulled to failure to assess the pop-ins criterion in crack initiation prediction. The outcome results were compared to the British Standard (BS 7448) and the ASTEM standard (E1290) for Crack-Tip Opening Displacement (CTOD) fracture toughness measurement. Pop-in took place during specimens loading specially for those specimens heat treated at higher temperatures. The standard BS7448 was followed to check specimen validity for fractured toughness assessment by direct determination of KIC. In most cases, specimens were invalid for KIC measurement. The two procedures were equivalent only when single pop-ins were assessed. A considerable contrast in fracture toughness value between was observed where multiple pop-ins were assessed.

Keywords: fracture toughness, stainless steels, pop ins, crack assessment

Procedia PDF Downloads 101
470 Simulation the Stress Distribution of Wheel/Rail at Contact Region

Authors: Norie A. Akeel, Z. Sajuri, A. K. Ariffin

Abstract:

This paper discusses the effect of different loading analysis on crack initiation life of wheel/rail in the contact region. A simulated three dimensional (3D) elasto plastic model of a wheel/rail contact is modeled using the fine mesh technique in the contact region by using Finite Element Method FEM code ANSYS 11.0 software. Different loads of approximately from 70 to 140 KN was applied on the wheel tread through the running surface on the railhead surface to simulate stress distribution (Von Mises) and a life prediction of the crack initiation under rolling contact motion. Stress analysis is achieved and the fatigue life to the rail head surface is calculated numerically by using a multi-axial fatigue life of crack initiation model. All results obtained from the previous researches are compared with this research.

Keywords: FEM, rolling contact, rail track, stress distribution, fatigue life

Procedia PDF Downloads 522
469 Landfill Leachate: A Promising Substrate for Microbial Fuel Cells

Authors: Jayesh M. Sonawane, Prakash C. Ghosh

Abstract:

Landfill leachate emerges as a promising feedstock for microbial fuel cells (MFCs). In the present investigation, direct air-breathing cathode-based MFCs are fabricated to investigate the potential of landfill leachate. Three MFCs that have different cathode areas are fabricated and investigated for 17 days under open circuit conditions. The maximum open circuit voltage (OCV) is observed to be as high as 1.29 V. The maximum cathode area specific power density achieved in the reactor is 1513 mW m-2. Further studies are under progress to understand the origin of high OCV obtained from landfill leachate-based MFCs.

Keywords: microbial fuel cells, landfill leachate, air-breathing cathode, performance study

Procedia PDF Downloads 279
468 Predictive Factors of Nasal Continuous Positive Airway Pressure (NCPAP) Therapy Success in Preterm Neonates with Hyaline Membrane Disease (HMD)

Authors: Novutry Siregar, Afdal, Emilzon Taslim

Abstract:

Hyaline Membrane Disease (HMD) is the main cause of respiratory failure in preterm neonates caused by surfactant deficiency. Nasal Continuous Positive Airway Pressure (NCPAP) is the therapy for HMD. The success of therapy is determined by gestational age, birth weight, HMD grade, time of NCAP administration, and time of breathing frequency recovery. The aim of this research is to identify the predictive factor of NCPAP therapy success in preterm neonates with HMD. This study used a cross-sectional design by using medical records of patients who were treated in the Perinatology of the Pediatric Department of Dr. M. Djamil Padang Central Hospital from January 2015 to December 2017. The samples were eighty-two neonates that were selected by using the total sampling technique. Data analysis was done by using the Chi-Square Test and the Multiple Logistic Regression Prediction Model. The results showed the success rate of NCPAP therapy reached 53.7%. Birth weight (p = 0.048, OR = 3.34 95% CI 1.01-11.07), HMD grade I (p = 0.018, OR = 4.95 CI 95% 1.31-18.68), HMD grade II (p = 0.044, OR = 5.52 95% CI 1.04-29.15), and time of breathing frequency recovery (p = 0,000, OR = 13.50 95% CI 3.58-50, 83) are the predictive factors of NCPAP therapy success in preterm neonates with HMD. The most significant predictive factor is the time of breathing frequency recovery.

Keywords: predictive factors, the success of therapy, NCPAP, preterm neonates, HMD

Procedia PDF Downloads 30
467 Models of Environmental: Cracker Propagation of Some Aluminum Alloys (7xxx)

Authors: H. Jawan

Abstract:

This review describes the models of environmental-related crack propagation of aluminum alloys (7xxx) during the last few decades. Acknowledge on effects of different factors on the susceptibility to SCC permits to propose valuable mechanisms on crack advancement. The reliable mechanism of cracking give a possibility to propose the optimum chemical composition and thermal treatment conditions resulting in microstructure the most suitable for real environmental condition and stress state.

Keywords: microstructure, environmental, propagation, mechanism

Procedia PDF Downloads 365
466 Mechanical Properties and Crack Extension Mechanism of Rock Contained Blocks Under Uniaxial Compression

Authors: Ruiyang Bi

Abstract:

Natural rock masses are cut into rock blocks of different shapes and sizes by intersecting joints. These rock blocks often determine the mechanical properties of the rock mass. In this study, fine sandstone cube specimens were produced, and three intersecting joint cracks were cut inside the specimen. Uniaxial compression tests were conducted using mechanical tests and numerical simulation methods to study the mechanical properties and crack propagation mechanism of triangular blocks within the rock. During the test, the mechanical strength, acoustic emission characteristics and strain field evolution of the specimen were analyzed. Discrete element software was used to study the expansion of microcracks during the specimen failure process, and the crack types were divided. The simulation results show that as the inclination angles of the three joints increase simultaneously, the mechanical strength of the specimen first decreases and then increases, and the crack type is mainly shear. As the inclination angle of a single joint increases, the strength of the specimen gradually decreases. When the inclination angles of the two joints increase at the same time, the strength of the specimen gradually decreases. The research results show that the stability of the rock mass is affected by the joint inclination angle and the size of the cut blocks. The greater the joint dip and block size, the more significant the development of micro-cracks in the rock mass, and the worse the stability.

Keywords: rock joints, uniaxial compression, crack extension, discrete element simulation

Procedia PDF Downloads 21
465 Study of the Chronic Effects of CRACK on Some Biochemical Parameters Including Triglycerides, Cholesterol, HDL, LDL, VLDL, Amylase, Lipase, Albumin, Protein in Rat

Authors: Alireza Jafarzadeh, Bahram Amu-Oqhli Tabrizi, Hadi Khayat Nouri, Arash Khaki

Abstract:

30 head of adult Vistar rats were chosen to evaluate the chronic narcotic effects of crack on some biochemical parameters. The rats weighted approximately 200 to 250 g. They were divided into 5 groups of 6 and were housed in identical condition in terms of food and ambience. Rats were maintained at 12 hours light and 12 hours darkness. Rats were injected 7.8 mg/kg BW crack intraperitoneally. The groups one to four received daily medication for one to four weeks respectively. The control groups were injected identical dose of saline. The blood was taken from control and test groups then serum was separated from. Serum biochemical parameters of amylase, lipase, triglycerides, cholesterol, HDL, LDL, VLDL, protein and albumin were measured by diagnostic kits. Serum protein and albumin levels did not show statistically significant changes. Serum lipase and amylase showed significant changes both of which were increased. The serum levels of cholesterol, LDL and HDL demonstrated no significant changes. Triglycerides values showed a significant increase in serum. Serum VLDL in groups 3 and 4 exhibited significant changes compare to other groups.

Keywords: albumin, amylase, cholesterol, crack, HDL, LDL, lipase, protein, rat, triglycerides, VLDL

Procedia PDF Downloads 665
464 Accuracy of VCCT for Calculating Stress Intensity Factor in Metal Specimens Subjected to Bending Load

Authors: Sanjin Kršćanski, Josip Brnić

Abstract:

Virtual Crack Closure Technique (VCCT) is a method used for calculating stress intensity factor (SIF) of a cracked body that is easily implemented on top of basic finite element (FE) codes and as such can be applied on the various component geometries. It is a relatively simple method that does not require any special finite elements to be used and is usually used for calculating stress intensity factors at the crack tip for components made of brittle materials. This paper studies applicability and accuracy of VCCT applied on standard metal specimens containing trough thickness crack, subjected to an in-plane bending load. Finite element analyses were performed using regular 4-node, regular 8-node and a modified quarter-point 8-node 2D elements. Stress intensity factor was calculated from the FE model results for a given crack length, using data available from FE analysis and a custom programmed algorithm based on virtual crack closure technique. Influence of the finite element size on the accuracy of calculated SIF was also studied. The final part of this paper includes a comparison of calculated stress intensity factors with results obtained from analytical expressions found in available literature and in ASTM standard. Results calculated by this algorithm based on VCCT were found to be in good correlation with results obtained with mentioned analytical expressions.

Keywords: VCCT, stress intensity factor, finite element analysis, 2D finite elements, bending

Procedia PDF Downloads 272
463 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation

Authors: Ali Ashtiani, Hamid Shirazi

Abstract:

This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.

Keywords: airport pavement management, crack density, pavement evaluation, pavement management

Procedia PDF Downloads 164
462 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

Keywords: welded steel plate, crack variation, three-dimensional digital image correlation (DIC), crack stel plate

Procedia PDF Downloads 494
461 A Study on the Quantitative Evaluation Method of Asphalt Pavement Condition through the Visual Investigation

Authors: Sungho Kim, Jaechoul Shin, Yujin Baek

Abstract:

In recent years, due to the environmental impacts and time factor, etc., various type of pavement deterioration is increasing rapidly such as crack, pothole, rutting and roughness degradation. The Ministry of Land, Infrastructure and Transport maintains regular pavement condition of the highway and the national highway using the pavement condition survey equipment and structural survey equipment in Korea. Local governments that maintain local roads, farm roads, etc. are difficult to maintain the pavement condition using the pavement condition survey equipment depending on economic conditions, skills shortages and local conditions such as narrow roads. This study presents a quantitative evaluation method of the pavement condition through the visual inspection to overcome these problems of roads managed by local governments. It is difficult to evaluate rutting and roughness with the naked eye. However, the condition of cracks can be evaluated with the naked eye. Linear cracks (m), area cracks (m²) and potholes (number, m²) were investigated with the naked eye every 100 meters for survey the cracks. In this paper, crack ratio was calculated using the results of the condition of cracks and pavement condition was evaluated by calculated crack ratio. The pavement condition survey equipment also investigated the pavement condition in the same section in order to evaluate the reliability of pavement condition evaluation by the calculated crack ratio. The pavement condition was evaluated through the SPI (Seoul Pavement Index) and calculated crack ratio using results of field survey. The results of a comparison between 'the SPI considering only crack ratio' and 'the SPI considering rutting and roughness either' using the equipment survey data showed a margin of error below 5% when the SPI is less than 5. The SPI 5 is considered the base point to determine whether to maintain the pavement condition. It showed that the pavement condition can be evaluated using only the crack ratio. According to the analysis results of the crack ratio between the visual inspection and the equipment survey, it has an average error of 1.86%(minimum 0.03%, maximum 9.58%). Economically, the visual inspection costs only 10% of the equipment survey and will also help the economy by creating new jobs. This paper advises that local governments maintain the pavement condition through the visual investigations. However, more research is needed to improve reliability. Acknowledgment: The author would like to thank the MOLIT (Ministry of Land, Infrastructure, and Transport). This work was carried out through the project funded by the MOLIT. The project name is 'development of 20mm grade for road surface detecting roadway condition and rapid detection automation system for removal of pothole'.

Keywords: asphalt pavement maintenance, crack ratio, evaluation of asphalt pavement condition, SPI (Seoul Pavement Index), visual investigation

Procedia PDF Downloads 133
460 Model of Elastic Fracture Toughness for Ductile Metal Pipes with External Longitudinal Cracks

Authors: Guoyang Fu, Wei Yang, Chun-Qing Li

Abstract:

The most common type of cracks that appear on metal pipes is longitudinal cracks. For ductile metal pipes, the existence of plasticity eases the stress intensity at the crack front and consequently increases the fracture resistance. It should be noted that linear elastic fracture mechanics (LEFM) has been widely accepted by engineers. In order to make the LEFM applicable to ductile metal materials, the increase of fracture toughness due to plasticity should be excluded from the total fracture toughness of the ductile metal. This paper aims to develop a model of elastic fracture toughness for ductile metal pipes with external longitudinal cracks. The derived elastic fracture toughness is a function of crack geometry and material properties of the cracked pipe. The significance of the derived model is that the well-established LEFM can be used for ductile metal material in predicting the fracture failure.

Keywords: Ductile metal pipes, elastic fracture toughness, longitudinal crack, plasticity

Procedia PDF Downloads 216
459 Evaluation of Flexural Cracking Width of Steel Fibre Reinforced Concrete Beams

Authors: Touhami Tahenni

Abstract:

Excessively wide cracks are harmful to the serviceability of reinforced concrete (RC) beams and may lead to durability problems in the longer term. They also reduce the rigidity of RC sections, rendering the tensile concrete ineffective structurally. To reduce the negative effects of cracks, steel fibers are added to concrete mixes in the same manner as aggregates. In the present work, steel fibers reinforced concrete (SFRC) beams, made of normal strength and high strength concretes, were tested in a four-point bending test using a digital image correlation technique. The beams had different volume fractions of fibres and different aspect ratios (fiber length/fiber diameter). The evaluation of flexural cracking widths was determined using Gom-Aramis software. The experimental crack widths were compared with theoretical values predicted by the technical document of Rilem TC 162-TDF. The model proposed in this document seems to be the only one that considers the efficiency of steel fibres in restraining the crack widths. However, the model of Rilem takes into account only the aspect ratio of steel fibres to predict the crack width of SFRC beams. It has been reported in several pieces of research that the contribution of steel fibres to the limitation of flexural cracking widths is based on three essential parameters namely, the volume fraction, the orientation and the aspect ratio of fibres. Referring to the literature on the flexural cracking behavior of SFRC beams and the experimental observations of the present work, a correction of the Rilem model by the introduction of these parameters in the formula is proposed. The crack widths predicted by the new empirical model were compared with the experimental results and assessed against other test data on SFRC beams taken from the literature. The modified Rilem model gives better results and is found more satisfactory in predicting the crack widths of fibres concrete.

Keywords: stee fibres, reinforced concrete, flexural cracking, tensile strength, crack width

Procedia PDF Downloads 58
458 Finite Element Analysis of Debonding Propagation in FM73 Joint under Static Loading

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

In this work, Fracture Mechanics is used to predict crack propagation in the adhesive joining aluminum and composite plates. Three types of loadings and two types of glass-epoxy composite sequences: [0/90]2s and [0/45/-45/90]s are considered for the composite plate. Therefore, 2*3=6 cases are considered and their results are compared. The debonding initiation load, complete debonding load, crack face profile and load-displacement diagram have been compared for the six cases.

Keywords: adhesive joint, debonding, fracture, LEFM, APDL

Procedia PDF Downloads 562
457 Racism in Drug Policies: A Report on United States Legislation

Authors: Frederick Monyepao

Abstract:

Crack cocaine first appeared on the scene in the form of cocaine freebasing in the late 1970s. Stockbrokers, investment bankers, rock stars, Hollywood elites, and a few pro athletes were regular users of the substance. As criminogenic factors associated with substance abuse began to surface, congress passed new legislation. The laws led to the increase of health coverage insurances and the expansion of hospitals. By the mid-1980s, crack use spread into America's inner cities among impoverished African Americans and Latinos. While substance abuse increased among minority communities, legislation pertaining to substance abuse evolved. The prison industry also expanded the number of cells available. A qualitative approach was taken, drawing from a range secondary sources for contextual analysis. This paper traces out the continued marginalisation and racist undertones towards minorities as perpetuated by certain drug policies. It was discovered that the new legislation on crack was instrumental in the largest incarcerations the United States ever faced. Drug offenders increased in prisons eightfold from 1986 to 2000. The paper concludes that American drug control policies are consistently irrational and ineffective when measured by levels of substance use and abuse. On the contrary, these policies have been successful as agents of social control in maintaining the stratification patterns of racial/ethnic minorities and women. To move beyond prohibition, radical law and policy reform may require a change in narratives on substance use.

Keywords: crack, drug policy, minorities, racism, substance abuse

Procedia PDF Downloads 258
456 Extended Strain Energy Density Criterion for Fracture Investigation of Orthotropic Materials

Authors: Mahdi Fakoor, Hannaneh Manafi Farid

Abstract:

In order to predict the fracture behavior of cracked orthotropic materials under mixed-mode loading, well-known minimum strain energy density (SED) criterion is extended. The crack is subjected along the fibers at plane strain conditions. Despite the complicities to solve the nonlinear equations which are requirements of SED criterion, SED criterion for anisotropic materials is derived. In the present research, fracture limit curve of SED criterion is depicted by a numerical solution, hence the direction of crack growth is figured out by derived criterion, MSED. The validated MSED demonstrates the improvement in prediction of fracture behavior of the materials. Also, damaged factor that plays a crucial role in the fracture behavior of quasi-brittle materials is derived from this criterion and proved its dependency on mechanical properties and direction of crack growth.

Keywords: mixed-mode fracture, minimum strain energy density criterion, orthotropic materials, fracture limit curve, mode II critical stress intensity factor

Procedia PDF Downloads 138
455 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment

Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov

Abstract:

This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.

Keywords: crack formation, experiment, mathematical modeling, reinforced concrete, vibrodiagnostics

Procedia PDF Downloads 272
454 Digital Structural Monitoring Tools @ADaPT for Cracks Initiation and Growth due to Mechanical Damage Mechanism

Authors: Faizul Azly Abd Dzubir, Muhammad F. Othman

Abstract:

Conventional structural health monitoring approach for mechanical equipment uses inspection data from Non-Destructive Testing (NDT) during plant shut down window and fitness for service evaluation to estimate the integrity of the equipment that is prone to crack damage. Yet, this forecast is fraught with uncertainty because it is often based on assumptions of future operational parameters, and the prediction is not continuous or online. Advanced Diagnostic and Prognostic Technology (ADaPT) uses Acoustic Emission (AE) technology and a stochastic prognostic model to provide real-time monitoring and prediction of mechanical defects or cracks. The forecast can help the plant authority handle their cracked equipment before it ruptures, causing an unscheduled shutdown of the facility. The ADaPT employs process historical data trending, finite element analysis, fitness for service, and probabilistic statistical analysis to develop a prediction model for crack initiation and growth due to mechanical damage. The prediction model is combined with live equipment operating data for real-time prediction of the remaining life span owing to fracture. ADaPT was devised at a hot combined feed exchanger (HCFE) that had suffered creep crack damage. The ADaPT tool predicts the initiation of a crack at the top weldment area by April 2019. During the shutdown window in April 2019, a crack was discovered and repaired. Furthermore, ADaPT successfully advised the plant owner to run at full capacity and improve output by up to 7% by April 2019. ADaPT was also used on a coke drum that had extensive fatigue cracking. The initial cracks are declared safe with ADaPT, with remaining crack lifetimes extended another five (5) months, just in time for another planned facility downtime to execute repair. The prediction model, when combined with plant information data, allows plant operators to continuously monitor crack propagation caused by mechanical damage for improved maintenance planning and to avoid costly shutdowns to repair immediately.

Keywords: mechanical damage, cracks, continuous monitoring tool, remaining life, acoustic emission, prognostic model

Procedia PDF Downloads 45
453 Fracture Control of the Soda-Lime Glass in Laser Thermal Cleavage

Authors: Jehnming Lin

Abstract:

The effects of the contact ball-lens on the soda lime glass in laser thermal cleavage with a cw Nd-YAG laser were investigated in this study. A contact ball-lens was adopted to generate a bending force on the crack formation of the soda-lime glass in the laser cutting process. The Nd-YAG laser beam (wavelength of 1064 nm) was focused through the ball-lens and transmitted to the soda-lime glass, which was coated with a carbon film on the surface with a bending force from a ball-lens to generate a tensile stress state on the surface cracking. The fracture was controlled by the contact ball-lens and a straight cutting was tested to demonstrate the feasibility. Experimental observations on the crack propagation from the leading edge, main section and trailing edge of the glass sheet were compared with various mechanical and thermal loadings. Further analyses on the stress under various laser powers and contact ball loadings were made to characterize the innovative technology. The results show that the distributions of the side crack at the leading and trailing edges are mainly dependent on the boundary condition, contact force, cutting speed and laser power. With the increase of the mechanical and thermal loadings, the region of the side cracks might be dramatically reduced with proper selection of the geometrical constraints. Therefore, the application of the contact ball-lens is a possible way to control the fracture in laser cleavage with improved cutting qualities.

Keywords: laser cleavage, stress analysis, crack visualization, laser

Procedia PDF Downloads 412
452 Finite Element Modeling of Influence of Roll Form of Vertical Scale Breaker on Decreased Formation of Surface Defects during Roughing Hot Rolling

Authors: A. Pesin, D. Pustovoytov, M. Sverdlik

Abstract:

During production of rolled steel strips the quality of the surface of finished strips influences steel consumption considerably. The most critical areas for crack formation during rolling are lateral sides of slabs. Deformation behaviors of the slab edge in roughing rolling process were analyzed by the finite element method with Deform-3D. In this study our focus is the analysis of the influence of edger’s form on the possibility to decrease surface cracking during roughing hot rolling.

Keywords: roughing hot rolling, FEM, crack, bulging

Procedia PDF Downloads 356
451 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 137
450 Fatigue Crack Behaviour in a Residual Stress Field at Fillet Welds in Ship Structures

Authors: Anurag Niranjan, Michael Fitzpatrick, Yin Jin Janin, Jazeel Chukkan, Niall Smyth

Abstract:

Fillet welds are used in joining longitudinal stiffeners in ship structures. Welding residual stresses in fillet welds are generally distributed in a non-uniform manner, as shown in previous research the residual stress redistribution occurs under the cyclic loading that is experienced by such joints during service, and the combination of the initial residual stress, local constraints, and loading can alter the stress field in ways that are extremely difficult to predict. As the residual stress influences the crack propagation originating from the toe of the fillet welds, full understanding of the residual stress field and how it evolves is very important for structural integrity calculations. Knowledge of the residual stress redistribution in the presence of a flaw is therefore required for better fatigue life prediction. Moreover, defect assessment procedures such as BS7910 offer very limited guidance for flaw acceptance and the associated residual stress redistribution in the assessment of fillet welds. Therefore the objective of this work is to study a surface-breaking flaw at the weld toe region in a fillet weld under cyclic load, in conjunction with residual stress measurement at pre-defined crack depths. This work will provide details of residual stress redistribution under cyclic load in the presence of a crack. The outcome of this project will inform integrity assessment with respect to the treatment of residual stress in fillet welds. Knowledge of the residual stress evolution for this weld geometry will be greatly beneficial for flaw tolerance assessments (BS 7910, API 591).

Keywords: fillet weld, fatigue, residual stress, structure integrity

Procedia PDF Downloads 112
449 Substantial Fatigue Similarity of a New Small-Scale Test Rig to Actual Wheel-Rail System

Authors: Meysam Naeimi, Zili Li, Roumen Petrov, Rolf Dollevoet, Jilt Sietsma, Jun Wu

Abstract:

The substantial similarity of fatigue mechanism in a new test rig for rolling contact fatigue (RCF) has been investigated. A new reduced-scale test rig is designed to perform controlled RCF tests in wheel-rail materials. The fatigue mechanism of the rig is evaluated in this study using a combined finite element-fatigue prediction approach. The influences of loading conditions on fatigue crack initiation have been studied. Furthermore, the effects of some artificial defects (squat-shape) on fatigue lives are examined. To simulate the vehicle-track interaction by means of the test rig, a three-dimensional finite element (FE) model is built up. The nonlinear material behaviour of the rail steel is modelled in the contact interface. The results of FE simulations are combined with the critical plane concept to determine the material points with the greatest possibility of fatigue failure. Based on the stress-strain responses, by employing of previously postulated criteria for fatigue crack initiation (plastic shakedown and ratchetting), fatigue life analysis is carried out. The results are reported for various loading conditions and different defect sizes. Afterward, the cyclic mechanism of the test rig is evaluated from the operational viewpoint. The results of fatigue life predictions are compared with the expected number of cycles of the test rig by its cyclic nature. Finally, the estimative duration of the experiments until fatigue crack initiation is roughly determined.

Keywords: fatigue, test rig, crack initiation, life, rail, squats

Procedia PDF Downloads 488
448 Vibroacoustic Modulation of Wideband Vibrations and its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy productions. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the vibroacoustic modulation are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: vibro-acoustic modulation, detecting of envelope modulation on noise, damage, turbine blades

Procedia PDF Downloads 59
447 Development of a Mechanical Ventilator Using A Manual Artificial Respiration Unit

Authors: Isomar Lima da Silva, Alcilene Batalha Pontes, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Context: Mechanical ventilators are medical devices that help provide oxygen and ventilation to patients with respiratory difficulties. This equipment consists of a manual breathing unit that can be operated by a doctor or nurse and a mechanical ventilator that controls the airflow and pressure in the patient's respiratory system. This type of ventilator is commonly used in emergencies and intensive care units where it is necessary to provide breathing support to critically ill or injured patients. Objective: In this context, this work aims to develop a reliable and low-cost mechanical ventilator to meet the demand of hospitals in treating people affected by Covid-19 and other severe respiratory diseases, offering a chance of treatment as an alternative to mechanical ventilators currently available in the market. Method: The project presents the development of a low-cost auxiliary ventilator with a controlled ventilatory system assisted by integrated hardware and firmware for respiratory cycle control in non-invasive mechanical ventilation treatments using a manual artificial respiration unit. The hardware includes pressure sensors capable of identifying positive expiratory pressure, peak inspiratory flow, and injected air volume. The embedded system controls the data sent by the sensors. It ensures efficient patient breathing through the operation of the sensors, microcontroller, and actuator, providing patient data information to the healthcare professional (system operator) through the graphical interface and enabling clinical parameter adjustments as needed. Results: The test data of the developed mechanical ventilator presented satisfactory results in terms of performance and reliability, showing that the equipment developed can be a viable alternative to commercial mechanical ventilators currently available, offering a low-cost solution to meet the increasing demand for respiratory support equipment.

Keywords: mechanical fans, breathing, medical equipment, COVID-19, intensive care units

Procedia PDF Downloads 37
446 Fracture and Dynamic Behavior of Leaf Spring Suspension

Authors: S. Lecheb, A. Chellil, H. Mechakra, S. Attou, H. Kebir

Abstract:

Although leaf springs are one of the oldest suspension components they are still frequently used, especially in commercial vehicles. Being able to capture the leaf spring characteristics is of significant importance for vehicle handling dynamics studies. The main function of leaf spring is not only to support vertical load but also to isolate road induced vibrations. It is subjected to millions of load cycles leading to fatigue failure. It needs to have excellent fatigue life. The objective of this work is its use of Abaqus software to locate the most stressed areas and predict the areas in which it occurs in fatigue and crack of leaf spring and calculate the stress and frequencies of this model.

Keywords: leaf spring, crack, stress, natural frequencies

Procedia PDF Downloads 421
445 Relationships of Driver Drowsiness and Sleep-Disordered Breathing Syndrome

Authors: Cheng-Yu Tsai, Wen-Te Liu, Yin-Tzu Lin, Chen-Chen Lo, Kang Lo

Abstract:

Background: Driving drowsiness related to inadequate or disordered sleep accounts for a major percentage of traffic accidents. Sleep-disordered breathing (SDB) syndrome is a common respiratory disorder during sleep. However, the effects of SDB syndrome on driving fatigue remain unclear. Objective: This study aims to investigate the relationship between SDB pattern and driving drowsiness. Methodologies: The physical condition while driving was obtained from the questionnaires to classify the state of driving fatigue. SDB syndrome was quantified as the polysomnography, and the air flow pattern was collected by the thermistor and nasal pressure cannula. To evaluate the desaturation, the mean hourly number of greater than 3% dips in oxygen saturation was sentenced by reregistered technologist during examination in a hospital in New Taipei City (Taiwan). The independent T-test was used to investigate the correlations between sleep disorders related index and driving drowsiness. Results: There were 880 subjects recruited in this study, who had been done polysomnography for evaluating severity for obstructive sleep apnea syndrome (OSAS) as well as completed the driver condition questionnaire. Four-hundred-eighty-four subjects (55%) were classified as fatigue group, and 396 subjects (45%) were served as the control group. Significantly higher values of snoring index (242.14 ± 205.51 /hours) were observed in the fatigue group (p < 0.01). The value of respiratory disturbance index (RDI) (31.82 ± 19.34 /hours) in fatigue group were significantly higher than the control group (p < 0.01). Conclusion: We observe the considerable association between SDB syndrome and driving drowsiness. To promote traffic safety, SDB syndrome should be controlled and alleviated.

Keywords: driving drowsiness, sleep-disordered breathing syndrome, snoring index, respiratory disturbance index.

Procedia PDF Downloads 108
444 Stochastic Modelling for Mixed Mode Fatigue Delamination Growth of Wind Turbine Composite Blades

Authors: Chi Zhang, Hua-Peng Chen

Abstract:

With the increasingly demanding resources in the word, renewable and clean energy has been considered as an alternative way to replace traditional ones. Thus, one of practical examples for using wind energy is wind turbine, which has gained more attentions in recent research. Like most offshore structures, the blades, which is the most critical components of the wind turbine, will be subjected to millions of loading cycles during service life. To operate safely in marine environments, the blades are typically made from fibre reinforced composite materials to resist fatigue delamination and harsh environment. The fatigue crack development of blades is uncertain because of indeterminate mechanical properties for composite and uncertainties under offshore environment like wave loads, wind loads, and humid environments. There are three main delamination failure modes for composite blades, and the most common failure type in practices is subjected to mixed mode loading, typically a range of opening (mode 1) and shear (mode 2). However, the fatigue crack development for mixed mode cannot be predicted as deterministic values because of various uncertainties in realistic practical situation. Therefore, selecting an effective stochastic model to evaluate the mixed mode behaviour of wind turbine blades is a critical issue. In previous studies, gamma process has been considered as an appropriate stochastic approach, which simulates the stochastic deterioration process to proceed in one direction such as realistic situation for fatigue damage failure of wind turbine blades. On the basis of existing studies, various Paris Law equations are discussed to simulate the propagation of the fatigue crack growth. This paper develops a Paris model with the stochastic deterioration modelling according to gamma process for predicting fatigue crack performance in design service life. A numerical example of wind turbine composite materials is investigated to predict the mixed mode crack depth by Paris law and the probability of fatigue failure by gamma process. The probability of failure curves under different situations are obtained from the stochastic deterioration model for comparisons. Compared with the results from experiments, the gamma process can take the uncertain values into consideration for crack propagation of mixed mode, and the stochastic deterioration process shows a better agree well with realistic crack process for composite blades. Finally, according to the predicted results from gamma stochastic model, assessment strategies for composite blades are developed to reduce total lifecycle costs and increase resistance for fatigue crack growth.

Keywords: Reinforced fibre composite, Wind turbine blades, Fatigue delamination, Mixed failure mode, Stochastic process.

Procedia PDF Downloads 382
443 Combining the Fictitious Stress Method and Displacement Discontinuity Method in Solving Crack Problems in Anisotropic Material

Authors: Bahatti̇n Ki̇mençe, Uğur Ki̇mençe

Abstract:

In this study, the purpose of obtaining the influence functions of the displacement discontinuity in an anisotropic elastic medium is to produce the boundary element equations. A Displacement Discontinuous Method formulation (DDM) is presented with the aim of modeling two-dimensional elastic fracture problems. This formulation is found by analytical integration of the fundamental solution along a straight-line crack. With this purpose, Kelvin's fundamental solutions for anisotropic media on an infinite plane are used to form dipoles from singular loads, and the various combinations of the said dipoles are used to obtain the influence functions of displacement discontinuity. This study introduces a technique for coupling Fictitious Stress Method (FSM) and DDM; the reason for applying this technique to some examples is to demonstrate the effectiveness of the proposed coupling method. In this study, displacement discontinuity equations are obtained by using dipole solutions calculated with known singular force solutions in an anisotropic medium. The displacement discontinuities method obtained from the solutions of these equations and the fictitious stress methods is combined and compared with various examples. In this study, one or more crack problems with various geometries in rectangular plates in finite and infinite regions, under the effect of tensile stress with coupled FSM and DDM in the anisotropic environment, were examined, and the effectiveness of the coupled method was demonstrated. Since crack problems can be modeled more easily with DDM, it has been observed that the use of DDM has increased recently. In obtaining the displacement discontinuity equations, Papkovitch functions were used in Crouch, and harmonic functions were chosen to satisfy various boundary conditions. A comparison is made between two indirect boundary element formulations, DDM, and an extension of FSM, for solving problems involving cracks. Several numerical examples are presented, and the outcomes are contrasted to existing analytical or reference outs.

Keywords: displacement discontinuity method, fictitious stress method, crack problems, anisotropic material

Procedia PDF Downloads 48