Search results for: Tarek M. Elsayed
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 172

Search results for: Tarek M. Elsayed

22 The Effect of Composite Hybridization on the Back Face Deformation of Armor Plates

Authors: Attef Kouadria, Yehya Bouteghrine, Amar Manaa, Tarek Mouats, Djalel Eddine Tria, Hamid Abdelhafid Ghouti

Abstract:

Personal protection systems have been used in several forms for centuries. The need for light-weight composite structures has been in great demand due to their weight and high mechanical properties ratios in comparison to heavy and cumbersome steel plates. In this regard, lighter ceramic plates with a backing plate made of high strength polymeric fibers, mostly aramids, are widely used for protection against ballistic threats. This study aims to improve the ballistic performance of ceramic/composite plates subjected to ballistic impact by reducing the back face deformation (BFD) measured after each test. A new hybridization technique was developed in this investigation to increase the energy absorption capabilities of the backing plates. The hybridization consists of combining different types of aramid fabrics with different linear densities of aramid fibers (Dtex) and areal densities with an epoxy resin to form the backing plate. Therefore, several composite structures architectures were prepared and tested. For better understanding the effect of the hybridization, a serial of tensile, compression, and shear tests were conducted to determine the mechanical properties of the homogeneous composite materials prepared from different fabrics. It was found that the hybridization allows the backing plate to combine between the mechanical properties of the used fabrics. Aramid fabrics with higher Dtex were found to increase the mechanical strength of the backing plate, while those with lower Dtex found to enhance the lateral wave dispersion ratio due to their lower areal density. Therefore, the back face deformation was significantly reduced in comparison to a homogeneous composite plate.

Keywords: aramid fabric, ballistic impact, back face deformation, body armor, composite, mechanical testing

Procedia PDF Downloads 117
21 Model Order Reduction of Complex Airframes Using Component Mode Synthesis for Dynamic Aeroelasticity Load Analysis

Authors: Paul V. Thomas, Mostafa S. A. Elsayed, Denis Walch

Abstract:

Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defined in the certification requirements. It is computationally prohibitive to use a Global Finite Element Model (GFEM) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of Component Mode Synthesis (CMS) method for the generation of high fidelity Reduced Order Model (ROM) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with an aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of the same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads Modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.

Keywords: component mode synthesis, craig bampton reduction method, dynamic aeroelasticity analysis, model order reduction

Procedia PDF Downloads 178
20 Comparative Study of Analgesic Efficacy of Ultrasound Guided Femoral Nerve Block Versus Intravenous Fentanyl Injection in Fracture Femur Patients at Emergency Department

Authors: Asmaa Hamdy, Israa Nassar, Tarek Aly

Abstract:

Introduction: Femoral fractures are the most common presentation in the Emergency Department (ED), and they can present as isolated injuries or as part of a polytrauma situation. To provide optimum pain management care to these patients, practitioners must be well prepared and current with utilizing modern evidence-based knowledge and practices. Management of pain associated with fracture femur in the emergency department has a critical role in the satisfaction of patients and preventing further complications. This study aimed to evaluate the analgesic efficacy of ultrasound-guided femoral nerve block compared with intravenous fentanyl in fractures of the femur in patients presented to the Emergency Department. Patients and Methods: Fifty patients with femur fractures were divided into two groups: Group A: In this group (twenty-five patients) were given intravenous fentanyl 2 micro-grams/kg and re-assessed for pain by Visual Analogue Score (VAS). Group B: In this group (twenty-five patients) underwent ultrasonography-guided femoral nerve block and were re-assessed for pain by VAS. Results: VAS score on the movement of the fractured limb between group A and group B at a 10-minute post-intervention period shows P= 0.043, and hence the difference is significant. VAS score on the movement of the fractured limb between group A and group B during a 10-minute post-intervention period showed a significant difference. Seventeen patients in group A had major PID with a percentage of 63% VS 10 patients in group B with a percentage of 37%. conclusion: both femoral nerve block and intravenous fentanyl are effective in relieving pain in patients with femur fractures. But femoral nerve block provides better and more intense analgesia and major pain intensity difference in less time. Moreover, the use of FNB had fewer side effects and more Hemodynamics stability compared to opioids.

Keywords: femur fracture, nerve block, fentanyl, ultrasound guided

Procedia PDF Downloads 70
19 Structural Development and Multiscale Design Optimization of Additively Manufactured Unmanned Aerial Vehicle with Blended Wing Body Configuration

Authors: Malcolm Dinovitzer, Calvin Miller, Adam Hacker, Gabriel Wong, Zach Annen, Padmassun Rajakareyar, Jordan Mulvihill, Mostafa S.A. ElSayed

Abstract:

The research work presented in this paper is developed by the Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) team, a fourth-year capstone project at Carleton University Department of Mechanical and Aerospace Engineering. Here, a clean sheet UAV with BWB configuration is designed and optimized using Multiscale Design Optimization (MSDO) approach employing lattice materials taking into consideration design for additive manufacturing constraints. The BWB-UAV is being developed with a mission profile designed for surveillance purposes with a minimum payload of 1000 grams. To demonstrate the design methodology, a single design loop of a sample rib from the airframe is shown in details. This includes presentation of the conceptual design, materials selection, experimental characterization and residual thermal stress distribution analysis of additively manufactured materials, manufacturing constraint identification, critical loads computations, stress analysis and design optimization. A dynamic turbulent critical load case was identified composed of a 1-g static maneuver with an incremental Power Spectral Density (PSD) gust which was used as a deterministic design load case for the design optimization. 2D flat plate Doublet Lattice Method (DLM) was used to simulate aerodynamics in the aeroelastic analysis. The aerodynamic results were verified versus a 3D CFD analysis applying Spalart-Allmaras and SST k-omega turbulence to the rigid UAV and vortex lattice method applied in the OpenVSP environment. Design optimization of a single rib was conducted using topology optimization as well as MSDO. Compared to a solid rib, weight savings of 36.44% and 59.65% were obtained for the topology optimization and the MSDO, respectively. These results suggest that MSDO is an acceptable alternative to topology optimization in weight critical applications while preserving the functional requirements.

Keywords: blended wing body, multiscale design optimization, additive manufacturing, unmanned aerial vehicle

Procedia PDF Downloads 323
18 Chronic Renal Failure Associated with Heavy Metal Contamination of Drinking Water in Hail, Kingdom of Saudi Arabia

Authors: Elsayed A. M. Shokr, A. Alhazemi, T. Naser, Talal A. Zuhair, Adel A. Zuhair, Ahmed N. Alshamary, Thamer A. Alanazi, Hosam A. Alanazi

Abstract:

The main threats to human health from heavy metals are associated with exposure to Pb, Cd, Cu, Mo, Zn, Ni, Mn Co and Cr. is mainly via intake of drinking water being the most important source in most populations. These metals have been extensively studied and their effects on human health regularly reviewed by international bodies such as the WHO. Heavy metals have been used by humans for thousands of years. Although several adverse health effects of heavy metals have been known for a long time, exposure to heavy metals continues, and is even increasing in some parts of the world, in particular in less developed countries, though emissions have declined in most developed countries over the last 100 years. A strong relationship between contaminated drinking water with heavy metals from some of the stations of water shopping in Hail, KSA and chronic diseases such as renal failure, liver cirrhosis, and chronic anemia has been identified in this study. These diseases are apparently related to contaminant drinking water with heavy metals such as Pb, Cd, Cu, Mo, Zn, Ni, Mn Co and Cr. Renal failure is related to contaminate drinking water with lead and cadmium, liver cirrhosis to copper and molybdenum, and chronic anemia to copper and cadmium. Recent data indicate that adverse health effects of cadmium exposure may occur at lower exposure levels than previously anticipated, primarily in the form of kidney damage but possibly also bone effects and fractures. The general population is primarily exposed to mercury via drinking water being a major source of methyl mercury exposure, and dental amalgam. During the last century lead, cadmium, zinc, iron and arsenic is mainly via intake of drinking water being the most important source in most populations. Long-term exposure to lead, cadmium, zinc, iron and arsenic in drinking-water is mainly related to primarily in the form of kidney damage. Studies of these diseases suggest that abnormal incidence in specific areas is related to toxic materials in the groundwater and thereby led to the contamination of drinking water in these areas.

Keywords: heavy metals, liver functions, kidney functions and chronic renal failure, hail, renal, water

Procedia PDF Downloads 294
17 Detecting Natural Fractures and Modeling Them to Optimize Field Development Plan in Libyan Deep Sandstone Reservoir (Case Study)

Authors: Tarek Duzan

Abstract:

Fractures are a fundamental property of most reservoirs. Despite their abundance, they remain difficult to detect and quantify. The most effective characterization of fractured reservoirs is accomplished by integrating geological, geophysical, and engineering data. Detection of fractures and defines their relative contribution is crucial in the early stages of exploration and later in the production of any field. Because fractures could completely change our thoughts, efforts, and planning to produce a specific field properly. From the structural point of view, all reservoirs are fractured to some point of extent. North Gialo field is thought to be a naturally fractured reservoir to some extent. Historically, natural fractured reservoirs are more complicated in terms of their exploration and production efforts, and most geologists tend to deny the presence of fractures as an effective variable. Our aim in this paper is to determine the degree of fracturing, and consequently, our evaluation and planning can be done properly and efficiently from day one. The challenging part in this field is that there is no enough data and straightforward well testing that can let us completely comfortable with the idea of fracturing; however, we cannot ignore the fractures completely. Logging images, available well testing, and limited core studies are our tools in this stage to evaluate, model, and predict possible fracture effects in this reservoir. The aims of this study are both fundamental and practical—to improve the prediction and diagnosis of natural-fracture attributes in N. Gialo hydrocarbon reservoirs and accurately simulate their influence on production. Moreover, the production of this field comes from 2-phase plan; a self depletion of oil and then gas injection period for pressure maintenance and increasing ultimate recovery factor. Therefore, well understanding of fracturing network is essential before proceeding with the targeted plan. New analytical methods will lead to more realistic characterization of fractured and faulted reservoir rocks. These methods will produce data that can enhance well test and seismic interpretations, and that can readily be used in reservoir simulators.

Keywords: natural fracture, sandstone reservoir, geological, geophysical, and engineering data

Procedia PDF Downloads 71
16 Practical Software for Optimum Bore Hole Cleaning Using Drilling Hydraulics Techniques

Authors: Abdulaziz F. Ettir, Ghait Bashir, Tarek S. Duzan

Abstract:

A proper well planning is very vital to achieve any successful drilling program on the basis of preventing, overcome all drilling problems and minimize cost operations. Since the hydraulic system plays an active role during the drilling operations, that will lead to accelerate the drilling effort and lower the overall well cost. Likewise, an improperly designed hydraulic system can slow drill rate, fail to clean the hole of cuttings, and cause kicks. In most cases, common sense and commercially available computer programs are the only elements required to design the hydraulic system. Drilling optimization is the logical process of analyzing effects and interactions of drilling variables through applied drilling and hydraulic equations and mathematical modeling to achieve maximum drilling efficiency with minimize drilling cost. In this paper, practical software adopted in this paper to define drilling optimization models including four different optimum keys, namely Opti-flow, Opti-clean, Opti-slip and Opti-nozzle that can help to achieve high drilling efficiency with lower cost. The used data in this research from vertical and horizontal wells were recently drilled in Waha Oil Company fields. The input data are: Formation type, Geopressures, Hole Geometry, Bottom hole assembly and Mud reghology. Upon data analysis, all the results from wells show that the proposed program provides a high accuracy than that proposed from the company in terms of hole cleaning efficiency, and cost break down if we consider that the actual data as a reference base for all wells. Finally, it is recommended to use the established Optimization calculations software at drilling design to achieve correct drilling parameters that can provide high drilling efficiency, borehole cleaning and all other hydraulic parameters which assist to minimize hole problems and control drilling operation costs.

Keywords: optimum keys, namely opti-flow, opti-clean, opti-slip and opti-nozzle

Procedia PDF Downloads 296
15 Best Practical Technique to Drain Recoverable Oil from Unconventional Deep Libyan Oil Reservoir

Authors: Tarek Duzan, Walid Esayed

Abstract:

Fluid flow in porous media is attributed fundamentally to parameters that are controlled by depositional and post-depositional environments. After deposition, digenetic events can act negatively on the reservoir and reduce the effective porosity, thereby making the rock less permeable. Therefore, exploiting hydrocarbons from such resources requires partially altering the rock properties to improve the long-term production rate and enhance the recovery efficiency. In this study, we try to address, firstly, the phenomena of permeability reduction in tight sandstone reservoirs and illustrate the implemented procedures to investigate the problem roots; finally, benchmark the candidate solutions at the field scale and recommend the mitigation strategy for the field development plan. During the study, two investigations have been considered: subsurface analysis using ( PLT ) and Laboratory tests for four candidate wells of the interested reservoir. Based on the above investigations, it was obvious that the Production logging tool (PLT) has shown areas of contribution in the reservoir, which is considered very limited, considering the total reservoir thickness. Also, Alcohol treatment was the first choice to go with for the AA9 well. The well productivity has been relatively restored but not to its initial productivity. Furthermore, Alcohol treatment in the lab was effective and restored permeability in some plugs by 98%, but operationally, the challenge would be the ability to distribute enough alcohol in a wellbore to attain the sweep Efficiency obtained within a laboratory core plug. However, the Second solution, which is based on fracking wells, has shown excellent results, especially for those wells that suffered a high drop in oil production. It is suggested to frac and pack the wells that are already damaged in the Waha field to mitigate the damage and restore productivity back as much as possible. In addition, Critical fluid velocity and its effect on fine sand migration in the reservoir have to be well studied on core samples, and therefore, suitable pressure drawdown will be applied in the reservoir to limit fine sand migration.

Keywords: alcohol treatment, post-depositional environments, permeability, tight sandstone

Procedia PDF Downloads 29
14 Evaluation of Some Trace Elements in Biological Samples of Egyptian Viral Hepatitis Patients under Nutrition Therapy

Authors: Tarek Elnimr, Reda Morsy, Assem El Fert, Aziza Ismail

Abstract:

Hepatitis is an inflammation of the liver. The condition can be self-limiting or can progress to fibrosis, cirrhosis or liver cancer. Disease caused by the hepatitis virus, the virus can cause hepatitis infection, ranging in severity from a mild illness lasting a few weeks to a serious, lifelong illness. A growing body of evidence indicates that many trace elements play important roles in a number of carcinogenic processes that proceed with various mechanisms. To examine the status of trace elements during the development of hepatic carcinoma, we determined the iron, copper, zinc and selenium levels in some biological samples of patients at different stages of viral hepatic disease. We observed significant changes in the iron, copper, zinc and selenium levels in the biological samples of patients hepatocellular carcinoma, relative to those of healthy controls. The mean hair, nail, RBC, serum and whole blood copper levels in patients with hepatitis virus were significantly higher than that of the control group. In contrast the mean iron, zinc, and selenium levels in patients having hepatitis virus were significantly lower than those of the control group. On the basis of this study, we identified the impact of natural supplements to improve the treatment of viral liver damage, using the level of some trace elements such as, iron, copper, zinc and selenium, which might serve as biomarkers for increases survival and reduces disease progression. Most of the elements revealed diverse and random distribution in the samples of the donor groups. The correlation study pointed out significant disparities in the mutual relationships among the trace elements in the patients and controls. Principal component analysis and cluster analysis of the element data manifested diverse apportionment of the selected elements in the scalp hair, nail and blood components of the patients compared with the healthy counterparts.

Keywords: hepatitis, hair, nail, blood components, trace element, nutrition therapy, multivariate analysis, correlation, ICP-MS

Procedia PDF Downloads 379
13 Improve Divers Tracking and Classification in Sonar Images Using Robust Diver Wake Detection Algorithm

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Harbor protection systems are so important. The need for automatic protection systems has increased over the last years. Diver detection active sonar has great significance. It used to detect underwater threats such as divers and autonomous underwater vehicle. To automatically detect such threats the sonar image is processed by algorithms. These algorithms used to detect, track and classify of underwater objects. In this work, divers tracking and classification algorithm is improved be proposing a robust wake detection method. To detect objects the sonar images is normalized then segmented based on fixed threshold. Next, the centroids of the segments are found and clustered based on distance metric. Then to track the objects linear Kalman filter is applied. To reduce effect of noise and creation of false tracks, the Kalman tracker is fine tuned. The tuning is done based on our active sonar specifications. After the tracks are initialed and updated they are subjected to a filtering stage to eliminate the noisy and unstable tracks. Also to eliminate object with a speed out of the diver speed range such as buoys and fast boats. Afterwards the result tracks are subjected to a classification stage to deiced the type of the object been tracked. Here the classification stage is to deice wither if the tracked object is an open circuit diver or a close circuit diver. At the classification stage, a small area around the object is extracted and a novel wake detection method is applied. The morphological features of the object with his wake is extracted. We used support vector machine to find the best classifier. The sonar training images and the test images are collected by ARMELSAN Defense Technologies Company using the portable diver detection sonar ARAS-2023. After applying the algorithm to the test sonar data, we get fine and stable tracks of the divers. The total classification accuracy achieved with the diver type is 97%.

Keywords: harbor protection, diver detection, active sonar, wake detection, diver classification

Procedia PDF Downloads 208
12 A Semi-Markov Chain-Based Model for the Prediction of Deterioration of Concrete Bridges in Quebec

Authors: Eslam Mohammed Abdelkader, Mohamed Marzouk, Tarek Zayed

Abstract:

Infrastructure systems are crucial to every aspect of life on Earth. Existing Infrastructure is subjected to degradation while the demands are growing for a better infrastructure system in response to the high standards of safety, health, population growth, and environmental protection. Bridges play a crucial role in urban transportation networks. Moreover, they are subjected to high level of deterioration because of the variable traffic loading, extreme weather conditions, cycles of freeze and thaw, etc. The development of Bridge Management Systems (BMSs) has become a fundamental imperative nowadays especially in the large transportation networks due to the huge variance between the need for maintenance actions, and the available funds to perform such actions. Deterioration models represent a very important aspect for the effective use of BMSs. This paper presents a probabilistic time-based model that is capable of predicting the condition ratings of the concrete bridge decks along its service life. The deterioration process of the concrete bridge decks is modeled using semi-Markov process. One of the main challenges of the Markov Chain Decision Process (MCDP) is the construction of the transition probability matrix. Yet, the proposed model overcomes this issue by modeling the sojourn times based on some probability density functions. The sojourn times of each condition state are fitted to probability density functions based on some goodness of fit tests such as Kolmogorov-Smirnov test, Anderson Darling, and chi-squared test. The parameters of the probability density functions are obtained using maximum likelihood estimation (MLE). The condition ratings obtained from the Ministry of Transportation in Quebec (MTQ) are utilized as a database to construct the deterioration model. Finally, a comparison is conducted between the Markov Chain and semi-Markov chain to select the most feasible prediction model.

Keywords: bridge management system, bridge decks, deterioration model, Semi-Markov chain, sojourn times, maximum likelihood estimation

Procedia PDF Downloads 180
11 Imaging Features of Hepatobiliary Histiocytosis

Authors: Ayda Youssef, Tarek Rafaat, Iman zaky

Abstract:

Purpose: Langerhans’ cell histiocytosis (LCH) is not uncommon pathology that implies aberrant proliferation of a specific dendritic (Langerhans) cell. These atypical but mature cells of monoclonal origin can infiltrate many sites of the body and may occur as localized lesions or as widespread systemic disease. Liver is one of the uncommon sites of affection. The twofold objective of this study is to illustrate the radiological presentation of this disease, and to compare these results with previously reported series. Methods and Materials: Between 2007 and 2012, 150 patients with biopsy-proven LCH were treated in our hospital, a paediatric cancer tertiary care center. A retrospective review of radiographic images and reports was performed. There were 33 patients with liver affection are stratified. All patients underwent imaging studies, mostly US and CT. A chart review was performed to obtain demographic, clinical and radiological data. They were analyzed and compared to other published series. Results: Retrospective assessment of 150 patients with LCH was performed, among them 33 patients were identified who had liver involvement. All these patients developed multisystemic disease; They were 12 females and 21 males with (n= 32), seven of them had marked hepatomegaly. Diffuse hypodense liver parenchyma was encountered in five cases, the periportal location has a certain predilection in cases of focal affection where three cases has a hypodense periportal soft tissue sheets, one of them associated with dilated biliary radicals, only one case has multiple focal lesions unrelated to portal tracts. On follow up of the patients, two cases show abnormal morphology of liver with bossy outline. Conclusion: LCH is a not infrequent disease. A high-index suspicion should be raised in the context of diagnosis of liver affection. A biopsy is recommended in the presence of radiological suspicion. Chemotherapy is the preferred therapeutic modality. Liver histiocytosis are not disease specific features but should be interpreted in conjunction with the clinical history and the results of biopsy. Clinical Relevance/Application: Radiologist should be aware of different patterns of hepatobiliary histiocytosis, Thus early diagnosis and proper management of patient can be conducted.

Keywords: langerhans’ cell histiocytosis, liver, medical and health sciences, radiology

Procedia PDF Downloads 255
10 The Voiceless Dental- Alveolar Common Augment in Arabic and Other Semitic Languages, a Morphophonemic Comparison

Authors: Tarek Soliman Mostafa Soliman Al-Nana'i

Abstract:

There are non-steady voiced augments in the Semitic languages, and in the morphological and structural augmentation, two sounds were augments in all Semitic languages at the level of the spoken language and two letters at the level of the written language, which are the hamza and the ta’. This research studies only the second of them; Therefore, we defined it as “The Voiceless Dental- alveolar common augment” (VDACA) to distinguish it from the glottal sound “Hamza”, first, middle, or last, in a noun or in a verb, in Arabic and its equivalent in the Semitic languages. What is meant by “VDACA” is the ta’ that is in addition to the root of the word at the morphological level: the word “voiceless” takes out the voiced sounds that we studied before, and the “dental- alveolar common augment” takes out the laryngeal sound of them, which is the “Hamza”: and the word “common” brings out the uncommon voiceless sounds, which are sīn, shīn, and hā’. The study is limited to the ta' alone among the Arabic sounds, and this title faced a problem in identifying it with the ta'. Because the designation of the ta is not the same in most Semitic languages. Hebrew, for example, has “tav” and is pronounced with the voiced fa (v), which is not in Arabic. It is called different names in other Semitic languages, such as “taw” or “tAu” in old Syriac. And so on. This goes hand in hand with the insistence on distance from the written level and the reference to the phonetic aspect in this study that is closely and closely linked to the morphological level. Therefore, the study is “morphophonemic”. What is meant by Semitic languages in this study are the following: Akkadian, Ugaritic, Hebrew, Syriac, Mandaean, Ge'ez, and Amharic. The problem of the study is the agreement or difference between these languages in the position of that augment, first, middle, or last. And in determining the distinguishing characteristics of each language from the other. As for the study methodology, it is determined by the comparative approach in Semitic languages, which is based on the descriptive approach for each language. The study is divided into an introduction, four sections, and a conclusion: Introduction: It included the subject of the study, its importance, motives, problem, methodology, and division. The first section: VDACA as a non-common phoneme. The second: VDACA as a common phoneme. The third: VDACA as a functional morpheme. The fourth section: Commentary and conclusion with the most important results. The positions of VDACA in Arabic and other Semitic languages, and in nouns and verbs, were limited to first, middle, and last. The research identified the individual addition, which is common with other augments, and the research proved that this augmentation is constant in all Semitic languages, but there are characteristics that distinguish each language from the other.

Keywords: voiceless -, dental- alveolar, augment, Arabic - semitic languages

Procedia PDF Downloads 38
9 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration

Procedia PDF Downloads 143
8 Evaluation of the Physico-Chemical and Microbial Properties of the Compost Leachate (CL) to Assess Its Role in the Bioremediation of Polyaromatic Hydrocarbons (PAHs)

Authors: Omaima A. Sharaf, Tarek A. Moussa, Said M. Badr El-Din, H. Moawad

Abstract:

Background: Polycyclic aromatic hydrocarbons (PAHs) pose great environmental and human health concerns for their widespread occurrence, persistence, and carcinogenic properties. PAHs releases due to anthropogenic activities to the wider environment have led to higher concentrations of these contaminants than would be expected from natural processes alone. This may result in a wide range of environmental problems that can accumulate in agricultural ecosystems, which threatened to become a negative impact on sustainable agricultural development. Thus, this study aimed to evaluate the physico-chemical, and microbial properties of the compost leachate (CL) to assess its role as nutrient and microbial source (biostimulation/bioaugmentation) for developing a cost-effective bioremediation technology for PAHs contaminated sites. Material and Methods: PAHs-degrading bacteria were isolated from CL that was collected from a composting site located in central Scotland, UK. Isolation was carried out by enrichment using phenanthrene (PHR), pyrene (PYR) and benzo(a)pyrene (BaP) as the sole source of carbon and energy. The isolates were characterized using a variety of phenotypic and molecular properties. Six different isolates were identified based on the difference in morphological and biochemical tests. The efficiency of these isolates in PAHs utilization was assessed. Further analysis was performed to define taxonomical status and phylogenic relation between the most potent PAHs-utilizing bacterial strains and other standard strains, using molecular approach by partial 16S rDNA gene sequence analysis. Results indicated that the 16S rDNA sequence analysis confirmed the results of biochemical identification, as both of biochemical and molecular identification of the isolates assigned them to Bacillus licheniformis, Pseudomonas aeruginosa, Alcaligenes faecalis, Serratia marcescens, Enterobacter cloacae and Providenicia which were identified as the prominent PAHs-utilizers isolated from CL. Conclusion: This study indicates that the CL samples contain a diverse population of PAHs-degrading bacteria and the use of CL may have a potential for bioremediation of PAHs contaminated sites.

Keywords: polycyclic aromatic hydrocarbons, physico-chemical analyses, compost leachate, microbial and biochemical analyses, phylogenic relations, 16S rDNA sequence analysis

Procedia PDF Downloads 244
7 Design and Test a Robust Bearing-Only Target Motion Analysis Algorithm Based on Modified Gain Extended Kalman Filter

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Passive sonar is a method for detecting acoustic signals in the ocean. It detects the acoustic signals emanating from external sources. With passive sonar, we can determine the bearing of the target only, no information about the range of the target. Target Motion Analysis (TMA) is a process to estimate the position and speed of a target using passive sonar information. Since bearing is the only available information, the TMA technique called Bearing-only TMA. Many TMA techniques have been developed. However, until now, there is not a very effective method that could be used to always track an unknown target and extract its moving trace. In this work, a design of effective Bearing-only TMA Algorithm is done. The measured bearing angles are very noisy. Moreover, for multi-beam sonar, the measurements is quantized due to the sonar beam width. To deal with this, modified gain extended Kalman filter algorithm is used. The algorithm is fine-tuned, and many modules are added to improve the performance. A special validation gate module is used to insure stability of the algorithm. Many indicators of the performance and confidence level measurement are designed and tested. A new method to detect if the target is maneuvering is proposed. Moreover, a reactive optimal observer maneuver based on bearing measurements is proposed, which insure converging to the right solution all of the times. To test the performance of the proposed TMA algorithm a simulation is done with a MATLAB program. The simulator program tries to model a discrete scenario for an observer and a target. The simulator takes into consideration all the practical aspects of the problem such as a smooth transition in the speed, a circular turn of the ship, noisy measurements, and a quantized bearing measurement come for multi-beam sonar. The tests are done for a lot of given test scenarios. For all the tests, full tracking is achieved within 10 minutes with very little error. The range estimation error was less than 5%, speed error less than 5% and heading error less than 2 degree. For the online performance estimator, it is mostly aligned with the real performance. The range estimation confidence level gives a value equal to 90% when the range error less than 10%. The experiments show that the proposed TMA algorithm is very robust and has low estimation error. However, the converging time of the algorithm is needed to be improved.

Keywords: target motion analysis, Kalman filter, passive sonar, bearing-only tracking

Procedia PDF Downloads 367
6 Chronic Hepatitis C Virus Screening: The Role, Strategies and Challenging of Primary Healthcare Faced to Augment and Identify Asymptomatic Infected Patients

Authors: Tarek K. Jalouta, Jolietta R. Holliman, Kathryn R. Burke, Kathleen M. Bewley-Thomas

Abstract:

Background: Chronic hepatitis C virus (HCV) infection is one of the leading causes of liver cirrhosis and hepatocellular carcinoma. In the United States, HCV screening awareness, treatment, and linkage to care are under continues ascending progress. However, still millions of people are asymptomatically infected and undiagnosed yet. Through this community mission, we sought to identify the best and the newest strategies to identify those infected people to educate them, link them to care and cure them. Methods: We have identified patients that did not have a prior HCV screening in our Electronic medical record (EMR) including all our different hospital locations (South Suburban Chicago, Northern, Western and Central Indiana). Providing education to all Primary care/Gastroenterology/Infectious diseases providers and staff in the clinic to increase awareness of the HCV screening. Health-related quality of life, chronic clinical complications, and demographics data were collected for each patient. All outcomes of HCV antibody-reactive and HCV RNA–positive results were identified and statistically analyzed. Results: From July 2016 to July 2018 we screened 35,720 individuals of birth cohort in our different Franciscan’s health medical centers. Of the screened population, 986 (2.7%) individuals were HCV AB-reactive. Of those, 319 (1%) patients were HCV RNA-positive, and 264 patients were counseled and linked to providers. 34 patients initiated anti-HCV therapy with successful treatment. Conclusions: Our HCV screening augmentation project considered the largest screening program in the Midwest. Augmenting the HCV screening process through creating a Best Practice Alert (BPA) in the EMR (Epic Sys.) and point of care testing could be helpful. Although continued work is required, our team is working on increase screening through adding HCV test to CBC-Panels in Emergency Department settings, phone calls to all birth cohort individuals through Robo-Calling System aimed to reach 75,000 individuals by 2019. However, a better linkage to care and referral monitoring system to all HCV RNA positive patients is still needed, and access to therapy, especially for uninsured patients, is challenging.

Keywords: chronic hepatitis C, chronic hepatitis C treatment, chronic hepatitis C screening, chronic hepatitis C prevention, liver cancer

Procedia PDF Downloads 93
5 Chronically Ill Patient Satisfaction: An Indicator of Quality of Service Provided at Primary Health Care Settings in Alexandria

Authors: Alyaa Farouk Ibrahim, Gehan ElSayed, Ola Mamdouh, Nazek AbdelGhany

Abstract:

Background: Primary health care (PHC) can be considered the first contact between the patient and the health care system. It includes all the basic health care services to be provided to the community. Patient's satisfaction regarding health care has often improved the provision of care, also considered as one of the most important measures for evaluating the health care. Objective: This study aims to identify patient’s satisfaction with services provided at the primary health care settings in Alexandria. Setting: Seven primary health care settings representing the seven zones of Alexandria governorate were selected randomly and included in the study. Subjects: The study comprised 386 patients attended the previously selected settings at least twice before the time of the study. Tools: Two tools were utilized for data collection; sociodemographic characteristics and health status structured interview schedule and patient satisfaction scale. Reliability test for the scale was done using Cronbach's Alpha test, the result of the test ranged between 0.717 and 0.967. The overall satisfaction was computed and divided into high, medium, and low satisfaction. Results: Age of the studied sample ranged between 19 and 62 years, more than half (54.2%) of them aged 40 to less than 60 years. More than half (52.8%) of the patients included in the study were diabetics, 39.1% of them were hypertensive, 19.2% had cardiovascular diseases, the rest of the sample had tumor, liver diseases, and orthopedic/neurological disorders (6.5%, 5.2% & 3.2%, respectively). The vast majority of the study group mentioned high satisfaction with overall service cost, environmental conditions, medical staff attitude and health education given at the PHC settings (87.8%, 90.7%, 86.3% & 90.9%, respectively), however, medium satisfaction was mostly reported concerning medical checkup procedures, follow-up data and referral system (41.2%, 28.5% & 28.9%, respectively). Score level of patient satisfaction with health services provided at the assessed Primary health care settings proved to be significantly associated with patients’ social status (P=0.003, X²=14.2), occupation (P=0.011, X²=11.2), and monthly income (P=0.039, X²=6.50). In addition, a significant association was observed between score level of satisfaction and type of illness (P=0.007, X²=9.366), type of medication (P=0.014, X²=9.033), prior knowledge about the health center (P=0.050, X²=3.346), and highly significant with the administrative zone (P=0.001, X²=55.294). Conclusion: The current study revealed that overall service cost, environmental conditions, staff attitude and health education at the assessed primary health care settings gained high patient satisfaction level, while, medical checkup procedures, follow-up, and referral system caused a medium level of satisfaction among assessed patients. Nevertheless, social status, occupation, monthly income, type of illness, type of medication and administrative zones are all factors influencing patient satisfaction with services provided at the health facilities.

Keywords: patient satisfaction, chronic illness, quality of health service, quality of service indicators

Procedia PDF Downloads 317
4 Simulation of Solar Assisted Absorption Cooling and Electricity Generation along with Thermal Storage

Authors: Faezeh Mosallat, Eric L. Bibeau, Tarek El Mekkawy

Abstract:

Availability of a wide variety of renewable resources, such as large reserves of hydro, biomass, solar and wind in Canada provides significant potential to improve the sustainability of energy uses. As buildings represent a considerable portion of energy use in Canada, application of distributed solar energy systems for heating and cooling may increase the amount of renewable energy use. Parabolic solar trough systems have seen limited deployments in cold northern climates as they are more suitable for electricity production in southern latitudes. Heat production by concentrating solar rays using parabolic troughs can overcome the poor efficiencies of flat panels and evacuated tubes in cold climates. A numerical dynamic model is developed to simulate an installed parabolic solar trough facility in Winnipeg. The results of the numerical model are validated using the experimental data obtained from this system. The model is developed in Simulink and will be utilized to simulate a tri-generation system for heating, cooling and electricity generation in remote northern communities. The main objective of this simulation is to obtain operational data of solar troughs in cold climates as this is lacking in the literature. In this paper, the validated Simulink model is applied to simulate a solar assisted absorption cooling system along with electricity generation using organic Rankine cycle (ORC) and thermal storage. A control strategy is employed to distribute the heated oil from solar collectors among the above three systems considering the temperature requirements. This modeling provides dynamic performance results using real time minutely meteorological data which are collected at the same location the solar system is installed. This is a big step ahead of the current models by accurately calculating the available solar energy at each time step considering the solar radiation fluctuations due to passing clouds. The solar absorption cooling is modeled to use the generated heat from the solar trough system and provide cooling in summer for a greenhouse which is located next to the solar field. A natural gas water heater provides the required excess heat for the absorption cooling at low or no solar radiation periods. The results of the simulation are presented for a summer month in Winnipeg which includes the amount of generated electric power from ORC and contribution of solar energy in the cooling load provision

Keywords: absorption cooling, parabolic solar trough, remote community, validated model

Procedia PDF Downloads 193
3 Enhanced Furfural Extraction from Aqueous Media Using Neoteric Hydrophobic Solvents

Authors: Ahmad S. Darwish, Tarek Lemaoui, Hanifa Taher, Inas M. AlNashef, Fawzi Banat

Abstract:

This research reports a systematic top-down approach for designing neoteric hydrophobic solvents –particularly, deep eutectic solvents (DES) and ionic liquids (IL)– as furfural extractants from aqueous media for the application of sustainable biomass conversion. The first stage of the framework entailed screening 32 neoteric solvents to determine their efficacy against toluene as the application’s conventional benchmark for comparison. The selection criteria for the best solvents encompassed not only their efficiency in extracting furfural but also low viscosity and minimal toxicity levels. Additionally, for the DESs, their natural origins, availability, and biodegradability were also taken into account. From the screening pool, two neoteric solvents were selected: thymol:decanoic acid 1:1 (Thy:DecA) and trihexyltetradecyl phosphonium bis(trifluoromethylsulfonyl) imide [P₁₄,₆,₆,₆][NTf₂]. These solvents outperformed the toluene benchmark, achieving efficiencies of 94.1% and 97.1% respectively, compared to toluene’s 81.2%, while also possessing the desired properties. These solvents were then characterized thoroughly in terms of their physical properties, thermal properties, critical properties, and cross-contamination solubilities. The selected neoteric solvents were then extensively tested under various operating conditions, and an exceptional stable performance was exhibited, maintaining high efficiency across a broad range of temperatures (15–100 °C), pH levels (1–13), and furfural concentrations (0.1–2.0 wt%) with a remarkable equilibrium time of only 2 minutes, and most notably, demonstrated high efficiencies even at low solvent-to-feed ratios. The durability of the neoteric solvents was also validated to be stable over multiple extraction-regeneration cycles, with limited leachability to the aqueous phase (≈0.1%). Moreover, the extraction performance of the solvents was then modeled through machine learning, specifically multiple non-linear regression (MNLR) and artificial neural networks (ANN). The models demonstrated high accuracy, indicated by their low absolute average relative deviations with values of 2.74% and 2.28% for Thy:DecA and [P₁₄,₆,₆,₆][NTf₂], respectively, using MNLR, and 0.10% for Thy:DecA and 0.41% for [P₁₄,₆,₆,₆][NTf₂] using ANN, highlighting the significantly enhanced predictive accuracy of the ANN. The neoteric solvents presented herein offer noteworthy advantages over traditional organic solvents, including their high efficiency in both extraction and regeneration processes, their stability and minimal leachability, making them particularly suitable for applications involving aqueous media. Moreover, these solvents are more environmentally friendly, incorporating renewable and sustainable components like thymol and decanoic acid. This exceptional efficacy of the newly developed neoteric solvents signifies a significant advancement, providing a green and sustainable alternative for furfural production from biowaste.

Keywords: sustainable biomass conversion, furfural extraction, ionic liquids, deep eutectic solvents

Procedia PDF Downloads 34
2 Innovations and Challenges: Multimodal Learning in Cybersecurity

Authors: Tarek Saadawi, Rosario Gennaro, Jonathan Akeley

Abstract:

There is rapidly growing demand for professionals to fill positions in Cybersecurity. This is recognized as a national priority both by government agencies and the private sector. Cybersecurity is a very wide technical area which encompasses all measures that can be taken in an electronic system to prevent criminal or unauthorized use of data and resources. This requires defending computers, servers, networks, and their users from any kind of malicious attacks. The need to address this challenge has been recognized globally but is particularly acute in the New York metropolitan area, home to some of the largest financial institutions in the world, which are prime targets of cyberattacks. In New York State alone, there are currently around 57,000 jobs in the Cybersecurity industry, with more than 23,000 unfilled positions. The Cybersecurity Program at City College is a collaboration between the Departments of Computer Science and Electrical Engineering. In Fall 2020, The City College of New York matriculated its first students in theCybersecurity Master of Science program. The program was designed to fill gaps in the previous offerings and evolved out ofan established partnership with Facebook on Cybersecurity Education. City College has designed a program where courses, curricula, syllabi, materials, labs, etc., are developed in cooperation and coordination with industry whenever possible, ensuring that students graduating from the program will have the necessary background to seamlessly segue into industry jobs. The Cybersecurity Program has created multiple pathways for prospective students to obtain the necessary prerequisites to apply in order to build a more diverse student population. The program can also be pursued on a part-time basis which makes it available to working professionals. Since City College’s Cybersecurity M.S. program was established to equip students with the advanced technical skills needed to thrive in a high-demand, rapidly-evolving field, it incorporates a range of pedagogical formats. From its outset, the Cybersecurity program has sought to provide both the theoretical foundations necessary for meaningful work in the field along with labs and applied learning projects aligned with skillsets required by industry. The efforts have involved collaboration with outside organizations and with visiting professors designing new courses on topics such as Adversarial AI, Data Privacy, Secure Cloud Computing, and blockchain. Although the program was initially designed with a single asynchronous course in the curriculum with the rest of the classes designed to be offered in-person, the advent of the COVID-19 pandemic necessitated a move to fullyonline learning. The shift to online learning has provided lessons for future development by providing examples of some inherent advantages to the medium in addition to its drawbacks. This talk will address the structure of the newly-implemented Cybersecurity Master’s Program and discuss the innovations, challenges, and possible future directions.

Keywords: cybersecurity, new york, city college, graduate degree, master of science

Procedia PDF Downloads 116
1 Seismic History and Liquefaction Resistance: A Comparative Study of Sites in California

Authors: Tarek Abdoun, Waleed Elsekelly

Abstract:

Introduction: Liquefaction of soils during earthquakes can have significant consequences on the stability of structures and infrastructure. This study focuses on comparing two liquefaction case histories in California, namely the response of the Wildlife site in the Imperial Valley to the 2010 El-Mayor Cucapah earthquake (Mw = 7.2, amax = 0.15g) and the response of the Treasure Island Fire Station (F.S.) site in the San Francisco Bay area to the 1989 Loma Prieta Earthquake (Mw = 6.9, amax = 0.16g). Both case histories involve liquefiable layers of silty sand with non-plastic fines, similar shear wave velocities, low CPT cone penetration resistances, and groundwater tables at similar depths. The liquefaction charts based on shear wave velocity field predict liquefaction at both sites. However, a significant difference arises in their pore pressure responses during the earthquakes. The Wildlife site did not experience liquefaction, as evidenced by piezometer data, while the Treasure Island F.S. site did liquefy during the shaking. Objective: The primary objective of this study is to investigate and understand the reason for the contrasting pore pressure responses observed at the Wildlife site and the Treasure Island F.S. site despite their similar geological characteristics and predicted liquefaction potential. By conducting a detailed analysis of similarities and differences between the two case histories, the objective is to identify the factors that contributed to the higher liquefaction resistance exhibited by the Wildlife site. Methodology: To achieve this objective, the geological and seismic data available for both sites were gathered and analyzed. Then their soil profiles, seismic characteristics, and liquefaction potential as predicted by shear wave velocity-based liquefaction charts were analyzed. Furthermore, the seismic histories of both regions were examined. The number of previous earthquakes capable of generating significant excess pore pressures for each critical layer was assessed. This analysis involved estimating the total seismic activity that the Wildlife and Treasure Island F.S. critical layers experienced over time. In addition to historical data, centrifuge and large-scale experiments were conducted to explore the impact of prior seismic activity on liquefaction resistance. These findings served as supporting evidence for the investigation. Conclusions: The higher liquefaction resistance observed at the Wildlife site and other sites in the Imperial Valley can be attributed to preshaking by previous earthquakes. The Wildlife critical layer was subjected to a substantially greater number of seismic events capable of generating significant excess pore pressures over time compared to the Treasure Island F.S. layer. This crucial disparity arises from the difference in seismic activity between the two regions in the past century. In conclusion, this research sheds light on the complex interplay between geological characteristics, seismic history, and liquefaction behavior. It emphasizes the significant impact of past seismic activity on liquefaction resistance and can provide valuable insights for evaluating the stability of sandy sites in other seismic regions.

Keywords: liquefaction, case histories, centrifuge, preshaking

Procedia PDF Downloads 47