Search results for: Nikita Manvi
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25

Search results for: Nikita Manvi

25 Influence and Depiction of Power in an Urban Space

Authors: Kalpeshkumar Patel, Nikita Manvi

Abstract:

The paper is an attempt to understand the influence and depiction of power in an urban space by throwing light across a few examples across the architectural timeline. Power has been the medium through which ideologies function, as witnessed across the timeline. The center to understand this ideology is to apprehend how power is formed, captured, owned, traded, and distorted. Every urban space has power embedded in it, either for the people who are imposing it or for the public who are receiving it. The most fundamental question in the issue of power is who – who will judge, whose tastes will matter and whose interests are being served. Power is expressed and reinforced by regular means, a boundary and gates, a parade route, a dominant landmark, play of shape or scale in elevation, ceremonial axis, boulevards and avenues, the vista, bilateral symmetry, or regular order. Even if people accept the psychological efficacy of these forms, the way they perceive them may vary depending on the subject. They are cold devices of power used to make some people submit to others. Yet it is also true that these symbolic forms are attractive because they speak to the deep emotions of people. They do indeed give us a sense of security, stability and continuity, awe and pride. The Urban Space for mass assembly is an idea that continues to seduce dictators and democracies. It is a tradition as old as an agora and as manipulative as Baroque Rome.

Keywords: urban space, aggrandization, city planning, landscape, supremacy, democratic

Procedia PDF Downloads 128
24 Privacy Policy Prediction for Uploaded Image on Content Sharing Sites

Authors: Pallavi Mane, Nikita Mankar, Shraddha Mazire, Rasika Pashankar

Abstract:

Content sharing sites are very useful in sharing information and images. However, with the increasing demand of content sharing sites privacy and security concern have also increased. There is need to develop a tool for controlling user access to their shared content. Therefore, we are developing an Adaptive Privacy Policy Prediction (A3P) system which is helpful for users to create privacy settings for their images. We propose the two-level framework which assigns the best available privacy policy for the users images according to users available histories on the site.

Keywords: online information services, prediction, security and protection, web based services

Procedia PDF Downloads 359
23 Frenectomy With Lateral Pedicle Graft - A Case Series

Authors: Nikita Sankhe

Abstract:

A Frenum is a band or fold of mucous membrane, which is usually with enclosed muscle fibers, that attaches the lip and cheek to the alveolar mucosa or the gingiva and the underlying periosteum. It curbs or limits the movements of an organ. A frenum becomes a problem if its attachment is too close to the marginal or papillary gingiva, namely localized gingival recession and a midline diastema or it may pull the gingival margin away from the tooth allowing plaque accumulation and inhibit toothbrushing. Frenectomy is the complete removal of the frenum including its attachment to the underlying bone. Miller suggested a technique where by a closure was done across the midline by laterally positioned gingiva. Healing by primary intention resulted in aesthetically acceptable attached gingiva across the midline. This paper aims at showing how a lateral pedicle graft technique combined with frenectomy proves to be more advantageous than any other technique.

Keywords: frenum , frenectomy , lateral pedicle graft , classical frenectomy

Procedia PDF Downloads 247
22 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network

Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi

Abstract:

Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.

Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication

Procedia PDF Downloads 451
21 Identification of Author and Reviewer from Single and Double Blind Paper

Authors: Jatinderkumar R. Saini, Nikita. R. Sonthalia, Khushbu. A. Dodiya

Abstract:

Research leads to development of science and technology and hence to the betterment of humankind. Journals and conferences provide a platform to receive large number of research papers for publications and presentations before the expert and scientific community. In order to assure quality of such papers, they are also sent to reviewers for their comments. In order to maintain good ethical standards, the research papers are sent to reviewers in such a way that they do not know each other’s identity. This technique is called double-blind review process. It is called single-blind review process, if identity of any one party (generally authors) is disclosed to the other. This paper presents the techniques by which identity of author as well as reviewer could be made out even through double-blind review process. It is proposed that the characteristics and techniques presented here will help journals and conferences in assuring intentional or unintentional disclosure of identity revealing information by either party to the other.

Keywords: author, conference, double blind paper, journal, reviewer, single blind paper

Procedia PDF Downloads 351
20 Planning for a Smart Sustainable Cities: A Case Study

Authors: Ajaykumar Kambekar, Nikita Kalantri

Abstract:

Due to faster urbanization; developing nations will have to look forward towards establishing new planned cities those are environmentally friendly. Due to growth in Information and Communication Technology (ICT), it is evident that the rise of smart cities is witnessed as a promising trend for future growth; however, technology alone cannot make a city as a smart city. Cities must use smart systems to enhance the quality of life of its citizens and to achieve sustainable growth. Recent trends in technology may offer some indication towards harnessing our cities potential as the new engines of sustainable growth. To overcome the problems of mega-urbanization, new concept of smart cities has been introduced. The current research aims to reduce the knowledge gap in urban planning by exploring the concept of smart cities considering sustainability as a major focus. The aim of this paper is to plan for an entire smart city. The paper analyses sustainable development and identifies the key factors for the creation of future smart cities. The study also emphasizes the use of advanced planning and scheduling software such as Microsoft Project (MSP).

Keywords: urbanization, planned cities, information and communication technology, sustainable growth

Procedia PDF Downloads 309
19 A Deep Learning Based Approach for Dynamically Selecting Pre-processing Technique for Images

Authors: Revoti Prasad Bora, Nikita Katyal, Saurabh Yadav

Abstract:

Pre-processing plays an important role in various image processing applications. Most of the time due to the similar nature of images, a particular pre-processing or a set of pre-processing steps are sufficient to produce the desired results. However, in the education domain, there is a wide variety of images in various aspects like images with line-based diagrams, chemical formulas, mathematical equations, etc. Hence a single pre-processing or a set of pre-processing steps may not yield good results. Therefore, a Deep Learning based approach for dynamically selecting a relevant pre-processing technique for each image is proposed. The proposed method works as a classifier to detect hidden patterns in the images and predicts the relevant pre-processing technique needed for the image. This approach experimented for an image similarity matching problem but it can be adapted to other use cases too. Experimental results showed significant improvement in average similarity ranking with the proposed method as opposed to static pre-processing techniques.

Keywords: deep-learning, classification, pre-processing, computer vision, image processing, educational data mining

Procedia PDF Downloads 164
18 The Hyundai Model: A Self-Sufficient State like Entity Masquerading as a Company

Authors: Nikita Koradia

Abstract:

Hyundai Motor Company, which started off as a small fish in a big sea, paved its way out successfully and established itself as an independent group from the conglomerate. Hyundai, with its officious power across the globe and particularly in South Korea in the automobile industry, has one the most complex yet fascinating governance structure. Being the second largest contributor to the Gross Domestic Product of South Korea after Samsung and having a market share of 51.3% domestically in automobile industry, Hyundai has faced its part of criticism owing to its anti-labor union approach and owing to its internalization of supply chain management. The censure has been coming from across jurisdictions like China, India, Canada, the EU, etc. The paper focuses on the growth of Hyundai and its inward and outward investment structure. The paper questions the ability of Hyundai to become a mini-state in itself by focusing on its governance structure. The paper further elaborates on its compliance and disclosure regime in the field of Corporate social responsibility and explores how far the business structure adopted by Hyundai works in its favor to become one of the leading automobile contenders in the market.

Keywords: compliance regime, disclosure regime, Hyundai motor company, supply-chain management

Procedia PDF Downloads 118
17 Framework for Integrating Big Data and Thick Data: Understanding Customers Better

Authors: Nikita Valluri, Vatcharaporn Esichaikul

Abstract:

With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.

Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data

Procedia PDF Downloads 162
16 Study of the Architectural Heritage and Culture of Bene Israeli Community in Raigad, Maharashtra

Authors: Nikita Mahajani

Abstract:

The Bene Israel is the oldest Jewish community on the subcontinent, and their shipwreck off the coast of Navgaon (a coastal settlement south of Alibaug), in which only seven men and women survived, anticipated the first millennia of their residence in the Konkan. The community was cut off from mainstream Judaism for decades as a result of its poverty. Almost all of the Bene Israel people in the northern Konkan region have relocated to Israel. The few who remained have settled down in Mumbai and Thane. Despite this, they have left a rich cultural legacy, as seen by their houses, cemeteries and synagogues. Even though the population has reduced owing to outside migration, much of this built legacy has survived. This paper attempts to examine the Jewish architectural heritage in Raigad with an aim to recreate their cultural, social and economic history. Oral histories by interviews of the Bene Israel community from Revdanda helped gain information about naming customs, migrations, professions, religious customs and funeral practices. The findings of this research reveal that most synagogues in Raigad district are shut due to a lack of Bene Israelis coming for prayers. The cemeteries are in a dilapidated condition. The little-known Bene Israeli community of Raigad is a seamless blend of Maharashtrian and Jew culture and feels more homely in India.

Keywords: Konkan, Alibag, Revdanda, Pen, Bene Israeli, Indian jews, synagogue, cemetry

Procedia PDF Downloads 74
15 An Investigation of the Therapeutic Effects of Indian Classical Music (Raga Bhairavi) on Mood and Physiological Parameters of Scholars

Authors: Kalpana Singh, Nikita Katiyar

Abstract:

This research investigates the impact of Raga Bhairavi, a prominent musical scale in Indian classical music, on the mood and basic physiological parameters of research scholars at the University of Lucknow - India. The study focuses on the potential therapeutic effects of listening to Raga Bhairavi during morning hours. A controlled experimental design is employed, utilizing self-reporting tools for mood assessment and monitoring physiological indicators such as heart rate, oxygen saturation levels, body temperature and blood pressure. The hypothesis posits that exposure to Raga Bhairavi will lead to positive mood modulation and a reduction in physiological stress markers among research scholars. Data collection involves pre and post-exposure measurements, providing insights into the immediate and cumulative effects of the musical intervention. The study aims to contribute valuable information to the growing field of music therapy, offering a potential avenue for enhancing the well-being and productivity of individuals engaged in intense cognitive activities. Results may have implications for the integration of music-based interventions in academic and research environments, fostering a conducive atmosphere for intellectual pursuits.

Keywords: bio-musicology, classical music, mood assessment, music therapy, physiology, Raga Bhairavi

Procedia PDF Downloads 53
14 Early Intervention and Teletherapy during the COVID-19 Pandemic

Authors: Stephen Hernandez, Nikita Sharma

Abstract:

The Coronavirus disease (COVID-19) emerged as a worldwide pandemic at the beginning of 2020. The pandemic and its impact reached the shores of the United States by the second week of March. Once infections started to grow in numbers, early intervention programs, including those providing home-based services, recognized that to reduce the spread of the virus, many traditional in-person therapeutic interventions were going to be impossible due to social distancing and self-quarantine requirements. Initially, infants, toddlers, and their families were left without any services from their educators and therapists, but within a few weeks of the public health emergency, various states, including New York, approved the use of teletherapy/virtual visits for early intervention service provision. This paper will detail the results of a survey from over 400 E.I. service providers about their experiences utilizing teletherapy to deliver services to children in early intervention programs. The survey questions focused on how did COVID-19 stay-at-home orders impact E.I. services for young children with special needs? Sub-questions included topics such as availability of the parents, the amount of time that babies remained engaged, as well as the perceived success of teletherapy as a viable option to provide service by both parent and professional. The results of this study found that therapists found teletherapy to be a viable manner of providing services and could be very effective on a case by case basis.

Keywords: early intervention, teletheraphy, telehealth, COVID-19

Procedia PDF Downloads 133
13 Machine Learning Based Approach for Measuring Promotion Effectiveness in Multiple Parallel Promotions’ Scenarios

Authors: Revoti Prasad Bora, Nikita Katyal

Abstract:

Promotion is a key element in the retail business. Thus, analysis of promotions to quantify their effectiveness in terms of Revenue and/or Margin is an essential activity in the retail industry. However, measuring the sales/revenue uplift is based on estimations, as the actual sales/revenue without the promotion is not present. Further, the presence of Halo and Cannibalization in a multiple parallel promotions’ scenario complicates the problem. Calculating Baseline by considering inter-brand/competitor items or using Halo and Cannibalization's impact on Revenue calculations by considering Baseline as an interpretation of items’ unit sales in neighboring nonpromotional weeks individually may not capture the overall Revenue uplift in the case of multiple parallel promotions. Hence, this paper proposes a Machine Learning based method for calculating the Revenue uplift by considering the Halo and Cannibalization impact on the Baseline and the Revenue. In the first section of the proposed methodology, Baseline of an item is calculated by incorporating the impact of the promotions on its related items. In the later section, the Revenue of an item is calculated by considering both Halo and Cannibalization impacts. Hence, this methodology enables correct calculation of the overall Revenue uplift due a given promotion.

Keywords: Halo, Cannibalization, promotion, Baseline, temporary price reduction, retail, elasticity, cross price elasticity, machine learning, random forest, linear regression

Procedia PDF Downloads 178
12 Parallel Pipelined Conjugate Gradient Algorithm on Heterogeneous Platforms

Authors: Sergey Kopysov, Nikita Nedozhogin, Leonid Tonkov

Abstract:

The article presents a parallel iterative solver for large sparse linear systems which can be used on a heterogeneous platform. Traditionally, the problem of solving linear systems does not scale well on multi-CPU/multi-GPUs clusters. For example, most of the attempts to implement the classical conjugate gradient method were at best counted in the same amount of time as the problem was enlarged. The paper proposes the pipelined variant of the conjugate gradient method (PCG), a formulation that is potentially better suited for hybrid CPU/GPU computing since it requires only one synchronization point per one iteration instead of two for standard CG. The standard and pipelined CG methods need the vector entries generated by the current GPU and other GPUs for matrix-vector products. So the communication between GPUs becomes a major performance bottleneck on multi GPU cluster. The article presents an approach to minimize the communications between parallel parts of algorithms. Additionally, computation and communication can be overlapped to reduce the impact of data exchange. Using the pipelined version of the CG method with one synchronization point, the possibility of asynchronous calculations and communications, load balancing between the CPU and GPU for solving the large linear systems allows for scalability. The algorithm is implemented with the combined use of technologies: MPI, OpenMP, and CUDA. We show that almost optimum speed up on 8-CPU/2GPU may be reached (relatively to a one GPU execution). The parallelized solver achieves a speedup of up to 5.49 times on 16 NVIDIA Tesla GPUs, as compared to one GPU.

Keywords: conjugate gradient, GPU, parallel programming, pipelined algorithm

Procedia PDF Downloads 165
11 The Impact of Smartphone Applications on Consumer Attitude towards Brands

Authors: Nikita Bharadia, Vikas Gupta, Sushant Koshy

Abstract:

Mobile phone applications (“apps”) have generated substantial interest among marketers and researchers because of the developments in the smartphone technology and the availability of affordable phones to a large number of consumers. Apps are enabling brands to engage with consumers at any time and any place. This study utilizes a pre-test/post-test experimental design to determine if apps can have a persuasive impact on the consumer attitude towards the brand and her purchase intention. The study also tests the impact of informational vs. interactive style of apps on categories with high and low level of involvement. The results show that for high involvement brands, consumers have a predetermined brand image and apps that satisfy consumer needs through an interactive interface can increase purchase intention. For low involvement brands, while informational apps do not create substantial engagement, interactive apps can increase consumer focus on the brand and establish personal connect with the consumers. This has a positive impact in the attitude towards the brand. These results suggest that understanding how to maximize the consumer interaction with mobile phone apps will be a key topic of future research. This research indicates that managers need to evaluate the how apps can solve consumer needs before investing resources towards digital marketing campaign for their brands, following the global trend to capitalize on the digital platforms.

Keywords: App execution style, high and low involvement categories, mobile marketing, smartphone applications

Procedia PDF Downloads 398
10 Life Stage Customer Segmentation by Fine-Tuning Large Language Models

Authors: Nikita Katyal, Shaurya Uppal

Abstract:

This paper tackles the significant challenge of accurately classifying customers within a retailer’s customer base. Accurate classification is essential for developing targeted marketing strategies that effectively engage this important demographic. To address this issue, we propose a method that utilizes Large Language Models (LLMs). By employing LLMs, we analyze the metadata associated with product purchases derived from historical data to identify key product categories that act as distinguishing factors. These categories, such as baby food, eldercare products, or family-sized packages, offer valuable insights into the likely household composition of customers, including families with babies, families with kids/teenagers, families with pets, households caring for elders, or mixed households. We segment high-confidence customers into distinct categories by integrating historical purchase behavior with LLM-powered product classification. This paper asserts that life stage segmentation can significantly enhance e-commerce businesses’ ability to target the appropriate customers with tailored products and campaigns, thereby augmenting sales and improving customer retention. Additionally, the paper details the data sources, model architecture, and evaluation metrics employed for the segmentation task.

Keywords: LLMs, segmentation, product tags, fine-tuning, target segments, marketing communication

Procedia PDF Downloads 24
9 Physical Activity Patterns during Inpatient Rehabilitation in Patients with Recent Brain Injury

Authors: Nikita Pasricha, Karen Smith, Simone Marshall, Vincent DePaul, Jessica Trier

Abstract:

Understanding that physical activity in rehabilitation programs shapes outcomes in acquired brain injury (ABI) populations is not a new concept. However, there is a void in understanding the physical activity patterns of inpatients in ABI rehabilitation, the trajectory of physical activity recovery, and factors that contribute to the recovery of physical activity over the initial months post-ABI. The purpose of this study was to determine if physical activity patterns vary in people with recent ABI in inpatient rehabilitation. The study also investigated differences in physical activity patterns in ABI patients compared to age-related healthy participants. Results revealed that ABI patients spent approximately 6.7 times longer per day in sedentary postures than in active positions. In comparison, the control group spent only 2.8 times longer in sedentary postures compared to active positions. Patients with ABI took significantly fewer steps than age-matched health control participants. Within the ABI population, patients took 0.78 times fewer steps on weekends compared to weekdays. Participants with greater mobility limitations had a greater difference in WD to WE steps taken. Potential reasons could be from no structured weekend rehabilitation programs, lower availability of staff, or varying schedules. Given that the rehabilitation program is only structured on weekdays, further research to investigate the benefits of structured physical activities like group walking programs on weekends for ABI patients in inpatient rehabilitation programs is warranted.

Keywords: brain, ABI, TBI, rehabilitation

Procedia PDF Downloads 54
8 Optimizing Campaign Effectiveness: Identifying Target Customers via Recommender Engine

Authors: Nikita Katyal, Shubham Jain

Abstract:

In today’s competitive business environment, the success of campaigns relies not only on their creation but also on effectively reaching the right customers. Campaigns often feature products that customers may not have considered or are unaware of, including popular items. This research aims to enhance retailer sales by leveraging an efficient recommender system that reminds targeted customers to purchase their preferred products and suggests additional items they hadn’t initially considered during a campaign. Our focus is on utilizing the recommender system to identify potential customers for a curated set of products selected by the marketing team for a specific campaign. Communicating with all customers can be time-consuming and costly, and irrelevant messages may harm customer loyalty. Therefore, the primary objective is to strategically select the right customers for a campaign, increasing sales and reducing communication costs. This paper provides valuable insights into connecting with the right customer segments to optimize revenue generation for businesses. The analysis shows that high-value customers (those generating the highest revenue) contributed to increases in average basket size, while win-back customers (with low engagement) and about to churn customers (those at risk of attrition) improved the effectiveness of marketing contacts by increasing engagement and reducing churn. Targeted communication, focused on revenue, also enhanced the quality of the relationship between the customer and the firm, helping to lower churn rates by engaging customers with suitable campaigns. This research provides empirical evidence supporting the theoretical benefits of targeting the right customers for a campaign.

Keywords: recommendation, ALS, marketing campaigns, target customers, churn

Procedia PDF Downloads 8
7 A U-Net Based Architecture for Fast and Accurate Diagram Extraction

Authors: Revoti Prasad Bora, Saurabh Yadav, Nikita Katyal

Abstract:

In the context of educational data mining, the use case of extracting information from images containing both text and diagrams is of high importance. Hence, document analysis requires the extraction of diagrams from such images and processes the text and diagrams separately. To the author’s best knowledge, none among plenty of approaches for extracting tables, figures, etc., suffice the need for real-time processing with high accuracy as needed in multiple applications. In the education domain, diagrams can be of varied characteristics viz. line-based i.e. geometric diagrams, chemical bonds, mathematical formulas, etc. There are two broad categories of approaches that try to solve similar problems viz. traditional computer vision based approaches and deep learning approaches. The traditional computer vision based approaches mainly leverage connected components and distance transform based processing and hence perform well in very limited scenarios. The existing deep learning approaches either leverage YOLO or faster-RCNN architectures. These approaches suffer from a performance-accuracy tradeoff. This paper proposes a U-Net based architecture that formulates the diagram extraction as a segmentation problem. The proposed method provides similar accuracy with a much faster extraction time as compared to the mentioned state-of-the-art approaches. Further, the segmentation mask in this approach allows the extraction of diagrams of irregular shapes.

Keywords: computer vision, deep-learning, educational data mining, faster-RCNN, figure extraction, image segmentation, real-time document analysis, text extraction, U-Net, YOLO

Procedia PDF Downloads 139
6 Effect of Select Surfactants on Activities of Soil Enzymes Involved in Nutrient Cycling

Authors: Frieda Eivazi, Nikita L. Mullings

Abstract:

Soils are recipient for surfactants in herbicide formulations. Surfactants entering the soil environment can possibly disrupt different chemical, physical and biological interactions. Therefore, it is critical that we understand the fate, behavior and transport of surfactants upon entering the soil. A comprehensive study was conducted to examine effect of surfactants on nutrient uptake, microbial community, and enzyme activity. The research was conducted in the greenhouse growing corn (Zea mays) as a test plant in a factorial experiment (three surfactants at two different rates with control, and three herbicides) organized as randomized blocked design. Surfactants evaluated were Activator 90, Agri-Dex, and Thrust; herbicides were glyphosate, atrazine, and bentazon. Treatments examined were surfactant only, herbicide only, and surfactant + herbicide combinations. Corn was planted in fertilized soils (silt loam and silty clay) with moisture content maintained at the field capacity for optimum growth. This paper will report results of above mentioned treatments on acid phosphatase, beta-glucosidase, arylsulfatase, beta-glucosaminidase, and dehydrogenase activities. In general, there were variations in the enzyme activities with some inhibition and some being enhanced by the treatments. Activator 90 appeared to have the highest inhibitory effect on enzymatic activities. Atrazine application significantly decreased the activities of acid phosphatase, beta-glucosidase, and dehydrogenase in both soils; however, combination of Atrazine + Agridex increased the acid phosphatase activity while significantly inhibiting the other enzyme activities in soils. It was concluded that long-term field studies are needed to validate changes in nutrient uptake, microbial community and enzyme activities due to surfactant-herbicide combination effects.

Keywords: herbicides, nutrient cycling, soil enzymes, surfactant

Procedia PDF Downloads 251
5 Barriers to Access among Indigenous Women Seeking Prenatal Care: A Literature Review

Authors: Zarish Jawad, Nikita Chugh, Karina Dadar

Abstract:

Introduction: This paper aims to identify barriers indigenous women face in accessing prenatal care in Canada. It explores the differences in prenatal care received between indigenous and non-indigenous women. The objective is to look at changes or programs in Canada's healthcare system to reduce barriers to accessing safe prenatal care for indigenous women. Methods: A literature search of 12 papers was conducted using the following databases: PubMed, Medline, OVID, Google Scholar, and ScienceDirect. The studies included were written in English only, including indigenous females between the age of 19-35, and review articles were excluded. Participants in the studies examined did not have any severe underlying medical conditions for the duration of the study, and study designs included in the review are prospective cohort, cross-sectional, case report, and case-control studies. Results: Among all the barriers Indigenous women face in accessing prenatal care, the three most significant barriers Indigenous women face include a lack of culturally safe prenatal care, lack of services in the Indigenous community, proximity of prenatal facilities to Indigenous communities and costs of transportation. Discussion: The study found three significant barriers indigenous women face in accessing prenatal care in Canada; the geographical distribution of healthcare facilities, distrust between patients and healthcare professionals, and cultural sensitivity. Some of the suggested solutions include building more birthing and prenatal care facilities in rural areas for indigenous women, educating healthcare professionals on culturally sensitive healthcare, and involving indigenous people in the decision-making process to reduce distrust and power imbalances. Conclusion: The involvement of indigenous women and community leaders is important in making decisions regarding the implementation of effective healthcare and prenatal programs for indigenous women. However, further research is required to understand the effectiveness of the solutions and the barriers that make prenatal care less accessible for indigenous women in Canada.

Keywords: indigenous, maternal health, prenatal care, barriers

Procedia PDF Downloads 152
4 Assessing the Impact of Additional Information during Motor Preparation in Lane Change Task

Authors: Nikita Rajendra Sharma, Jai Prakash Kushvah, Gerhard Rinkenauer

Abstract:

Driving a car is a discrete aiming movement in which drivers aim at successful extraction of relevant information and elimination of potentially distracting one. It is the motor preparation which enables one to react to certain stimuli onsite by allowing perceptual process for optimal adjustment. Drivers prepare their responses according to the available resources of advanced and ongoing information to drive efficiently. It requires constant programming and reprogramming of the motor system. The reaction time (RT) is shorter when a response signal is preceded by a warning signal. The reason behind this reduced time in responding to targets is that the warning signal causes the participant to prepare for the upcoming response by updating the motor program before the execution. While performing the primary task of changing lanes while driving, the simultaneous occurrence of additional information during the presentation of cues (congruent or incongruent with respect to target cue) might impact the motor preparation and execution. The presence of additional information (other than warning or response signal) between warning signal and imperative stimulus influences human motor preparation to a reasonable extent. The present study was aimed to assess the impact of congruent and incongruent additional information (with respect to imperative stimulus) on driving performance (reaction time, steering wheel amplitude, and steering wheel duration) during a lane change task. implementing movement pre-cueing paradigm. 22 young valid car-drivers (Mage = 24.1+/- 3.21 years, M = 10, F = 12, age-range 21-33 years) participated in the study. The study revealed that additional information influenced the overall driving performance as potential distractors and relevant information. Findings suggest that the events of additional information relatively influenced the reaction time and steering wheel angle as potential distractor or irrelevant information. Participants took longer to respond, and higher steering wheel angles were reported for targets coupled with additional information in comparison with warning signs preceded by potential distractors and the participants' response time was more for a higher number of lanes (2 Lanes > 1 Lane). The same additional information appearing interchangeably at warning signals and targets worked as relevant information facilitating the motor programming in the trails where they were congruent with the direction of lane change direction.

Keywords: additional information, lane change task, motor preparation, movement pre-cueing, reaction time, steering wheel amplitude

Procedia PDF Downloads 191
3 Utilization of Process Mapping Tool to Enhance Production Drilling in Underground Metal Mining Operations

Authors: Sidharth Talan, Sanjay Kumar Sharma, Eoin Joseph Wallace, Nikita Agrawal

Abstract:

Underground mining is at the core of rapidly evolving metals and minerals sector due to the increasing mineral consumption globally. Even though the surface mines are still more abundant on earth, the scales of industry are slowly tipping towards underground mining due to rising depth and complexities of orebodies. Thus, the efficient and productive functioning of underground operations depends significantly on the synchronized performance of key elements such as operating site, mining equipment, manpower and mine services. Production drilling is the process of conducting long hole drilling for the purpose of charging and blasting these holes for the production of ore in underground metal mines. Thus, production drilling is the crucial segment in the underground metal mining value chain. This paper presents the process mapping tool to evaluate the production drilling process in the underground metal mining operation by dividing the given process into three segments namely Input, Process and Output. The three segments are further segregated into factors and sub-factors. As per the study, the major input factors crucial for the efficient functioning of production drilling process are power, drilling water, geotechnical support of the drilling site, skilled drilling operators, services installation crew, oils and drill accessories for drilling machine, survey markings at drill site, proper housekeeping, regular maintenance of drill machine, suitable transportation for reaching the drilling site and finally proper ventilation. The major outputs for the production drilling process are ore, waste as a result of dilution, timely reporting and investigation of unsafe practices, optimized process time and finally well fragmented blasted material within specifications set by the mining company. The paper also exhibits the drilling loss matrix, which is utilized to appraise the loss in planned production meters per day in a mine on account of availability loss in the machine due to breakdowns, underutilization of the machine and productivity loss in the machine measured in drilling meters per unit of percussion hour with respect to its planned productivity for the day. The given three losses would be essential to detect the bottlenecks in the process map of production drilling operation so as to instigate the action plan to suppress or prevent the causes leading to the operational performance deficiency. The given tool is beneficial to mine management to focus on the critical factors negatively impacting the production drilling operation and design necessary operational and maintenance strategies to mitigate them. 

Keywords: process map, drilling loss matrix, SIPOC, productivity, percussion rate

Procedia PDF Downloads 215
2 Blackcurrant-Associated Rhabdovirus: New Pathogen for Blackcurrants in the Baltic Sea Region

Authors: Gunta Resevica, Nikita Zrelovs, Ivars Silamikelis, Ieva Kalnciema, Helvijs Niedra, Gunārs Lācis, Toms Bartulsons, Inga Moročko-Bičevska, Arturs Stalažs, Kristīne Drevinska, Andris Zeltins, Ina Balke

Abstract:

Newly discovered viruses provide novel knowledge for basic phytovirus research, serve as tools for biotechnology and can be helpful in identification of epidemic outbreaks. Blackcurrant-associated rhabdovirus (BCaRV) have been discovered in USA germplasm collection samples from Russia and France. As it was reported in one accession originating from France it is unclear whether the material was already infected when it entered in the USA or it became infected while in collection in the USA. Due to that BCaRV was definite as non-EU viruses. According to ICTV classification BCaRV is representative of Blackcurrant betanucleorhabdovirus specie in genus Betanucleorhabdovirus (family Rhabdoviridae). Nevertheless, BCaRV impact on the host, transmission mechanisms and vectors are still unknown. In RNA-seq data pool from Ribes plants resistance gene study by high throughput sequencing (HTS) we observed differences between sample group gene transcript heat maps. Additional analysis of the whole data pool (total 393660492 of 150 bp long read pairs) by rnaSPAdes v 3.13.1 resulted into 14424 bases long contig with an average coverage of 684x with shared 99.5% identity to the previously reported first complete genome of BCaRV (MF543022.1) using EMBOSS Needle. This finding proved BCaRV presence in EU and indicated that it might be relevant pathogen. In this study leaf tissue from twelve asymptomatic blackcurrant cv. Mara Eglite plants (negatively tested for blackcurrant reversion virus (BRV)) from Dobele, Latvia (56°36'31.9"N, 23°18'13.6"E) was collected and used for total RNA isolation with RNeasy Plant Mini Kit with minor modifications, followed by plant rRNA removal by a RiboMinus Plant Kit for RNA-Seq. HTS libraries were prepared using MGI Easy RNA Directional Library Prep Set for 16 reactions to obtain 150 bp pair-end reads. Libraries were pooled, circularized and cleaned and sequenced on DNBSEQ-G400 using PE150 flow cell. Additionally, all samples were tested by RT-PCR, and amplicons were directly sequenced by Sanger-based method. The contig representing the genome of BCaRV isolate Mara Eglite was deposited at European Nucleotide Archive under accession number OU015520. Those findings indicate a second evidence on the presence of this particular virus in the EU and further research on BCaRV prevalence in Ribes from other geographical areas should be performed. As there are no information on BCaRV impact on the host this should be investigated, regarding the fact that mixed infections with BRV and nucleorhabdoviruses are reported.

Keywords: BCaRV, Betanucleorhabdovirus, Ribes, RNA-seq

Procedia PDF Downloads 184
1 The Impact of Shifting Trading Pattern from Long-Haul to Short-Sea to the Car Carriers’ Freight Revenues

Authors: Tianyu Wang, Nikita Karandikar

Abstract:

The uncertainty around cost, safety, and feasibility of the decarbonized shipping fuels has made it increasingly complex for the shipping companies to set pricing strategies and forecast their freight revenues going forward. The increase in the green fuel surcharges will ultimately influence the automobile’s consumer prices. The auto shipping demand (ton-miles) has been gradually shifting from long-haul to short-sea trade over the past years following the relocation of the original equipment manufacturer (OEM) manufacturing to regions such as South America and Southeast Asia. The objective of this paper is twofold: 1) to investigate the car-carriers freight revenue development over the years when the trade pattern is gradually shifting towards short-sea exports 2) to empirically identify the quantitative impact of such trade pattern shifting to mainly freight rate, but also vessel size, fleet size as well as Green House Gas (GHG) emission in Roll on-Roll Off (Ro-Ro) shipping. In this paper, a model of analyzing and forecasting ton-miles and freight revenues for the trade routes of AS-NA (Asia to North America), EU-NA (Europe to North America), and SA-NA (South America to North America) is established by deploying Automatic Identification System (AIS) data and the financial results of a selected car carrier company. More specifically, Wallenius Wilhelmsen Logistics (WALWIL), the Norwegian Ro-Ro carrier listed on Oslo Stock Exchange, is selected as the case study company in this paper. AIS-based ton-mile datasets of WALWIL vessels that are sailing into North America region from three different origins (Asia, Europe, and South America), together with WALWIL’s quarterly freight revenues as reported in trade segments, will be investigated and compared for the past five years (2018-2022). Furthermore, ordinary‐least‐square (OLS) regression is utilized to construct the ton-mile demand and freight revenue forecasting. The determinants of trade pattern shifting, such as import tariffs following the China-US trade war and fuel prices following the 0.1% Emission Control Areas (ECA) zone requirement after IMO2020 will be set as key variable inputs to the machine learning model. The model will be tested on another newly listed Norwegian Car Carrier, Hoegh Autoliner, to forecast its 2022 financial results and to validate the accuracy based on its actual results. GHG emissions on the three routes will be compared and discussed based on a constant emission per mile assumption and voyage distances. Our findings will provide important insights about 1) the trade-off evaluation between revenue reduction and energy saving with the new ton-mile pattern and 2) how the trade flow shifting would influence the future need for the vessel and fleet size.

Keywords: AIS, automobile exports, maritime big data, trade flows

Procedia PDF Downloads 121