Search results for: MSW quantity prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3195

Search results for: MSW quantity prediction

3195 Municipal Solid Waste Management and Analysis of Waste Generation: A Case Study of Bangkok, Thailand

Authors: Pitchayanin Sukholthaman

Abstract:

Gradually accumulated, the enormous amount of waste has caused tremendous adverse impacts to the world. Bangkok, Thailand, is chosen as an urban city of a developing country having coped with serious MSW problems due to the vast amount of waste generated, ineffective and improper waste management problems. Waste generation is the most important factor for successful planning of MSW management system. Thus, the prediction of MSW is a very important role to understand MSW distribution and characteristic; to be used for strategic planning issues. This study aims to find influencing variables that affect the amount of Bangkok MSW generation quantity.

Keywords: MSW generation, MSW quantity prediction, MSW management, multiple regression, Bangkok

Procedia PDF Downloads 421
3194 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs

Authors: Gaurav Sancheti

Abstract:

This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.

Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques

Procedia PDF Downloads 221
3193 Contrasting The Water Consumption Estimation Methods

Authors: Etienne Alain Feukeu, L. W. Snyman

Abstract:

Water scarcity is becoming a real issue nowadays. Most countries in the world are facing it in their own way based on their own geographical coordinate and condition. Many countries are facing a challenge of a growing water demand as a result of not only an increased population, economic growth, but also as a pressure of the population dynamic and urbanization. In view to mitigate some of this related problem, an accurate method of water estimation and future prediction, forecast is essential to guarantee not only the sufficient quantity, but also a good water distribution and management system. Beside the fact that several works have been undertaken to address this concern, there is still a considerable disparity between different methods and standard used for water prediction and estimation. Hence this work contrast and compare two well-defined and established methods from two countries (USA and South Africa) to demonstrate the inconsistency when different method and standards are used interchangeably.

Keywords: water scarcity, water estimation, water prediction, water forecast.

Procedia PDF Downloads 201
3192 The Relationship of Building Information Modeling (BIM) Capability in Quantity Surveying Practice and Project Performance

Authors: P. F. Wong, H. Salleh, F. A. Rahim

Abstract:

The adoption of building information modeling (BIM) is increasing in the construction industry. However, quantity surveyors are slow in adoption compared to other professions due to lack of awareness of the BIM’s potential in their profession. It is still unclear on how BIM application can enhance quantity surveyors’ work performance and project performance. The aim of this research is to identify the capabilities of BIM in quantity surveying practices and examine the relationship between BIM capabilities and project performance. Questionnaire survey and interviews were adopted for data collection. Literature reviews identified there are eleven BIM capabilities in quantity surveying practice. Questionnaire results showed that there are several BIM capabilities significantly correlated with project performance in time, cost and quality aspects and the results were validated through interviews. These findings show that BIM has the capabilities to enhance quantity surveyors’ performances and subsequently improved project performance.

Keywords: Building Information Modeling (BIM), quantity surveyors, capability, project performance

Procedia PDF Downloads 367
3191 SEMCPRA-Sar-Esembled Model for Climate Prediction in Remote Area

Authors: Kamalpreet Kaur, Renu Dhir

Abstract:

Climate prediction is an essential component of climate research, which helps evaluate possible effects on economies, communities, and ecosystems. Climate prediction involves short-term weather prediction, seasonal prediction, and long-term climate change prediction. Climate prediction can use the information gathered from satellites, ground-based stations, and ocean buoys, among other sources. The paper's four architectures, such as ResNet50, VGG19, Inception-v3, and Xception, have been combined using an ensemble approach for overall performance and robustness. An ensemble of different models makes a prediction, and the majority vote determines the final prediction. The various architectures such as ResNet50, VGG19, Inception-v3, and Xception efficiently classify the dataset RSI-CB256, which contains satellite images into cloudy and non-cloudy. The generated ensembled S-E model (Sar-ensembled model) provides an accuracy of 99.25%.

Keywords: climate, satellite images, prediction, classification

Procedia PDF Downloads 73
3190 Reliability of the Estimate of Earthwork Quantity Based on 3D-BIM

Authors: Jaechoul Shin, Juhwan Hwang

Abstract:

In case of applying the BIM method to the civil engineering in the area of free formed structure, we can expect comparatively high rate of construction productivity as it is in the building engineering area. In this research, we developed quantity calculation error applying it to earthwork and bridge construction (e.g. PSC-I type segmental girder bridge amd integrated bridge of steel I-girders and inverted-Tee bent cap), NATM (New Austrian Tunneling Method) tunnel construction, retaining wall construction, culvert construction and implemented BIM based 3D modeling quantity survey. we confirmed high reliability of the BIM-based method in structure work in which errors occurred in range between -6% ~ +5%. Especially, understanding of the problem and improvement of the existing 2D-CAD based of quantity calculation through rock type quantity calculation error in range of -14% ~ +13% of earthwork quantity calculation. It is benefit and applicability of BIM method in civil engineering. In addition, routine method for quantity of earthwork has the same error tolerance negligible for that of structure work. But, rock type's quantity calculated as the error appears significantly to the reliability of 2D-based volume calculation shows that the problem could be. Through the estimating quantity of earthwork based 3D-BIM, proposed method has better reliability than routine method. BIM, as well as the design, construction, maintenance levels of information when you consider the benefits of integration, the introduction of BIM design in civil engineering and the possibility of applying for the effectiveness was confirmed.

Keywords: BIM, 3D modeling, 3D-BIM, quantity of earthwork

Procedia PDF Downloads 442
3189 Automatic Flood Prediction Using Rainfall Runoff Model in Moravian-Silesian Region

Authors: B. Sir, M. Podhoranyi, S. Kuchar, T. Kocyan

Abstract:

Rainfall-runoff models play important role in hydrological predictions. However, the model is only one part of the process for creation of flood prediction. The aim of this paper is to show the process of successful prediction for flood event (May 15–May 18 2014). The prediction was performed by rainfall runoff model HEC–HMS, one of the models computed within Floreon+ system. The paper briefly evaluates the results of automatic hydrologic prediction on the river Olše catchment and its gages Český Těšín and Věřňovice.

Keywords: flood, HEC-HMS, prediction, rainfall, runoff

Procedia PDF Downloads 394
3188 Monthly River Flow Prediction Using a Nonlinear Prediction Method

Authors: N. H. Adenan, M. S. M. Noorani

Abstract:

River flow prediction is an essential to ensure proper management of water resources can be optimally distribute water to consumers. This study presents an analysis and prediction by using nonlinear prediction method involving monthly river flow data in Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The phase space reconstruction involves the reconstruction of one-dimensional (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. Revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) have been employed to compare prediction performance for nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show the prediction results using nonlinear prediction method is better than ARIMA and SVM. Therefore, the result of this study could be used to developed an efficient water management system to optimize the allocation water resources.

Keywords: river flow, nonlinear prediction method, phase space, local linear approximation

Procedia PDF Downloads 412
3187 Neural Networks and Genetic Algorithms Approach for Word Correction and Prediction

Authors: Rodrigo S. Fonseca, Antônio C. P. Veiga

Abstract:

Aiming at helping people with some movement limitation that makes typing and communication difficult, there is a need to customize an assistive tool with a learning environment that helps the user in order to optimize text input, identifying the error and providing the correction and possibilities of choice in the Portuguese language. The work presents an Orthographic and Grammatical System that can be incorporated into writing environments, improving and facilitating the use of an alphanumeric keyboard, using a prototype built using a genetic algorithm in addition to carrying out the prediction, which can occur based on the quantity and position of the inserted letters and even placement in the sentence, ensuring the sequence of ideas using a Long Short Term Memory (LSTM) neural network. The prototype optimizes data entry, being a component of assistive technology for the textual formulation, detecting errors, seeking solutions and informing the user of accurate predictions quickly and effectively through machine learning.

Keywords: genetic algorithm, neural networks, word prediction, machine learning

Procedia PDF Downloads 194
3186 Using Combination of Sets of Features of Molecules for Aqueous Solubility Prediction: A Random Forest Model

Authors: Muhammet Baldan, Emel Timuçin

Abstract:

Generally, absorption and bioavailability increase if solubility increases; therefore, it is crucial to predict them in drug discovery applications. Molecular descriptors and Molecular properties are traditionally used for the prediction of water solubility. There are various key descriptors that are used for this purpose, namely Drogan Descriptors, Morgan Descriptors, Maccs keys, etc., and each has different prediction capabilities with differentiating successes between different data sets. Another source for the prediction of solubility is structural features; they are commonly used for the prediction of solubility. However, there are little to no studies that combine three or more properties or descriptors for prediction to produce a more powerful prediction model. Unlike available models, we used a combination of those features in a random forest machine learning model for improved solubility prediction to better predict and, therefore, contribute to drug discovery systems.

Keywords: solubility, random forest, molecular descriptors, maccs keys

Procedia PDF Downloads 46
3185 Barriers to the Uptake of Technology in the Quantity Surveying Industry

Authors: Mnisi Blessing, Christopher Amoah

Abstract:

Purpose: The usage of modern technology is widespread in industrialised nations. The issue still pertains to developing countries since they struggle to use technology in the building sector. The study aims to identify the barriers to technology usage in quantity surveying firms. Methodology: Quantity Surveyors were interviewed via Microsoft teams due to the dispersed nature of the participants. However, where the interview was not possible, the interview guide was emailed to the participants to fill in. In all, 12 participants were interviewed out of the 25 participants contacted. The data received were analysed using the content analysis process. Findings: The study's findings demonstrate that quantity surveyors have access to a wide range of technology that significantly enhances their project activities. However, quantity surveying companies are hesitant to use technology for several reasons, including the cost and maintenance associated with it. Other obstacles include a lack of knowledge, poor market acceptance, legal obstacles, and budgetary constraints. Implication: Despite the advantages associated with modern technology applications, quantity surveying firms are not using them, which may ultimately affect their work output. Therefore, firms need to re-examine these obstacles, inhibiting their adoption of technology in the work process to enhance their production. Value of the Paper: The study reveals the main hindrances to technology usage, which may help firms institute measures to address them.

Keywords: barriers, implementation, technology, quantity surveying

Procedia PDF Downloads 84
3184 On Improving Breast Cancer Prediction Using GRNN-CP

Authors: Kefaya Qaddoum

Abstract:

The aim of this study is to predict breast cancer and to construct a supportive model that will stimulate a more reliable prediction as a factor that is fundamental for public health. In this study, we utilize general regression neural networks (GRNN) to replace the normal predictions with prediction periods to achieve a reasonable percentage of confidence. The mechanism employed here utilises a machine learning system called conformal prediction (CP), in order to assign consistent confidence measures to predictions, which are combined with GRNN. We apply the resulting algorithm to the problem of breast cancer diagnosis. The results show that the prediction constructed by this method is reasonable and could be useful in practice.

Keywords: neural network, conformal prediction, cancer classification, regression

Procedia PDF Downloads 291
3183 The Characteristics of Quantity Operation for 2nd and 3rd Grade Mathematics Slow Learners

Authors: Pi-Hsia Hung

Abstract:

The development of mathematical competency has individual benefits as well as benefits to the wider society. Children who begin school behind their peers in their understanding of number, counting, and simple arithmetic are at high risk of staying behind throughout their schooling. The development of effective strategies for improving the educational trajectory of these individuals will be contingent on identifying areas of early quantitative knowledge that influence later mathematics achievement. A computer-based quantity assessment was developed in this study to investigate the characteristics of 2nd and 3rd grade slow learners in quantity. The concept of quantification involves understanding measurements, counts, magnitudes, units, indicators, relative size, and numerical trends and patterns. Fifty-five tasks of quantitative reasoning—such as number sense, mental calculation, estimation and assessment of reasonableness of results—are included as quantity problem solving. Thus, quantity is defined in this study as applying knowledge of number and number operations in a wide variety of authentic settings. Around 1000 students were tested and categorized into 4 different performance levels. Students’ quantity ability correlated higher with their school math grade than other subjects. Around 20% students are below basic level. The intervention design implications of the preliminary item map constructed are discussed.

Keywords: mathematics assessment, mathematical cognition, quantity, number sense, validity

Procedia PDF Downloads 247
3182 Application and Assessment of Artificial Neural Networks for Biodiesel Iodine Value Prediction

Authors: Raquel M. De sousa, Sofiane Labidi, Allan Kardec D. Barros, Alex O. Barradas Filho, Aldalea L. B. Marques

Abstract:

Several parameters are established in order to measure biodiesel quality. One of them is the iodine value, which is an important parameter that measures the total unsaturation within a mixture of fatty acids. Limitation of unsaturated fatty acids is necessary since warming of a higher quantity of these ones ends in either formation of deposits inside the motor or damage of lubricant. Determination of iodine value by official procedure tends to be very laborious, with high costs and toxicity of the reagents, this study uses an artificial neural network (ANN) in order to predict the iodine value property as an alternative to these problems. The methodology of development of networks used 13 esters of fatty acids in the input with convergence algorithms of backpropagation type were optimized in order to get an architecture of prediction of iodine value. This study allowed us to demonstrate the neural networks’ ability to learn the correlation between biodiesel quality properties, in this case iodine value, and the molecular structures that make it up. The model developed in the study reached a correlation coefficient (R) of 0.99 for both network validation and network simulation, with Levenberg-Maquardt algorithm.

Keywords: artificial neural networks, biodiesel, iodine value, prediction

Procedia PDF Downloads 606
3181 Analysis on Prediction Models of TBM Performance and Selection of Optimal Input Parameters

Authors: Hang Lo Lee, Ki Il Song, Hee Hwan Ryu

Abstract:

An accurate prediction of TBM(Tunnel Boring Machine) performance is very difficult for reliable estimation of the construction period and cost in preconstruction stage. For this purpose, the aim of this study is to analyze the evaluation process of various prediction models published since 2000 for TBM performance, and to select the optimal input parameters for the prediction model. A classification system of TBM performance prediction model and applied methodology are proposed in this research. Input and output parameters applied for prediction models are also represented. Based on these results, a statistical analysis is performed using the collected data from shield TBM tunnel in South Korea. By performing a simple regression and residual analysis utilizinFg statistical program, R, the optimal input parameters are selected. These results are expected to be used for development of prediction model of TBM performance.

Keywords: TBM performance prediction model, classification system, simple regression analysis, residual analysis, optimal input parameters

Procedia PDF Downloads 309
3180 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: fault prediction, neural network, GM(1, 5) genetic algorithm, GBPGA

Procedia PDF Downloads 304
3179 Commitment Based Revenue Sharing Contract

Authors: Muhammad Shafiq, Huynh Trung Luong

Abstract:

In this paper, we proposed a commitment based revenue sharing contract for a supply chain comprising one manufacturer and one retailer facing highly uncertain demand of a short life span fashionable product. In our model, the retailer reserves a commitment level with the manufacturer prior to the selling season. In response, the manufacturer allocates and produces a specific quantity which is the maximum available quantity for the retailer. The retailer is motivated to commit more by offering higher revenue sharing percentage for reserved capacity than non-reserved capacity. Due to asymmetric information, it is found that the manufacturer can optimize quantity allocation decision while the commitment level decision of the retailer may not be optimal.

Keywords: supply chain coordination, revenue sharing contract, commitment based revenue sharing, quantity allocation

Procedia PDF Downloads 487
3178 A Prediction Model of Adopting IPTV

Authors: Jeonghwan Jeon

Abstract:

With the advent of IPTV in the fierce competition with existing broadcasting system, it is emerged as an important issue to predict how much the adoption of IPTV service will be. This paper aims to suggest a prediction model for adopting IPTV using classification and Ranking Belief Simplex (CaRBS). A simplex plot method of representing data allows a clear visual representation to the degree of interaction of the support from the variables to the prediction of the objects. CaRBS is applied to the survey data on the IPTV adoption.

Keywords: prediction, adoption, IPTV, CaRBS

Procedia PDF Downloads 412
3177 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction

Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi

Abstract:

For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.

Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy

Procedia PDF Downloads 112
3176 Application of Support Vector Machines in Forecasting Non-Residential

Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut

Abstract:

This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.

Keywords: forecasting, non-residential, construction, support vector machines

Procedia PDF Downloads 434
3175 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach

Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani

Abstract:

This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.

Keywords: chaotic approach, phase space, Cao method, local linear approximation method

Procedia PDF Downloads 332
3174 Calculating Quantity of Steel Bar Placed in Mesh Form in a Circular Slab or Dome

Authors: Karam Chand Gupta

Abstract:

When steel reinforcement is placed in mesh form in circular concrete slab at base or domes at top in case of over head service reservoir or any other structure, it is difficult to estimate/measure the total quantity of steel that would be needed or placed. For the purpose of calculating the total length of the steel bars, at present, the practice is – the length of each bar is measured and then added up. This is tiresome and time consuming process. I have derived a mathematics formula with the help of which we can calculate in one line the quantity of total steel that will be needed. This will not only make it easy and time saving but also avoids any error in making entries and calculations.

Keywords: dome, mesh, slab, steel

Procedia PDF Downloads 681
3173 Stock Movement Prediction Using Price Factor and Deep Learning

Authors: Hy Dang, Bo Mei

Abstract:

The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.

Keywords: classification, machine learning, time representation, stock prediction

Procedia PDF Downloads 147
3172 Cellular Traffic Prediction through Multi-Layer Hybrid Network

Authors: Supriya H. S., Chandrakala B. M.

Abstract:

Deep learning based models have been recently successful adoption for network traffic prediction. However, training a deep learning model for various prediction tasks is considered one of the critical tasks due to various reasons. This research work develops Multi-Layer Hybrid Network (MLHN) for network traffic prediction and analysis; MLHN comprises the three distinctive networks for handling the different inputs for custom feature extraction. Furthermore, an optimized and efficient parameter-tuning algorithm is introduced to enhance parameter learning. MLHN is evaluated considering the “Big Data Challenge” dataset considering the Mean Absolute Error, Root Mean Square Error and R^2as metrics; furthermore, MLHN efficiency is proved through comparison with a state-of-art approach.

Keywords: MLHN, network traffic prediction

Procedia PDF Downloads 88
3171 Water Leakage Detection System of Pipe Line using Radial Basis Function Neural Network

Authors: A. Ejah Umraeni Salam, M. Tola, M. Selintung, F. Maricar

Abstract:

Clean water is an essential and fundamental human need. Therefore, its supply must be assured by maintaining the quality, quantity and water pressure. However the fact is, on its distribution system, leakage happens and becomes a common world issue. One of the technical causes of the leakage is a leaking pipe. The purpose of the research is how to use the Radial Basis Function Neural (RBFNN) model to detect the location and the magnitude of the pipeline leakage rapidly and efficiently. In this study the RBFNN are trained and tested on data from EPANET hydraulic modeling system. Method of Radial Basis Function Neural Network is proved capable to detect location and magnitude of pipeline leakage with of the accuracy of the prediction results based on the value of RMSE (Root Meant Square Error), comparison prediction and actual measurement approaches 0.000049 for the whole pipeline system.

Keywords: radial basis function neural network, leakage pipeline, EPANET, RMSE

Procedia PDF Downloads 358
3170 Approach to Study the Workability of Concrete with the Fractal Model

Authors: Achouri Fatima, Chouicha Kaddour

Abstract:

The main parameters affecting the workability are the water content, particle size, and the total surface of the grains, as long as the mixing water begins by wetting the surface of the grains and then fills the voids between the grains to form entrapped water, the quantity of water remaining is called free water. The aim is to undertake a fractal approach through the relationship between the concrete formulation parameters and workability, to develop this approach a series of concrete taken from the literature was investigated by varying formulation parameters such as G / S, the quantity of cement C and the quantity of mixing water E. We also call on other model as the model for the thickness of the water layer and model of the thickness of the paste layer to judge their relevance, hence the following results : the relevance of the model of the thickness of the water layer is considered relevant when there is a variation in the water quantity, the model of the thickness of the layer of the paste is only applicable if we consider that the paste is made with the grain value Dmax = 2.85: value from which we see a stable model.

Keywords: concrete, fractal method, paste thickness, water thickness, workability

Procedia PDF Downloads 379
3169 Traffic Prediction with Raw Data Utilization and Context Building

Authors: Zhou Yang, Heli Sun, Jianbin Huang, Jizhong Zhao, Shaojie Qiao

Abstract:

Traffic prediction is essential in a multitude of ways in modern urban life. The researchers of earlier work in this domain carry out the investigation chiefly with two major focuses: (1) the accurate forecast of future values in multiple time series and (2) knowledge extraction from spatial-temporal correlations. However, two key considerations for traffic prediction are often missed: the completeness of raw data and the full context of the prediction timestamp. Concentrating on the two drawbacks of earlier work, we devise an approach that can address these issues in a two-phase framework. First, we utilize the raw trajectories to a greater extent through building a VLA table and data compression. We obtain the intra-trajectory features with graph-based encoding and the intertrajectory ones with a grid-based model and the technique of back projection that restore their surrounding high-resolution spatial-temporal environment. To the best of our knowledge, we are the first to study direct feature extraction from raw trajectories for traffic prediction and attempt the use of raw data with the least degree of reduction. In the prediction phase, we provide a broader context for the prediction timestamp by taking into account the information that are around it in the training dataset. Extensive experiments on several well-known datasets have verified the effectiveness of our solution that combines the strength of raw trajectory data and prediction context. In terms of performance, our approach surpasses several state-of-the-art methods for traffic prediction.

Keywords: traffic prediction, raw data utilization, context building, data reduction

Procedia PDF Downloads 127
3168 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena

Authors: Mohammad Zavid Parvez, Manoranjan Paul

Abstract:

A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.

Keywords: Epilepsy, seizure, phase correlation, fluctuation, deviation.

Procedia PDF Downloads 467
3167 A Multilevel Approach for Stroke Prediction Combining Risk Factors and Retinal Images

Authors: Jeena R. S., Sukesh Kumar A.

Abstract:

Stroke is one of the major reasons of adult disability and morbidity in many of the developing countries like India. Early diagnosis of stroke is essential for timely prevention and cure. Various conventional statistical methods and computational intelligent models have been developed for predicting the risk and outcome of stroke. This research work focuses on a multilevel approach for predicting the occurrence of stroke based on various risk factors and invasive techniques like retinal imaging. This risk prediction model can aid in clinical decision making and help patients to have an improved and reliable risk prediction.

Keywords: prediction, retinal imaging, risk factors, stroke

Procedia PDF Downloads 303
3166 A Study on the Acquisition of Chinese Classifiers by Vietnamese Learners

Authors: Quoc Hung Le Pham

Abstract:

In the field of language study, classifier is an interesting research feature. In the world’s languages, some languages have classifier system, some do not. Mandarin Chinese and Vietnamese languages are a rich classifier system, however, because of the language system, the cognitive, cultural differences, so that the syntactic structure of classifier of them also dissimilar. When using Mandarin Chinese classifiers must collocate with nouns or verbs, in the lexical category it is not like nouns or verbs, belong to the open class. But some scholars believe that Mandarin Chinese measure words are similar to English and other Indo European languages. The word hanging on the structure and word formation (suffix), is a closed class. Compared to other languages, such as Chinese, Vietnamese, Thai and other Asian languages are still belonging to the classifier language’s second type, this type of language is classifier, it is in the majority of quantity must exist, and following deictic, anaphoric or quantity appearing together, not separation between its modified noun, also known as numeral classifier language. Main syntactic structure of Chinese classifiers are as follows: ‘quantity+measure+noun’, ‘pronoun+measure+noun’, ‘pronoun+quantity+measure+noun’, ‘prefix+quantity+measure +noun’, ‘quantity +adjective + measure +noun’, ‘ quantity (above 10 whole number), + duo (多)measure +noun’, ‘ quantity (around 10) + measure + duo (多) +noun’. Main syntactic structure of Vietnamese classifiers are: ‘quantity+measure+noun’, ‘ measure+noun+pronoun’, ‘quantity+measure+noun+pronoun’, ‘measure+noun+prefix+ quantity’, ‘quantity+measure+noun+adjective', ‘duo (多) +quanlity+measure+noun’, ‘quantity+measure+adjective+pronoun (quantity word could not be 1)’, ‘measure+adjective+pronoun’, ‘measure+pronoun’. In daily life, classifiers are commonly used, if Chinese learners failed to standardize this using catergory, because the negative impact might occur on their verbal communication. The richness of the Chinese classifier system contributes to the complexity in the study of the system by foreign learners, especially in the inter language of Vietnamese learners. As above mentioned, Vietnamese language also has a rich system of classifiers, however, the basic structure order of two languages are similar but both still have differences. These similarities and dissimilarities between Chinese and Vietnamese classifier systems contribute significantly to the common errors made by Vietnamese students while they acquire Chinese, which are distinct from the errors made by students from the other language background. This article from a comparative perspective of language, has an orientation towards Chinese and Vietnamese languages commonly used in classifiers semantics and structural form two aspects. This comparative study aims to identity Vietnamese students while learning Chinese classifiers may face some negative transference of mother language, beside that through the analysis of the classifiers questionnaire, find out the causes and patterns of the errors they made. As the preliminary analysis shows, Vietnamese students while learning Chinese classifiers made some errors such as: overuse classifier ‘ge’(个); misuse the other classifiers ‘*yi zhang ri ji’(yi pian ri ji), ‘*yi zuo fang zi’(yi jian fang zi), ‘*si zhang jin pai’(si mei jin pai); homonym words ‘dui, shuang, fu, tao’ (对、双、副、套), ‘ke, li’ (颗、粒).

Keywords: acquisition, classifiers, negative transfer, Vietnamse learners

Procedia PDF Downloads 452