Search results for: Lesley Walls
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 675

Search results for: Lesley Walls

465 Pathomorphological Markers of the Explosive Wave Action on Human Brain

Authors: Sergey Kozlov, Juliya Kozlova

Abstract:

Introduction: The increased attention of researchers to an explosive trauma around the world is associated with a constant renewal of military weapons and a significant increase in terrorist activities using explosive devices. Explosive wave is a well known damaging factor of explosion. The most sensitive to the action of explosive wave in the human body are the head brain, lungs, intestines, urine bladder. The severity of damage to these organs depends on the distance from the explosion epicenter to the object, the power of the explosion, presence of barriers, parameters of the body position, and the presence of protective clothing. One of the places where a shock wave acts, in human tissues and organs, is the vascular endothelial barrier, which suffers the greatest damage in the head brain and lungs. The objective of the study was to determine the pathomorphological changes of the head brain followed the action of explosive wave. Materials and methods of research: To achieve the purpose of the study, there have been studied 6 male corpses delivered to the morgue of Municipal Institution "Dnipropetrovsk regional forensic bureau" during 2014-2016 years. The cause of death of those killed was a military explosive injury. After a visual external assessment of the head brain, for histological study there was conducted the 1 x 1 x 1 cm/piece sampling from different parts of the head brain, i.e. the frontal, parietal, temporal, occipital sites, and also from the cerebellum, pons, medulla oblongata, thalamus, walls of the lateral ventricles, the bottom of the 4th ventricle. Pieces of the head brain were immersed in 10% formalin solution for 24 hours. After fixing, the paraffin blocks were made from the material using the standard method. Then, using a microtome, there were made sections of 4-6 micron thickness from paraffin blocks which then were stained with hematoxylin and eosin. Microscopic analysis was performed using a light microscope with x4, x10, x40 lenses. Results of the study: According to the results of our study, injuries of the head brain were divided into macroscopic and microscopic. Macroscopic injuries were marked according to the results of visual assessment of haemorrhages under the membranes and into the substance, their nature, and localisation, areas of softening. In the microscopic study, our attention was drawn to both vascular changes and those of neurons and glial cells. Microscopic qualitative analysis of histological sections of different parts of the head brain revealed a number of structural changes both at the cellular and tissue levels. Typical changes in most of the studied areas of the head brain included damages of the vascular system. The most characteristic microscopic sign was the separation of vascular walls from neuroglia with the formation of perivascular space. Along with this sign, wall fragmentation of these vessels, haemolysis of erythrocytes, formation of haemorrhages in the newly formed perivascular spaces were found. In addition to damages of the cerebrovascular system, destruction of the neurons, presence of oedema of the brain tissue were observed in the histological sections of the brain. On some sections, the head brain had a heterogeneous step-like or wave-like nature. Conclusions: The pathomorphological microscopic changes in the brain, identified in the study on the died of explosive traumas, can be used for diagnostic purposes in conjunction with other characteristic signs of explosive trauma in forensic and pathological studies. The complex of microscopic signs in the head brain, i.e. separation of blood vessel walls from neuroglia with the perivascular space formation, fragmentation of walls of these blood vessels, erythrocyte haemolysis, formation of haemorrhages in the newly formed perivascular spaces is the direct indication of explosive wave action.

Keywords: blast wave, neurotrauma, human, brain

Procedia PDF Downloads 160
464 Solitons and Universes with Acceleration Driven by Bulk Particles

Authors: A. C. Amaro de Faria Jr, A. M. Canone

Abstract:

Considering a scenario where our universe is taken as a 3d domain wall embedded in a 5d dimensional Minkowski space-time, we explore the existence of a richer class of solitonic solutions and their consequences for accelerating universes driven by collisions of bulk particle excitations with the walls. In particular it is shown that some of these solutions should play a fundamental role at the beginning of the expansion process. We present some of these solutions in cosmological scenarios that can be applied to models that describe the inflationary period of the Universe.

Keywords: solitons, topological defects, branes, kinks, accelerating universes in brane scenarios

Procedia PDF Downloads 105
463 Numerical Investigation of Hybrid Ferrofluid Unsteady Flow through Porous Channel

Authors: Wajahat Hussain Khan, M. Zubair Akbar Qureshi

Abstract:

The viscous, two-dimensional, incompressible, and laminar time-dependent heat transfer flow through a ferromagnetic fluid is considered in this paper. Flow takes place in a channel between two porous walls under the influence of the magnetic field located beyond the channel. It is assumed that there are no electric field effects and the variation in the magnetic field vector that could occur within the F

Keywords: hybrid ferrofluid, heat transfer, magnetic field, porous channel

Procedia PDF Downloads 146
462 Compact 3-D Co-Planar Waveguide Fed Dual-Port Ultrawideband-Multiple-Input and Multiple-Output Antenna with WLAN Band-Notched Characteristics

Authors: Asim Quddus

Abstract:

A miniaturized three dimensional co-planar waveguide (CPW) two-port MIMO antenna, exhibiting high isolation and WLAN band-notched characteristics is presented in this paper for ultrawideband (UWB) communication applications. The microstrip patch antenna operates as a single UWB antenna element. The proposed design is a cuboid-shaped structure having compact size of 35 x 27 x 45 mm³. Radiating as well as decoupling structure is placed around cuboidal polystyrene sheet. The radiators are 27 mm apart, placed Face-to-Face in vertical direction. Decoupling structure is placed on the side walls of polystyrene. The proposed antenna consists of an oval shaped radiating patch. A rectangular structure with fillet edges is placed on ground plan to enhance the bandwidth. The proposed antenna exhibits a good impedance match (S11 ≤ -10 dB) over frequency band of 2 GHz – 10.6 GHz. A circular slotted structure is employed as a decoupling structure on substrate, and it is placed on the side walls of polystyrene to enhance the isolation between antenna elements. Moreover, to achieve immunity from WLAN band distortion, a modified, inverted crescent shaped slotted structure is etched on radiating patches to achieve band-rejection characteristics at WLAN frequency band 4.8 GHz – 5.2 GHz. The suggested decoupling structure provides isolation better than 15 dB over the desired UWB spectrum. The envelope correlation coefficient (ECC) and gain for the MIMO antenna are analyzed as well. Finite Element Method (FEM) simulations are carried out in Ansys High Frequency Structural Simulator (HFSS) for the proposed design. The antenna is realized on a Rogers RT/duroid 5880 with thickness 1 mm, relative permittivity ɛr = 2.2. The proposed antenna achieves a stable omni-directional radiation patterns as well, while providing rejection at desired WLAN band. The S-parameters as well as MIMO parameters like ECC are analyzed and the results show conclusively that the design is suitable for portable MIMO-UWB applications.

Keywords: 3-D antenna, band-notch, MIMO, UWB

Procedia PDF Downloads 275
461 Metagenomic Identification of Cave Microorganisms in Lascaux and Other Périgord Caves

Authors: Lise Alonso, Audrey Dubost, Patricia Luis, Thomas Pommier, Yvan Moënne-Loccoz

Abstract:

The Lascaux Cave in South-Est France is an archeological landmark renowned for its Paleolithic paintings dating back c.18.000 years. Extensive touristic frequenting and repeated chemical treatments have resulted in the development of microbial stains on cave walls, which is a major issue in terms of art conservation. Therefore, it is of prime importance to better understand the microbiology specific to the Lascaux Cave, in comparison to regional situations. To this end, we compared the microbial community (i.e. both prokaryotic and eukaryotic microbial populations) of Lascaux Cave with three other anthropized Périgord caves as well as three pristine caves from the same area. We used state-of-the-art metagenomic analyses of cave wall samples to obtain a global view of the composition of the microbial community colonizing cave walls. We measured the relative abundance and diversity of four DNA markers targeting different fractions of the ribosomal genes of bacteria (i.e. eubacteria), archaea (i.e. archeobacteria), fungi and other micro-eukaryotes. All groups were highly abundant and diverse in all Périgord caves, as several hundred genera of microorganisms were identified in each. However, Lascaux Cave displayed a specify microbial community, which differed from those of both pristine and anthropized caves. Comparison of stains versus non-stained samples from the Passage area of the Lascaux Cave indicated that a few taxa (e.g. the Sordiaromycetes amongst fungi) were more prevalent within than outside stains, yet the main difference was in the relative proportion of the different microbial taxonomic groups and genera, which supposedly supports the biological origin of the stains. Overall, metagenomic sequencing of cave wall samples was effective to evidence the large colonization of caves by a diversified range of microorganisms. It also showed that Lascaux Cave represented a very particular situation in comparison with neighboring caves, probably in relation to the extent of disturbance it had undergone. Our results provide key baseline information to guide conservation efforts in anthropized caves such as Lascaux and pave the way to modern monitoring of ornamented caves.

Keywords: cave conservation, Lascaux cave, microbes, paleolithic paintings

Procedia PDF Downloads 215
460 Wood Dust and Nanoparticle Exposure among Workers during a New Building Construction

Authors: Atin Adhikari, Aniruddha Mitra, Abbas Rashidi, Imaobong Ekpo, Jefferson Doehling, Alexis Pawlak, Shane Lewis, Jacob Schwartz

Abstract:

Building constructions in the US involve numerous wooden structures. Woods are routinely used in walls, framing floors, framing stairs, and making of landings in building constructions. Cross-laminated timbers are currently being used as construction materials for tall buildings. Numerous workers are involved in these timber based constructions, and wood dust is one of the most common occupational exposures for them. Wood dust is a complex substance composed of cellulose, polyoses and other substances. According to US OSHA, exposure to wood dust is associated with a variety of adverse health effects among workers, including dermatitis, allergic respiratory effects, mucosal and nonallergic respiratory effects, and cancers. The amount and size of particles released as wood dust differ according to the operations performed on woods. For example, shattering of wood during sanding operations produces finer particles than does chipping in sawing and milling industries. To our knowledge, how shattering, cutting and sanding of woods and wood slabs during new building construction release fine particles and nanoparticles are largely unknown. General belief is that the dust generated during timber cutting and sanding tasks are mostly large particles. Consequently, little attention has been given to the generated submicron ultrafine and nanoparticles and their exposure levels. These data are, however, critically important because recent laboratory studies have demonstrated cytotoxicity of nanoparticles on lung epithelial cells. The above-described knowledge gaps were addressed in this study by a novel newly developed nanoparticle monitor and conventional particle counters. This study was conducted in a large new building construction site in southern Georgia primarily during the framing of wooden side walls, inner partition walls, and landings. Exposure levels of nanoparticles (n = 10) were measured by a newly developed nanoparticle counter (TSI NanoScan SMPS Model 3910) at four different distances (5, 10, 15, and 30 m) from the work location. Other airborne particles (number of particles/m3) including PM2.5 and PM10 were monitored using a 6-channel (0.3, 0.5, 1.0, 2.5, 5.0 and 10 µm) particle counter at 15 m, 30 m, and 75 m distances at both upwind and downwind directions. Mass concentration of PM2.5 and PM10 (µg/m³) were measured by using a DustTrak Aerosol Monitor. Temperature and relative humidity levels were recorded. Wind velocity was measured by a hot wire anemometer. Concentration ranges of nanoparticles of 13 particle sizes were: 11.5 nm: 221 – 816/cm³; 15.4 nm: 696 – 1735/cm³; 20.5 nm: 879 – 1957/cm³; 27.4 nm: 1164 – 2903/cm³; 36.5 nm: 1138 – 2640/cm³; 48.7 nm: 938 – 1650/cm³; 64.9 nm: 759 – 1284/cm³; 86.6 nm: 705 – 1019/cm³; 115.5 nm: 494 – 1031/cm³; 154 nm: 417 – 806/cm³; 205.4 nm: 240 – 471/cm³; 273.8 nm: 45 – 92/cm³; and 365.2 nm: Keywords: wood dust, industrial hygiene, aerosol, occupational exposure

Procedia PDF Downloads 160
459 Investigation of the Working Processes in Thermocompressor Operating on Cryogenic Working Fluid

Authors: Evgeny V. Blagin, Aleksandr I. Dovgjallo, Dmitry A. Uglanov

Abstract:

This article deals with research of the working process in the thermocompressor which operates on cryogenic working fluid. Thermocompressor is device suited for the conversation of heat energy directly to the potential energy of pressure. Suggested thermocompressor is suited for operation during liquid natural gas (LNG) re-gasification and is placed after evaporator. Such application of thermocompressor allows using of the LNG cold energy for rising of working fluid pressure, which then can be used for electricity generation or another purpose. Thermocompressor consists of two chambers divided by the regenerative heat exchanger. Calculation algorithm for unsteady calculation of thermocompressor working process was suggested. The results of this investigation are to change of thermocompressor’s chambers temperature and pressure during the working cycle. These distributions help to find out the parameters, which significantly influence thermocompressor efficiency. These parameters include regenerative heat exchanger coefficient of the performance (COP) dead volume of the chambers, working frequency of the thermocompressor etc. Exergy analysis was performed to estimate thermocompressor efficiency. Cryogenic thermocompressor operated on nitrogen working fluid was chosen as a prototype. Calculation of the temperature and pressure change was performed with taking into account heat fluxes through regenerator and thermocompressor walls. Temperature of the cold chamber significantly differs from the results of steady calculation, which is caused by friction of the working fluid in regenerator and heat fluxes from the hot chamber. The rise of the cold chamber temperature leads to decreasing of thermocompressor delivery volume. Temperature of hot chamber differs negligibly because losses due to heat fluxes to a cold chamber are compensated by the friction of the working fluid in the regenerator. Optimal working frequency was selected. Main results of the investigation: -theoretical confirmation of thermocompressor operation capability on the cryogenic working fluid; -optimal working frequency was found; -value of the cold chamber temperature differs from the starting value much more than the temperature of the hot chamber; -main parameters which influence thermocompressor performance are regenerative heat exchanger COP and heat fluxes through regenerator and thermocompressor walls.

Keywords: cold energy, liquid natural gas, thermocompressor, regenerative heat exchanger

Procedia PDF Downloads 544
458 Multi-Scale Modelling of the Cerebral Lymphatic System and Its Failure

Authors: Alexandra K. Diem, Giles Richardson, Roxana O. Carare, Neil W. Bressloff

Abstract:

Alzheimer's disease (AD) is the most common form of dementia and although it has been researched for over 100 years, there is still no cure or preventive medication. Its onset and progression is closely related to the accumulation of the neuronal metabolite Aβ. This raises the question of how metabolites and waste products are eliminated from the brain as the brain does not have a traditional lymphatic system. In recent years the rapid uptake of Aβ into cerebral artery walls and its clearance along those arteries towards the lymph nodes in the neck has been suggested and confirmed in mice studies, which has led to the hypothesis that interstitial fluid (ISF), in the basement membranes in the walls of cerebral arteries, provides the pathways for the lymphatic drainage of Aβ. This mechanism, however, requires a net reverse flow of ISF inside the blood vessel wall compared to the blood flow and the driving forces for such a mechanism remain unknown. While possible driving mechanisms have been studied using mathematical models in the past, a mechanism for net reverse flow has not been discovered yet. Here, we aim to address the question of the driving force of this reverse lymphatic drainage of Aβ (also called perivascular drainage) by using multi-scale numerical and analytical modelling. The numerical simulation software COMSOL Multiphysics 4.4 is used to develop a fluid-structure interaction model of a cerebral artery, which models blood flow and displacements in the artery wall due to blood pressure changes. An analytical model of a layer of basement membrane inside the wall governs the flow of ISF and, therefore, solute drainage based on the pressure changes and wall displacements obtained from the cerebral artery model. The findings suggest that an active role in facilitating a reverse flow is played by the components of the basement membrane and that stiffening of the artery wall during age is a major risk factor for the impairment of brain lymphatics. Additionally, our model supports the hypothesis of a close association between cerebrovascular diseases and the failure of perivascular drainage.

Keywords: Alzheimer's disease, artery wall mechanics, cerebral blood flow, cerebral lymphatics

Procedia PDF Downloads 498
457 Seismic Evaluation of Multi-Plastic Hinge Design Approach on RC Shear Wall-Moment Frame Systems against Near-Field Earthquakes

Authors: Mohsen Tehranizadeh, Mahboobe Forghani

Abstract:

The impact of higher modes on the seismic response of dual structural system consist of concrete moment-resisting frame and with RC shear walls is investigated against near-field earthquakes in this paper. a 20 stories reinforced concrete shear wall-special moment frame structure is designed in accordance with ASCE7 requirements and The nonlinear model of the structure was performed on OpenSees platform. Nonlinear time history dynamic analysis with 3 near-field records are performed on them. In order to further understand the structural collapse behavior in the near field, the response of the structure at the moment of collapse especially the formation of plastic hinges is explored. The results revealed that the amplification of moment at top of the wall due to higher modes, the plastic hinge can form in the upper part of wall, even when designed and detailed for plastic hinging at the base only (according to ACI code).on the other hand, shear forces in excess of capacity design values can develop due to the contribution of the higher modes of vibration to dynamic response due to the near field can cause brittle shear or sliding failure modes. The past investigation on shear walls clearly shows the dual-hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the wall. In this study, to investigate the implications of multi-design approach, 4 models with varies arrangement of hinge plastics at the base and height of the shear wall are considered. results base on time history analysis showed that the dual or multi plastic hinges approach can be useful in order to control the high moment and shear demand of higher mode effect.

Keywords: higher mode effect, Near-field earthquake, nonlinear time history analysis, multi plastic hinge design

Procedia PDF Downloads 402
456 Investigation of Nucleation and Thermal Conductivity of Waxy Crude Oil on Pipe Wall via Particle Dynamics

Authors: Jinchen Cao, Tiantian Du

Abstract:

As waxy crude oil is easy to crystallization and deposition in the pipeline wall, it causes pipeline clogging and leads to the reduction of oil and gas gathering and transmission efficiency. In this paper, a mesoscopic scale dissipative particle dynamics method is employed, and constructed four pipe wall models, including smooth wall (SW), hydroxylated wall (HW), rough wall (RW), and single-layer graphene wall (GW). Snapshots of the simulation output trajectories show that paraffin molecules interact with each other to form a network structure that constrains water molecules as their nucleation sites. Meanwhile, it is observed that the paraffin molecules on the near-wall side are adsorbed horizontally between inter-lattice gaps of the solid wall. In the pressure range of 0 - 50 MPa, the pressure change has less effect on the affinity properties of SS, HS, and GS walls, but for RS walls, the contact angle between paraffin wax and water molecules was found to decrease with the increase in pressure, while the water molecules showed the opposite trend, the phenomenon is due to the change in pressure, leading to the transition of paraffin wax molecules from amorphous to crystalline state. Meanwhile, the minimum crystalline phase pressure (MCPP) was proposed to describe the lowest pressure at which crystallization of paraffin molecules occurs. The maximum number of crystalline clusters formed by paraffin molecules at MCPP in the system showed NSS (0.52 MPa) > NHS (0.55 MPa) > NRS (0.62 MPa) > NGS (0.75 MPa). The MCPP on the graphene surface, with the least number of clusters formed, indicates that the addition of graphene inhibited the crystallization process of paraffin deposition on the wall surface. Finally, the thermal conductivity was calculated, and the results show that on the near-wall side, the thermal conductivity changes drastically due to the occurrence of adsorption crystallization of paraffin waxes; on the fluid side the thermal conductivity gradually tends to stabilize, and the average thermal conductivity shows: ĸRS(0.254W/(m·K)) > ĸRS(0.249W/(m·K)) > ĸRS(0.218W/(m·K)) > ĸRS(0.188W/(m·K)).This study provides a theoretical basis for improving the transport efficiency and heat transfer characteristics of waxy crude oil in terms of wall type, wall roughness, and MCPP.

Keywords: waxy crude oil, thermal conductivity, crystallization, dissipative particle dynamics, MCPP

Procedia PDF Downloads 37
455 Mechanical and Microstructural Properties of SA 210 Gr. C Pipes Welded by Tungsten Inert Gas

Authors: H. Demirtaş, İ. H. Kara, H. Ahlatcı

Abstract:

Welding failures of steel pipes in power plants usually occur in weld zones. This is similar for the economizer, water walls and superheaters in the power plants where SA 210 Gr. C steel pipes are used. Although these steel pipes have very good welding properties, the welding parameters are also important for the welding life. Welding processes of this pipes are carried out by TIG and SMA techniques. In this study SA 210 Gr. C steel pipes were welded by TIG method and investigated how PWHT affected the welding properties. The results show that this steel does not require post weld heat treatment.

Keywords: SA 210 Gr. C steel pipes, TIG welding, HAZ region, Widmanstatten ferrite

Procedia PDF Downloads 254
454 Low- and High-Temperature Methods of CNTs Synthesis for Medicine

Authors: Grzegorz Raniszewski, Zbigniew Kolacinski, Lukasz Szymanski, Slawomir Wiak, Lukasz Pietrzak, Dariusz Koza

Abstract:

One of the most promising area for carbon nanotubes (CNTs) application is medicine. One of the most devastating diseases is cancer. Carbon nanotubes may be used as carriers of a slowly released drug. It is possible to use of electromagnetic waves to destroy cancer cells by the carbon nanotubes (CNTs). In our research we focused on thermal ablation by ferromagnetic carbon nanotubes (Fe-CNTs). In the cancer cell hyperthermia functionalized carbon nanotubes are exposed to radio frequency electromagnetic field. Properly functionalized Fe-CNTs join the cancer cells. Heat generated in nanoparticles connected to nanotubes warm up nanotubes and then the target tissue. When the temperature in tumor tissue exceeds 316 K the necrosis of cancer cells may be observed. Several techniques can be used for Fe-CNTs synthesis. In our work, we use high-temperature methods where arc-discharge is applied. Low-temperature systems are microwave plasma with assisted chemical vapor deposition (MPCVD) and hybrid physical-chemical vapor deposition (HPCVD). In the arc discharge system, the plasma reactor works with a pressure of He up to 0,5 atm. The electric arc burns between two graphite rods. Vapors of carbon move from the anode, through a short arc column and forms CNTs which can be collected either from the reactor walls or cathode deposit. This method is suitable for the production of multi-wall and single-wall CNTs. A disadvantage of high-temperature methods is a low purification, short length, random size and multi-directional distribution. In MPCVD system plasma is generated in waveguide connected to the microwave generator. Then containing carbon and ferromagnetic elements plasma flux go to the quartz tube. The additional resistance heating can be applied to increase the reaction effectiveness and efficiency. CNTs nucleation occurs on the quartz tube walls. It is also possible to use substrates to improve carbon nanotubes growth. HPCVD system involves both chemical decomposition of carbon containing gases and vaporization of a solid or liquid source of catalyst. In this system, a tube furnace is applied. A mixture of working and carbon-containing gases go through the quartz tube placed inside the furnace. As a catalyst ferrocene vapors can be used. Fe-CNTs may be collected then either from the quartz tube walls or on the substrates. Low-temperature methods are characterized by higher purity product. Moreover, carbon nanotubes from tested CVD systems were partially filled with the iron. Regardless of the method of Fe-CNTs synthesis the final product always needs to be purified for applications in medicine. The simplest method of purification is an oxidation of the amorphous carbon. Carbon nanotubes dedicated for cancer cell thermal ablation need to be additionally treated by acids for defects amplification on the CNTs surface what facilitates biofunctionalization. Application of ferromagnetic nanotubes for cancer treatment is a promising method of fighting with cancer for the next decade. Acknowledgment: The research work has been financed from the budget of science as a research project No. PBS2/A5/31/2013

Keywords: arc discharge, cancer, carbon nanotubes, CVD, thermal ablation

Procedia PDF Downloads 418
453 The Effect of Metabolites of Fusarium solani on the Activity of the PR-Proteins (Chitinase, β-1,3-Glucanase and Peroxidases) of Potato Tubers

Authors: A. K. Tursunova, O. V. Chebonenko, A. Zh. Amirkulova, A. O. Abaildayev, O. A. Sapko, Y. M. Dyo, A. Sh. Utarbaeva

Abstract:

Fusarium solani and its variants cause root and stem rot of plants. Dry rot is the most common disease of potato tubers during storage. The causative agents of fusariosis in contact with plants behave as antagonists, growth stimulants or parasites. The diversity of host-parasite relationships is explained by the parasite’s ability to produce a wide spectrum of biologically active compounds including toxins, enzymes, oligosaccharides, antibiotic substances, enniatins and gibberellins. Many of these metabolites contribute to the creation of compatible relations; others behave as elicitors, inducing various protective responses in plants. An important part of the strategy for developing plant resistance against pathogens is the activation of protein synthesis to produce protective ‘pathogenesis-related’ proteins. The family of PR-proteins known to confer the most protective response is chitinases (EC 3.2.1.14, Cht) and β-1,3-glucanases (EC 3.2.1.39, Glu). PR-proteins also include a large multigene family of peroxidases (EC 1.11.1.7, Pod), and increased activity of Pod and expression of the Pod genes leads to the development of resistance to a broad class of pathogens. Despite intensive research on the role of PR-proteins, the question of their participation in the mechanisms of formation of the F.solani–S.tuberosum pathosуstem is not sufficiently studied. Our aim was to investigate the effect of different classes of F. solani metabolites on the activity of chitinase, β-1,3-glucanases and peroxidases in tubers of Solanum tuberosum. Metabolite culture filtrate (CF) and cytoplasmic components were fractionated by extraction of the mycelium with organic solvents, salting out techniques, dialysis, column chromatography and ultrafiltration. Protein, lipid, carbohydrate and polyphenolic fractions of fungal metabolites were derived. Using enzymatic hydrolysis we obtained oligo glycans from fungal cell walls with different molecular weights. The activity of the metabolites was tested using potato tuber discs (d = 16mm, h = 5mm). The activity of PR-proteins of tubers was analyzed in a time course of 2–24 hours. The involvement of the analysed metabolites in the modulation of both early non-specific and late related to pathogenesis reactions was demonstrated. The most effective inducer was isolated from the CF (fraction of total phenolic compounds including naphtazarins). Induction of PR-activity by this fraction was: chitinase - 340-360%, glucanase - 435-450%, soluble forms of peroxidase - 400-560%, related forms of peroxidase - 215-237%. High-inducing activity was observed by the chloroform and acetonitrile extracts of the mycelium (induction of chitinase and glucanase activity was 176-240%, of soluble and bound forms of peroxidase - 190-400%). The fraction of oligo glycans mycelium cell walls of 1.2 kDa induced chitinase and β-1,3-glucanase to 239-320%; soluble forms and related peroxidase to 198-426%. Oligo glycans cell walls of 5-10 kDa had a weak suppressor effect - chitinase (21-25%) and glucanase (25-28%) activity; had no effect on soluble forms of peroxidase, but induced to 250-270% activity related forms. The CF polysaccharides of 8.5 kDa and 3.1 kDa inhibited synchronously the glucanase and chitinase specific response in step (after 24 hours at 42-50%) and the step response induced nonspecific peroxidase activity: soluble forms 4.8 -5.2 times, associated forms 1.4-1.6 times.

Keywords: fusarium solani, PR-proteins, peroxidase, solanum tuberosum

Procedia PDF Downloads 178
452 Performance of Staggered Wall Buildings Subjected to Low to Medium Earthquake Loads

Authors: Younghoo Choi, Yong Jun, Jinkoo Kim

Abstract:

In this study seismic performance of typical reinforced concrete staggered wall system structures was evaluated through nonlinear static and incremental dynamic analyses. To this end, and 15-story SWS structures were designed and were analyzed to obtain their nonlinear force-displacement relationships. The analysis results showed that the 5-story SWS structures failed due to yielding of columns and walls located in the lower stories, whereas in the 15-story structures plastic hinges were more widely distributed throughout the stories.

Keywords: staggered wall systems, reinforced concrete, seismic performance

Procedia PDF Downloads 357
451 Self-Healing Performance of Heavyweight Concrete with Steam Curing

Authors: Hideki Igawa, Yoshinori Kitsutaka, Takashi Yokomuro, Hideo Eguchi

Abstract:

In this study, the crack self-healing performance of the heavyweight concrete used in the walls of containers and structures designed to shield radioactive materials was investigated. A steam curing temperature that preserves self-healing properties and demolding strength was identified. The presented simultaneously mixing method using the expanding material and the fly ash in the process of admixture can maximize the self-curing performance. Also adding synthetic fibers in the heavyweight concrete improved the self-healing performance.

Keywords: expanding material, heavyweight concrete, self-healing performance, synthetic fiber

Procedia PDF Downloads 302
450 Energy Certification Labels and Comfort Assessment for Dwellings Located in a Mild Climate

Authors: Silvia A. Magalhaes, Vasco P. De Freitas, Jose L. Alexandre

Abstract:

Most of the European literature concerning energy efficiency and thermal comfort of dwellings assumes permanent heating and focuses on energy-saving measures. European National regulations are designed for those permanent comfort conditions. On the other hand, very few studies focus on the effect of the improvement measures in comfort reduction, for free-floating conditions or intermittent heating, in fuel poverty vulnerable countries. In Portugal, only 21% of the household energy consumptions (and 10% of the cost) are spent in space heating, while, on average European bills, this value rises to 67%. The mild climate, but mainly fuel poverty and cultural background, justifies these low heating practices. This study proposes a “passive discomfort” index definition, considering free-floating temperatures or with intermittent heating profiles (more realistic conditions), putting the focus on comfort rather than energy consumption (which is low for these countries). The aim is to compare both energy (regarding the legal framework of national regulation) and comfort (considering realistic conditions of use) to identify some correlation. It was developed an experimental campaign of indoor thermal conditions in a 19th building located in Porto with several apartments. One dwelling was chosen as a case study to carry out a sensitivity analysis. The results are discussed comparing both theoretical energy consumption (energy rates from national regulation) and discomfort (new index defined), for different insulation thicknesses, orientations, and intermittent heating profiles. The results show that the different passive options (walls insulation and glazing options) have a small impact on winter discomfort, which is always high for low heating profiles. Moreover, it was shown that the insulation thickness on walls has no influence, and the minimum insulation thickness considered is enough to achieve the same impact on discomfort reduction. Plus, for these low heating profiles, other conditions are critical, as the orientation. Finally, there isn’t an unequivocal relation between the energy label and the discomfort index. These and other results are surprising when compared with the most usual approaches, which assume permanent heating.

Keywords: dwellings in historical buildings, low-heating countries, mild climates, thermal comfort

Procedia PDF Downloads 93
449 Prandtl Number Influence Analysis on Droplet Migration in Natural Convection Flow Using the Level Set Method

Authors: Isadora Bugarin, Taygoara F. de Oliveira

Abstract:

Multiphase flows have currently been placed as a key solution for technological advances in energy and thermal sciences. The comprehension of droplet motion and behavior on non-isothermal flows is, however, rather limited. The present work consists of an investigation of a 2D droplet migration on natural convection inside a square enclosure with differentially heated walls. The investigation in question concerns the effects on drop motion of imposing different combinations of Prandtl and Rayleigh numbers while defining the drop on distinct initial positions. The finite differences method was used to compute the Navier-Stokes and energy equations for a laminar flow, considering the Boussinesq approximation. Also, a high order level set method was applied to simulate the two-phase flow. A previous analysis developed by the authors had shown that for fixed values of Rayleigh and Prandtl, the variation of the droplet initial position at the beginning of the simulation delivered different patterns of motion, in which for Ra≥10⁴ the droplet presents two very specific behaviors: it can travel through a helical path towards the center or define cyclic circular paths resulting in closed paths when reaching the stationary regime. Now, when varying the Prandtl number for different Rayleigh regimes, it was observed that this particular parameter also affects the migration of the droplet, altering the motion patterns as its value is increased. On higher Prandtl values, the drop performs wider paths with larger amplitudes, traveling closer to the walls and taking longer time periods to finally reach the stationary regime. It is important to highlight that drastic drop behavior changes on the stationary regime were not yet observed, but the path traveled from the begging of the simulation until the stationary regime was significantly altered, resulting in distinct turning over frequencies. The flow’s unsteady Nusselt number is also registered for each case studied, enabling a discussion on the overall effects on heat transfer variations.

Keywords: droplet migration, level set method, multiphase flow, natural convection in enclosure, Prandtl number

Procedia PDF Downloads 94
448 Discontinuous Spacetime with Vacuum Holes as Explanation for Gravitation, Quantum Mechanics and Teleportation

Authors: Constantin Z. Leshan

Abstract:

Hole Vacuum theory is based on discontinuous spacetime that contains vacuum holes. Vacuum holes can explain gravitation, some laws of quantum mechanics and allow teleportation of matter. All massive bodies emit a flux of holes which curve the spacetime; if we increase the concentration of holes, it leads to length contraction and time dilation because the holes do not have the properties of extension and duration. In the limited case when space consists of holes only, the distance between every two points is equal to zero and time stops - outside of the Universe, the extension and duration properties do not exist. For this reason, the vacuum hole is the only particle in physics capable of describing gravitation using its own properties only. All microscopic particles must 'jump' continually and 'vibrate' due to the appearance of holes (impassable microscopic 'walls' in space), and it is the cause of the quantum behavior. Vacuum holes can explain the entanglement, non-locality, wave properties of matter, tunneling, uncertainty principle and so on. Particles do not have trajectories because spacetime is discontinuous and has impassable microscopic 'walls' due to the simple mechanical motion is impossible at small scale distances; it is impossible to 'trace' a straight line in the discontinuous spacetime because it contains the impassable holes. Spacetime 'boils' continually due to the appearance of the vacuum holes. For teleportation to be possible, we must send a body outside of the Universe by enveloping it with a closed surface consisting of vacuum holes. Since a material body cannot exist outside of the Universe, it reappears instantaneously in a random point of the Universe. Since a body disappears in one volume and reappears in another random volume without traversing the physical space between them, such a transportation method can be called teleportation (or Hole Teleportation). It is shown that Hole Teleportation does not violate causality and special relativity due to its random nature and other properties. Although Hole Teleportation has a random nature, it can be used for colonization of extrasolar planets by the help of the method called 'random jumps': after a large number of random teleportation jumps, there is a probability that the spaceship may appear near a habitable planet. We can create vacuum holes experimentally using the method proposed by Descartes: we must remove a body from the vessel without permitting another body to occupy this volume.

Keywords: border of the Universe, causality violation, perfect isolation, quantum jumps

Procedia PDF Downloads 390
447 Numerical Study of Flow around Flat Tube between Parallel Walls

Authors: Hamidreza Bayat, Arash Mirabdolah Lavasani, Meysam Bolhasani, Sajad Moosavi

Abstract:

Flow around a flat tube is studied numerically. Reynolds number is defined base on equivalent circular tube and it is varied in range of 100 to 300. Equations are solved by using finite volume method and results are presented in form of drag and lift coefficient. Results show that drag coefficient of flat tube is up to 66% lower than circular tube with equivalent diameter. In addition, by increasing l/D from 1 to 2, the drag coefficient of flat tube is decreased about 14-27%.

Keywords: laminar flow, flat-tube, drag coefficient, cross-flow, heat exchanger

Procedia PDF Downloads 471
446 Interrelationship of Socio-Demographic Factors, Health Belief Dimensions and Compliance to Measles Vaccination among Filipino Mothers

Authors: Beryl Rene R. Lopez, Lesley Anne M. Lipat, Rhogene Barbette C. Lirio, Laurice Joy H. Llanes, Karl Philippe M. Llapitan, Einstein James R. Lopez, Socorro S. GuanHing

Abstract:

Background: Measles remain as one of the most common childhood diseases despite the availability of the vaccine that is safe and cost-effective. Because of morbidity and mortality associated with the recent measles outbreak in the Philippines, there is an increasing concern from the health care professionals. Objective: The purpose of this study is to determine the relationship between the compliance of Filipino mothers to measles vaccination and their health beliefs when grouped according to the given socio-demographic factors using a researcher-made questionnaire. Research Methodology: This research utilized the descriptive-correlational research design. With the use of purposive sampling technique, the study involved 200 Filipino mothers aged 18 years old and above excluding those who are healthcare professionals with children aged 2-3 years old with either urban or rural as their settlements. Pre-testing was done prior to the actual data gathering. A questionnaire composed of 26 items involving socio-demographic, compliance, and health beliefs was distributed to the sample population. Statistical analysis was done with the use of Exploratory Factor Analysis (EFA) for the first research question and Structural Equation Model (SEM) for the second research question. Results: Four dimensions were generated with the use of EFA namely: Vulnerability-Oriented Beliefs (VOB), Knowledge-Oriented Beliefs (KOB), Accessibility-Oriented Beliefs (AOB), and Outcomes-Oriented Beliefs (OOB). These were then correlated with the mothers’ socio-demographic factors (age, educational attainment, the area of residence, the number of children, and family income) and their compliance to the measles vaccination schedule. Results showed significant and direct relationships between area of residence and compliance, family income and compliance, KOB and compliance, education and KOB, KOB and VOB, KOB and OOB, AOB and KOB, AOB and OOB, AOB and VOB, and lastly, OOB and VOB. Conclusion: The Knowledge – Oriented Belief dimension greatly influence compliance to measles vaccination. Other determinants of compliance like the area of residence, educational attainment, and family income significantly increase the Filipino mothers’ likelihood of compliance to measles vaccination, which have implications to health education.

Keywords: socio-demographic, health beliefs, compliance, measles vaccination

Procedia PDF Downloads 342
445 Time and Energy Saving Kitchen Layout

Authors: Poonam Magu, Kumud Khanna, Premavathy Seetharaman

Abstract:

The two important resources of any worker performing any type of work at any workplace are time and energy. These are important inputs of the worker and need to be utilised in the best possible manner. The kitchen is an important workplace where the homemaker performs many essential activities. Its layout should be so designed that optimum use of her resources can be achieved.Ideally, the shape of the kitchen, as determined by the physical space enclosed by the four walls, can be square, rectangular or irregular. But it is the shape of the arrangement of counter that one normally refers to while talking of the layout of the kitchen. The arrangement can be along a single wall, along two opposite walls, L shape, U shape or even island. A study was conducted in 50 kitchens belonging to middle income group families. These were DDA built kitchens located in North, South, East and West Delhi.The study was conducted in three phases. In the first phase, 510 non working homemakers were interviewed. The data related to personal characteristics of the homemakers was collected. Additional information was also collected regarding the kitchens-the size, shape , etc. The homemakers were also questioned about various aspects related to meal preparation-people performing the task, number of items cooked, areas used for meal preparation , etc. In the second phase, a suitable technique was designed for conducting time and motion study in the kitchen while the meal was being prepared. This technique was called Path Process Chart. The final phase was carried out in 50 kitchens. The criterion for selection was that all items for a meal should be cooked at the same time. All the meals were cooked by the homemakers in their own kitchens. The meal preparation was studied using the Path Process Chart technique. The data collected was analysed and conclusions drawn. It was found that of all the shapes, it was the kitchen with L shape arrangement in which, on an average a homemaker spent minimum time on meal preparation and also travelled the minimum distance. Thus, the average distance travelled in a L shaped layout was 131.1 mts as compared to 181.2 mts in an U shaped layout. Similarly, 48 minutes was the average time spent on meal preparation in L shaped layout as compared to 53 minutes in U shaped layout. Thus, the L shaped layout was more time and energy saving layout as compared to U shaped.

Keywords: kitchen layout, meal preparation, path process chart technique, workplace

Procedia PDF Downloads 179
444 Effective Thermal Retrofitting Methods to Improve Energy Efficiency of Existing Dwellings in Sydney

Authors: Claire Far, Sara Wilkinson, Deborah Ascher Barnstone

Abstract:

Energy issues have been a growing concern in current decades. Limited energy resources and increasing energy consumption from one side and environmental pollution and waste of resources from the other side have substantially affected the future of human life. Around 40 percent of total energy consumption of Australian buildings goes to heating and cooling due to the low thermal performance of the buildings. Thermal performance of buildings determines the amount of energy used for heating and cooling of the buildings which profoundly influences energy efficiency. Therefore, employing sustainable design principles and effective use of construction materials for building envelope can play crucial role in the improvement of energy efficiency of existing dwellings and enhancement of thermal comfort of the occupants. The energy consumption for heating and cooling normally is determined by the quality of the building envelope. Building envelope is the part of building which separates the habitable areas from exterior environment. Building envelope consists of external walls, external doors, windows, roof, ground and the internal walls that separate conditioned spaces from non-condition spaces. The energy loss from the building envelope is the key factor. Heat loss through conduction, convection and radiation from building envelope. Thermal performance of the building envelope can be improved by using different methods of retrofitting depending on the climate conditions and construction materials. Based on the available studies, the importance of employing sustainable design principles has been highlighted among the Australian building professionals. However, the residential building sector still suffers from a lack of having the best practice examples and experience for effective use of construction materials for building envelope. As a result, this study investigates the effectiveness of different energy retrofitting techniques and examines the impact of employing those methods on energy consumption of existing dwellings in Sydney, the most populated city in Australia. Based on the research findings, the best thermal retrofitting methods for increasing thermal comfort and energy efficiency of existing residential dwellings as well as reducing their environmental impact and footprint have been identified and proposed.

Keywords: thermal comfort, energy consumption, residential dwellings, sustainable design principles, thermal retrofit

Procedia PDF Downloads 240
443 Combined Surface Tension and Natural Convection of Nanofluids in a Square Open Cavity

Authors: Habibis Saleh, Ishak Hashim

Abstract:

Combined surface tension and natural convection heat transfer in an open cavity is studied numerically in this article. The cavity is filled with water-{Cu} nanofluids. The left wall is kept at low temperature, the right wall at high temperature and the bottom and top walls are adiabatic. The top free surface is assumed to be flat and non--deformable. Finite difference method is applied to solve the dimensionless governing equations. It is found that the insignificant effect of adding the nanoparticles were obtained about $Ma_{bf}=250$.

Keywords: natural convection, marangoni convection, nanofluids, square open cavity

Procedia PDF Downloads 518
442 Protecting the Health of Astronauts: Enhancing Occupational Health Monitoring and Surveillance for Former NASA Astronauts to Understand Long-Term Outcomes of Spaceflight-Related Exposures

Authors: Meredith Rossi, Lesley Lee, Mary Wear, Mary Van Baalen, Bradley Rhodes

Abstract:

The astronaut community is unique, and may be disproportionately exposed to occupational hazards not commonly seen in other communities. The extent to which the demands of the astronaut occupation and exposure to spaceflight-related hazards affect the health of the astronaut population over the life course is not completely known. A better understanding of the individual, population, and mission impacts of astronaut occupational exposures is critical to providing clinical care, targeting occupational surveillance efforts, and planning for future space exploration. The ability to characterize the risk of latent health conditions is a significant component of this understanding. Provision of health screening services to active and former astronauts ensures individual, mission, and community health and safety. Currently, the NASA-Johnson Space Center (JSC) Flight Medicine Clinic (FMC) provides extensive medical monitoring to active astronauts throughout their careers. Upon retirement, astronauts may voluntarily return to the JSC FMC for an annual preventive exam. However, current retiree monitoring includes only selected screening tests, representing an opportunity for augmentation. The potential long-term health effects of spaceflight demand an expanded framework of testing for former astronauts. The need is two-fold: screening tests widely recommended for other aging populations are necessary to rule out conditions resulting from the natural aging process (e.g., colonoscopy, mammography); and expanded monitoring will increase NASA’s ability to better characterize conditions resulting from astronaut occupational exposures. To meet this need, NASA has begun an extensive exploration of the overall approach, cost, and policy implications of expanding the medical monitoring of former NASA astronauts under the Astronaut Occupational Health program. Increasing the breadth of monitoring services will ultimately enrich the existing evidence base of occupational health risks to astronauts. Such an expansion would therefore improve the understanding of the health of the astronaut population as a whole, and the ability to identify, mitigate, and manage such risks in preparation for deep space exploration missions.

Keywords: astronaut, long-term health, NASA, occupational health, surveillance

Procedia PDF Downloads 500
441 Mural Exhibition as a Promotive Strategy to Proper Hygiene and Sanitation Practices among Children: A Case Study from Urban Slum Schools in Nairobi, Kenya

Authors: Abdulaziz Kikanga, Kellen Muchira, Styvers Kathuni, Paul Saitoti

Abstract:

Background: Provision of adequate levels of water, sanitation, and hygiene in schools is a strategic objective in achieving universal primary education among children in low and middle-income countries. However, lack of proper sanitation and hygiene practices in schools, especially those in informal settlement has resulted to an increased rate of school absenteeism thereby affecting the education and health outcomes of the children in those setting. Intervention or Response: Catholic Relief Services in Kenya supports five schools in informal settlements of Nairobi by painting of key hygiene messages on school walls to promote proper hygiene and sanitation practices among the school children. The mural exhibitions depict the essence of proper hygiene practices, proper latrine use, and hand washing after visiting the latrine. The artwork is context specific and its aimed at improving the uptake of proper hygiene and sanitation practices among the school children. Review of project related documents was conducted including interviews with the school children. Thematic analysis was used to interpret the qualitative information generated. Results and Lessons Learnt: 12 school children have interviewed on proper hygiene and sanitation practices and the exercise revealed that painted murals were the best communication platforms for creating awareness on proper sanitation on issues relating to water, sanitation, and hygiene in schools. The painting mural provided a strong knowledge base for the formation of healthy habits in both the school and informal settlement. In addition, these sanitation messages on the school walls empower the children to share these practices with their siblings, parents, and other family members thereby acting as agents of change to proper hygiene and sanitation in those informal settlements. The findings revealed that by adopting proper sanitation and hygiene practices, there has been a reduction of school absenteeism due to a decrease in disease related to inadequate sanitation and hygiene in schools. Conclusion: The adoption of proper sanitation in schools entails more than just a painted mural wall. Insights revealed that to have a lasting sanitation and hygiene intervention, there is a need to invest in effective hygiene educational programming that encourages the formation of proper hygiene habits and promotes changes in behavior.

Keywords: education outcomes, informal settlement, mural exhibition, school hygiene and sanitation

Procedia PDF Downloads 209
440 Study the Behavior of Different Composite Short Columns (DST) with Prismatic Sections under Bending Load

Authors: V. Sadeghi Balkanlou, M. Reza Bagerzadeh Karimi, A. Hasanbakloo, B. Bagheri Azar

Abstract:

In this paper, the behavior of different types of DST columns has been studied under bending load. Briefly, composite columns consist of an internal carbon steel tube and an external stainless steel wall that the between the walls are filled with concrete. Composite columns are expected to combine the advantages of all three materials and have the advantage of high flexural stiffness of CFDST columns. In this research, ABAQUS software is used for finite element analysis then the results of ultimate strength of the composite sections are illustrated.

Keywords: DST, stainless steel, carbon steel, ABAQUS, straigh columns, tapered columns

Procedia PDF Downloads 353
439 Heat and Mass Transfer of an Oscillating Flow in a Porous Channel with Chemical Reaction

Authors: Zahra Neffah, Henda Kahalerras

Abstract:

A numerical study is made in a parallel-plate porous channel subjected to an oscillating flow and an exothermic chemical reaction on its walls. The flow field in the porous region is modeled by the Darcy–Brinkman–Forchheimer model and the finite volume method is used to solve the governing equations. The effects of the modified Frank-Kamenetskii (FKm) and Damköhler (Dm) numbers, the amplitude of oscillation (A), and the Strouhal number (St) are examined. The main results show an increase of heat and mass transfer rates with A and St, and their decrease with FKm and Dm.

Keywords: chemical reaction, heat and mass transfer, oscillating flow, porous channel

Procedia PDF Downloads 381
438 Broadband Ultrasonic and Rheological Characterization of Liquids Using Longitudinal Waves

Authors: M. Abderrahmane Mograne, Didier Laux, Jean-Yves Ferrandis

Abstract:

Rheological characterizations of complex liquids like polymer solutions present an important scientific interest for a lot of researchers in many fields as biology, food industry, chemistry. In order to establish master curves (elastic moduli vs frequency) which can give information about microstructure, classical rheometers or viscometers (such as Couette systems) are used. For broadband characterization of the sample, temperature is modified in a very large range leading to equivalent frequency modifications applying the Time Temperature Superposition principle. For many liquids undergoing phase transitions, this approach is not applicable. That is the reason, why the development of broadband spectroscopic methods around room temperature becomes a major concern. In literature many solutions have been proposed but, to our knowledge, there is no experimental bench giving the whole rheological characterization for frequencies about a few Hz (Hertz) to many MHz (Mega Hertz). Consequently, our goal is to investigate in a nondestructive way in very broadband frequency (A few Hz – Hundreds of MHz) rheological properties using longitudinal ultrasonic waves (L waves), a unique experimental bench and a specific container for the liquid: a test tube. More specifically, we aim to estimate the three viscosities (longitudinal, shear and bulk) and the complex elastic moduli (M*, G* and K*) respectively longitudinal, shear and bulk moduli. We have decided to use only L waves conditioned in two ways: bulk L wave in the liquid or guided L waves in the tube test walls. In this paper, we will present first results for very low frequencies using the ultrasonic tracking of a falling ball in the test tube. This will lead to the estimation of shear viscosity from a few mPa.s to a few Pa.s (Pascal second). Corrections due to the small dimensions of the tube will be applied and discussed regarding the size of the falling ball. Then the use of bulk L wave’s propagation in the liquid and the development of a specific signal processing in order to assess longitudinal velocity and attenuation will conduct to the longitudinal viscosity evaluation in the MHz frequency range. At last, the first results concerning the propagation, the generation and the processing of guided compressional waves in the test tube walls will be discussed. All these approaches and results will be compared to standard methods available and already validated in our lab.

Keywords: nondestructive measurement for liquid, piezoelectric transducer, ultrasonic longitudinal waves, viscosities

Procedia PDF Downloads 239
437 The Impact of Climate Change on Typical Material Degradation Criteria over Timurid Historical Heritage

Authors: Hamed Hedayatnia, Nathan Van Den Bossche

Abstract:

Understanding the ways in which climate change accelerates or slows down the process of material deterioration is the first step towards assessing adaptive approaches for the conservation of historical heritage. Analysis of the climate change effects on the degradation risk assessment parameters like freeze-thaw cycles and wind erosion is also a key parameter when considering mitigating actions. Due to the vulnerability of cultural heritage to climate change, the impact of this phenomenon on material degradation criteria with the focus on brick masonry walls in Timurid heritage, located in Iran, was studied. The Timurids were the final great dynasty to emerge from the Central Asian steppe. Through their patronage, the eastern Islamic world in northwestern of Iran, especially in Mashhad and Herat, became a prominent cultural center. Goharshad Mosque is a mosque in Mashhad of the Razavi Khorasan Province, Iran. It was built by order of Empress Goharshad, the wife of Shah Rukh of the Timurid dynasty in 1418 CE. Choosing an appropriate regional climate model was the first step. The outputs of two different climate model: the 'ALARO-0' and 'REMO,' were analyzed to find out which model is more adopted to the area. For validating the quality of the models, a comparison between model data and observations was done in 4 different climate zones in Iran for a period of 30 years. The impacts of the projected climate change were evaluated until 2100. To determine the material specification of Timurid bricks, standard brick samples from a Timurid mosque were studied. Determination of water absorption coefficient, defining the diffusion properties and determination of real density, and total porosity tests were performed to characterize the specifications of brick masonry walls, which is needed for running HAM-simulations. Results from the analysis showed that the threatening factors in each climate zone are almost different, but the most effective factor around Iran is the extreme temperature increase and erosion. In the north-western region of Iran, one of the key factors is wind erosion. In the north, rainfall erosion and mold growth risk are the key factors. In the north-eastern part, in which our case study is located, the important parameter is wind erosion.

Keywords: brick, climate change, degradation criteria, heritage, Timurid period

Procedia PDF Downloads 97
436 The Usage of Adobe in Historical Structures of Van City

Authors: Mustafa Gülen, Eylem Güzel, Soner Guler

Abstract:

The studies concentrated on the historical background of Van show the fact that Van has had a significant position as a settlement since ancient times and that it has hosted many civilizations during history. With the dominance of Ottoman Empire in 16th century, the region had been re-constructed by building new walls at the southern side of Van Castle. These construction activities had mostly been fulfilled by the usage of adobe which had been a fundamental material for thousands of years. As a result of natural disasters, battles and the move at the threshold of 20th century to the new settlement which is 9 kilometers away from the Ancient City Van is an open-air museum with the ruins of churches, mosques and baths. In this study, the usage of adobe in historical structures of Van city is evaluated in detail.

Keywords: historical structures, adobe, Van city, adobe

Procedia PDF Downloads 579