Search results for: Averill Reindle T. Camilo
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28

Search results for: Averill Reindle T. Camilo

28 Exploring the Experiences of Women Regarding Poor Birth Spacing at Bulanao, Tabuk City, Kalinga

Authors: Averill Reindle T. Camilo, Veena Jaye B. Cosme, Hazel Kaye a Mabborang, Johannah a Magayam, Julie May D. Magguiya, Trisha Irish W. Maique, Klein Van M. Maloc, Jaydee B. Masadao, Yvonne Mae P. Ματεο

Abstract:

The City of Tabuk had the highest number of registered births in the province of Kalinga, indicating the need to study birth spacing trends in Tabuk City further. The study investigates women's experiences with poor birth spacing in Bulanao, Tabuk City, Kalinga, focusing on their views, practices, challenges, and strategies to cope with these issues. A qualitative research approach was used, specifically the Descriptive Phenomenological Research Design with eight (8) participants from Bulanao, Tabuk City, Kalinga. The study found that women's views on poor birth spacing, including intense desire, wanting to have more children, and their perception of children as blessings and helpers, are prevalent and including side effects of contraceptives. The challenges faced by women due to poor birth spacing include financial constraints, sickness, lack of support, and time constraints. These issues can lead to increased living costs for stay-at-home parents, including food, clothing, transportation, medical care, housing, childcare, and budget modifications. The participants also face difficulties in handling sick children and adjusting to uneven birth spacing. To cope, they focus on earning money, patience, andcontraception, while seeking family support fromin-laws andmothers.

Keywords: birth spacing, contraception, coping strategies, maternal health, women experiences

Procedia PDF Downloads 30
27 Clinical and Epidemiological Profile of Patients with Chronic Obstructive Pulmonary Disease in a Medical Institution from the City of Medellin, Colombia

Authors: Camilo Andres Agudelo-Velez, Lina María Martinez-Sanchez, Natalia Perilla-Hernandez, Maria De Los Angeles Rodriguez-Gazquez, Felipe Hernandez-Restrepo, Dayana Andrea Quintero-Moreno, Camilo Ruiz-Mejia, Isabel Cristina Ortiz-Trujillo, Monica Maria Zuluaga-Quintero

Abstract:

Chronic obstructive pulmonary disease is common condition, characterized by a persistent blockage of airflow, partially reversible and progressive, that represents 5% of total deaths around the world, and it is expected to become the third leading cause of death by 2030. Objective: To establish the clinical and epidemiological profile of patients with chronic obstructive pulmonary disease in a medical institution from the city of Medellin, Colombia. Methods: A cross-sectional study was performed, with a sample of 50 patients with a diagnosis of chronic obstructive pulmonary disease in a private institution in Medellin, during 2015. The software SPSS vr. 20 was used for the statistical analysis. For the quantitative variables, averages, standard deviations, and maximun and minimun values were calculated, while for ordinal and nominal qualitative variables, proportions were estimated. Results: The average age was 73.5±9.3 years, 52% of the patients were women, 50% of them had retired, 46% ere married and 80% lived in the city of Medellín. The mean time of diagnosis was 7.8±1.3 years and 100% of the patients were treated at the internal medicine service. The most common clinical features were: 36% were classified as class D for the disease, 34% had a FEV1 <30%, 88% had a history of smoking and 52% had oxygen therapy at home. Conclusion: It was found that class D was the most common, and the majority of the patients had a history of smoking, indicating the need to strengthen promotion and prevention strategies in this regard.

Keywords: pulmonary disease, chronic obstructive, pulmonary medicine, oxygen inhalation therapy

Procedia PDF Downloads 444
26 Clinical and Epidemiological Profile in Patients with Preeclampsia in a Private Institution in Medellin, Colombia 2015

Authors: Camilo Andrés Agudelo Vélez, Lina María Martínez Sánchez, Isabel Cristina Ortiz Trujillo, Evert Armando Jiménez Cotes, Natalia Perilla Hernández, María de los Ángeles Rodríguez Gázquez, Daniel Duque Restrepo, Felipe Hernández Restrepo, Dayana Andrea Quintero Moreno, Juan José Builes Gómez, Camilo Ruiz Mejía, Ana Lucia Arango Gómez

Abstract:

Preeclampsia is a clinical complication during pregnancy with high incidence in Colombia; therefore, it is important to evaluate the influence of external conditions and medical interventions, in order to promote measures that encourage improvements in the quality of life. Objective: Determine clinical and sociodemographic variables in women with preeclampsia. Methods: This cross-sectional study enrolled 50 patients with the diagnosis of preeclampsia, from a private institution in Medellin, during 2015. We used the software SPSS ver.20 for statistical analysis. For the qualitative variables, we calculated the mean and standard deviation, while, for ordinal and nominal levels of quantitative variables, ratios were estimated. Results: The average age was 26.8±5.9 years. The predominant characteristics were socioeconomic stratum 2 (48%), students (55%), mixed race (46%) and middle school as level of education (38%). As for clinical features, 72% of the cases were mild preeclampsia, and 22% were severe forms. The most common clinical manifestations were edema (46%), headache (62%), and proteinuria (55%). As for the Gyneco-obstetric history, 8% reported previous episodes of this disease and it was the first pregnancy for 60% of the patients. Conclusions: Preeclampsia is a frequent condition in young women; on the other hand, headache and edema were the most common reasons for consultation, therefore, doctors need to be aware of these symptoms in pregnant women.

Keywords: pre-eclampsia, hypertension, pregnancy complications, pregnancy, abdominal, edema

Procedia PDF Downloads 364
25 Conceptual Model for Logistics Information System

Authors: Ana María Rojas Chaparro, Cristian Camilo Sarmiento Chaves

Abstract:

Given the growing importance of logistics as a discipline for efficient management of materials flow and information, the adoption of tools that permit to create facilities in making decisions based on a global perspective of the system studied has been essential. The article shows how from a concepts-based model is possible to organize and represent in appropriate way the reality, showing accurate and timely information, features that make this kind of models an ideal component to support an information system, recognizing that information as relevant to establish particularities that allow get a better performance about the evaluated sector.

Keywords: system, information, conceptual model, logistics

Procedia PDF Downloads 497
24 Production of Bioethanol through Hydrolysis of Agro-Industrial Banana Crop Residues

Authors: Sánchez Acuña, Juan Camilo, Granados Gómez, Mildred Magaly, Navarrete Rodríguez, Luisa Fernanda

Abstract:

Nowadays, the main biofuels source production as bioethanol is food crops. This means a high competition between foods and energy production. For this reason, it is necessary to take into account the use of new raw materials friendly to the environment. The main objective of this paper is to evaluate the potential of the agro-industrial banana crop residues in the production of bioethanol. A factorial design of 24 was used, the design has variables such as pH, time and concentration of hydrolysis, another variable is the time of fermentation that is of 7 or 15 days. In the hydrolysis phase, the pH is acidic (H2SO4) or basic (NaOH), the time is 30 or 15 minutes and the concentration is 0.1 or 0.5 M. It was observed that basic media, low concentrations, fermentation, and higher pretreatment times produced better performance in terms of biofuel obtained.

Keywords: bioethanol, biofuels, banana waste, hydrolysis

Procedia PDF Downloads 427
23 Drying and Transport Processes in Distributed Hydrological Modelling Based on Finite Volume Schemes (Iber Model)

Authors: Carlos Caro, Ernest Bladé, Pedro Acosta, Camilo Lesmes

Abstract:

The drying-wet process is one of the topics to be more careful in distributed hydrological modeling using finite volume schemes as a means of solving the equations of Saint Venant. In a hydrologic and hydraulic computer model, surface flow phenomena depend mainly on the different flow accumulation and subsequent runoff generation. These accumulations are generated by routing, cell by cell, from the heights of water, which begin to appear due to the rain at each instant of time. Determine when it is considered a dry cell and when considered wet to include in the full calculation is an issue that directly affects the quantification of direct runoff or generation of flow at the end of a zone of contribution by accumulations flow generated from cells or finite volume.

Keywords: hydrology, transport processes, hydrological modelling, finite volume schemes

Procedia PDF Downloads 386
22 The Access to the City in the Medellín Urban Experience

Authors: Mansilla, Juan Camilo

Abstract:

According to many studies, public space in the cities of Global South is constantly morcellated and captured by a multiplicity of actors in a permanent struggle for power. This imposed public space restricts the access to services and political actions to many inhabitants. The author has conducted several focus group sessions using video in a reflective mode with low-income communities in Medellín, Colombia in order to study how people in this city are shift from a physical public space to a hybrid public space shaped by internet. Beyond the fragmented city and the violent urban context manifested by participants, these activities have highlighted how the access to the city is currently going through a dialectic movement between the physical and the digital space. The purpose of this article is to make explicit the link between this hybrid public space and the boundaries of exclusion in the city. Urban marginality is closely related with the idea of access and space. Low-income communities in Medellín assume the digital realm like a “not controlled space” of resistance, where alternative ways of expression like hip hop movement, graffiti, dance, video and virtual communities produce effective changes in the physical realm.

Keywords: access to the city, hybrid public space, low-income communities, Medellín, urban marginality

Procedia PDF Downloads 494
21 Biomass Availability Matrix: Methodology to Define High Level Biomass Availability for Bioenergy Purposes, a Quebec Case Study

Authors: Camilo Perez Lee, Mark Lefsrud, Edris Madadian, Yves Roy

Abstract:

Biomass availability is one of the most important aspects to consider when determining the proper location of potential bioenergy plants. Since this aspect has a direct impact on biomass transportation and storage, biomass availability greatly influences the operational cost. Biomass availability is more than the quantity available on a specific region; other elements such as biomass accessibility and potential play an important role. Accessibility establishes if the biomass could be extracted and conveyed easily considering factors such as biomass availability, infrastructure condition and other operational issues. On the other hand, biomass potential is defined as the capacity of a specific region to scale the usage of biomass as an energy source, move from another energy source or to switch the type of biomass to increase their biomass availability in the future. This paper defines methodologies and parameters in order to determine the biomass availability within the administrative regions of the province of Quebec; firstly by defining the forestry, agricultural, municipal solid waste and energy crop biomass availability per administrative region, next its infrastructure accessibility and lastly defining the region potential. Thus, these data are processed to create a biomass availability matrix allowing to define the overall biomass availability per region and to determine the most optional candidates for bioenergy plant location.

Keywords: biomass, availability, bioenergy, accessibility, biomass potential

Procedia PDF Downloads 319
20 True Single SKU Script: Applying the Automated Test to Set Software Properties in a Global Software Development Environment

Authors: Antonio Brigido, Maria Meireles, Francisco Barros, Gaspar Mota, Fernanda Terra, Lidia Melo, Marcelo Reis, Camilo Souza

Abstract:

As the globalization of the software process advances, companies are increasingly committed to improving software development technologies across multiple locations. On the other hand, working with teams distributed in different locations also raises new challenges. In this sense, automated processes can help to improve the quality of process execution. Therefore, this work presents the development of a tool called TSS Script that automates the sample preparation process for carrier requirements validation tests. The objective of the work is to obtain significant gains in execution time and reducing errors in scenario preparation. To estimate the gains over time, the executions performed in an automated and manual way were timed. In addition, a questionnaire-based survey was developed to discover new requirements and improvements to include in this automated support. The results show an average gain of 46.67% of the total hours worked, referring to sample preparation. The use of the tool avoids human errors, and for this reason, it adds greater quality and speed to the process. Another relevant factor is the fact that the tester can perform other activities in parallel with sample preparation.

Keywords: Android, GSD, automated testing tool, mobile products

Procedia PDF Downloads 317
19 Computational Fluid Dynamics Analysis of a Biomass Burner Gas Chamber in OpenFOAM

Authors: Óscar Alfonso Gómez Sepúlveda, Julián Ernesto Jaramillo, Diego Camilo Durán

Abstract:

The global climate crisis has affected different aspects of human life, and in an effort to reverse the effects generated, we seek to optimize and improve the equipment and plants that produce high emissions of CO₂, being possible to achieve this through numerical simulations. These equipments include biomass combustion chambers. The objective of this research is to visualize the thermal behavior of a gas chamber that is used in the process of obtaining vegetable extracts. The simulation is carried out with OpenFOAM taking into account the conservation of energy, turbulence, and radiation; for the purposes of the simulation, combustion is omitted and replaced by heat generation. Within the results, the streamlines generated by the primary and secondary flows are analyzed in order to visualize whether they generate the expected effect, and the energy is used to the maximum. The inclusion of radiation seeks to compare its influence and also simplify the computational times to perform mesh analysis. An analysis is carried out with simplified geometries and with experimental data to corroborate the selection of the models to be used, and it is obtained that for turbulence, the appropriate one is the standard k - w. As a means of verification, a general energy balance is made and compared with the results of the numerical analysis, where the error is 1.67%, which is considered acceptable. From the approach to improvement options, it was found that with the implementation of fins, heat can be increased by up to 7.3%.

Keywords: CFD analysis, biomass, heat transfer, radiation, OpenFOAM

Procedia PDF Downloads 118
18 Urban Forest Innovation Lab as a Driver to Boost Forest Bioeconomy

Authors: Carmen Avilés Palacios, Camilo Muñoz Arenas, Joaquín García Alfonso, Jesús González Arteaga, Alberto Alcalde Calonge

Abstract:

There is a need for review of the consumption and production models of industrialized states in accordance with the Paris Agreement and the Sustainable Development Goals (1) (OECD, 2016). This constitutes the basis of the bioeconomy (2) that is focused on striking a balance between economic development, social development and environmental protection. Bioeconomy promotes the adequate use and consumption of renewable natural resources (3) and involves developing new products and services adapted to the principles of circular economy: more sustainable (reusable, biodegradable, renewable and recyclable) and with a lower carbon footprint (4). In this context, Urban Forest Innovation Lab (UFIL) grows, an Urban Laboratory for experimentation focused on promoting entrepreneurship in forest bioeconomy (www.uiacuenca.es). UFIL generates local wellness taking sustainable advantage of an endogenous asset, forests. UFIL boosts forest bioeconomy opening its doors of knowledge to pioneers in this field, giving the opportunity to be an active part of a change in the way of understanding the exploitation of natural resources, discovering business, learning strategies and techniques and incubating business ideas So far now, 100 entrepreneurs are incubating their nearly 30 new business plans. UFIL has promoted an ecosystem to connect the rural-urban world that promotes sustainable rural development around the forest.

Keywords: bioeconomy, forestry, innovation, entrepreneurship

Procedia PDF Downloads 118
17 Epidemiological and Clinical Profile of Patients with Chorioamnionitis

Authors: Isabel Cristina Ortiz Trujillo, Lina Maria Martinez Sanchez, Felipe Hernández Restrepo, Daniel Gallego Gonzalez, Natalia Vargas Grisales, Camilo Andrés Agudelo Vélez

Abstract:

Chorioamnionitis, is a pregnancy infection, causes different fetal and maternal symptoms. Streptococcus agalactiae present in the normal vaginal microflora of some women, favouring its abnormal multiplication during pregnancy, causing perinatal morbidity and mortality. Objective. Describe the clinical and epidemiological profile of the patients with diagnosis of clinical chorioanmionitis. Methodology. Descriptive, cross-sectional study. The population was patients with diagnosis of clinical chorioanmionitis. The information was taken from the medical records. The research was approved by the Ethics Committee. We used the program SPSS ® version 17.0 (SPSS Inc; Chicago, Illinois, USA) for the information analysis, descriptive statistics were used. Results. 78 patients in total with clinical chorioamnionitis, with a mean age of 26.3 ±5, 8 years old, the 69.2% primigravid women. 2.6% of women had positive culture for Streptococcus agalactiae in urine sample during current pregnancy and 30.7% had received some kind of antibiotics during current pregnancy. The 57.7% had 37 to 40 weeks of gestation in the current pregnancy it was calculated more frequently by ultrasound (66.7% in first quarter, 11.5% in the second and 1.9% in the third). In a 60.3% way of termination of pregnancy was vaginal and a 35.9 percent were caesarean section. Among the women in the study, a 30.8% had premature rupture of membranes. Conclusion. The chorioamnionitis continues to be an important cause of antibiotic use during pregnancy or labour and the decision to do a caesarean, with highest percentage in pregnancies-preterm and preterm premature rupture of membranes.

Keywords: chorioamnionitis, Streptococcus agalactiae, pregnancy complications, infectious

Procedia PDF Downloads 422
16 Deep Learning Approach for Chronic Kidney Disease Complications

Authors: Mario Isaza-Ruget, Claudia C. Colmenares-Mejia, Nancy Yomayusa, Camilo A. González, Andres Cely, Jossie Murcia

Abstract:

Quantification of risks associated with complications development from chronic kidney disease (CKD) through accurate survival models can help with patient management. A retrospective cohort that included patients diagnosed with CKD from a primary care program and followed up between 2013 and 2018 was carried out. Time-dependent and static covariates associated with demographic, clinical, and laboratory factors were included. Deep Learning (DL) survival analyzes were developed for three CKD outcomes: CKD stage progression, >25% decrease in Estimated Glomerular Filtration Rate (eGFR), and Renal Replacement Therapy (RRT). Models were evaluated and compared with Random Survival Forest (RSF) based on concordance index (C-index) metric. 2.143 patients were included. Two models were developed for each outcome, Deep Neural Network (DNN) model reported C-index=0.9867 for CKD stage progression; C-index=0.9905 for reduction in eGFR; C-index=0.9867 for RRT. Regarding the RSF model, C-index=0.6650 was reached for CKD stage progression; decreased eGFR C-index=0.6759; RRT C-index=0.8926. DNN models applied in survival analysis context with considerations of longitudinal covariates at the start of follow-up can predict renal stage progression, a significant decrease in eGFR and RRT. The success of these survival models lies in the appropriate definition of survival times and the analysis of covariates, especially those that vary over time.

Keywords: artificial intelligence, chronic kidney disease, deep neural networks, survival analysis

Procedia PDF Downloads 134
15 Attitude towards Doping of High-Performance Athletes in a Sports Institute of the City of Medellin, Colombia

Authors: Yuban Sebastian Cuartas-Agudelo, Sandra Marcela López-Hincapié, Vivianna Alexandra Garrido-Altamar, María de los Ángeles Rodríguez-Gázquez, Camilo Ruiz-Mejía, Lina María Martínez-Sánchez, Gloria Inés Martínez-Domínguez, Luis Eduardo Contreras, Felipe Eduardo Marino-Isaza

Abstract:

Introduction: Doping is a prohibited practice in competitive sports with potential adverse effects; therefore, it is crucial to describe the attitudes of athletes towards this behavior and to determine which o these increase the susceptibility to carry out this practice. Objective: To determine the attitude of high-performance athletes towards doping in a sports institute in the city of Medellin, Colombia. Methods: We performed a cross-sectional study during 2016, with a sample taken to convenience consisting of athletes over 18 years old enrolled in a sports institute of the city of Medellin (Colombia). The athletes filled by themselves the Petroczi and Aidman questionnaire: Performance Enhancement Attitude Scale (PEAS) adapted to the Spanish language by Morente-Sánchez et al. This scale has 17 items with likert answer options, with a score ranging from 1 to 6, with a higher score indicating a stronger tendency towards doping practices. Results: 112 athletes were included with an average age of 21.6 years old, a 60% of them were male and the most frequent sports were karate 17%, judo 12.5% and athletics 9.8%. The average score of the questionnaire was 35.5 points of a 102 possible points. The lowest score was obtained in the following items: Is Doping necessary 1,4 and Doping isn’t cheating, everyone does it 1,5. Conclusion: In our population, there is a low tendency towards doping practices.

Keywords: sports, doping in sports, athletic performance, attitude

Procedia PDF Downloads 230
14 Applying Failure Modes and Effect Analysis Concept in a Global Software Development Process

Authors: Camilo Souza, Lidia Melo, Fernanda Terra, Francisco Caio, Marcelo Reis

Abstract:

SIDIA is a research and development (R&D) institute that belongs to Samsung’s global software development process. The SIDIA’s Model Team (MT) is a part of Samsung’s Mobile Division Area, which is responsible for the development of Android releases embedded in Samsung mobile devices. Basically, in this software development process, the kickoff occurs in some strategic countries (e.g., South Korea) where some software requirements are applied and the initial software tests are performed. When the software achieves a more mature level, a new branch is derived, and the development continues in subsidiaries from other strategic countries (e.g., SIDIA-Brazil). However, even in the newly created branches, there are several interactions between developers from different nationalities in order to fix bugs reported during test activities, apply some specific requirements from partners and develop new features as well. Despite the GSD strategy contributes to improving software development, some challenges are also introduced as well. In this paper, we share the initial results about the application of the failure modes and effect analysis (FMEA) concept in the software development process followed by the SIDIA’s model team. The main goal was to identify and mitigate the process potential failures through the application of recommended actions. The initial results show that the application of the FMEA concept allows us to identify the potential failures in our GSD process as well as to propose corrective actions to mitigate them. Finally, FMEA encouraged members of different teams to take actions that contribute to improving our GSD process.

Keywords: global software development, potential failures, FMEA, recommended actions

Procedia PDF Downloads 227
13 Chromosomal Damage in Human Lymphocytes by Ultraviolet Radiation

Authors: Felipe Osorio Ospina, Maria Adelaida Mejia Arango, Esteban Onésimo Vallejo Agudelo, Victoria Lucía Dávila Osorio, Natalia Vargas Grisales, Lina María Martínez Sanchez, Camilo Andrés Agudelo Vélez, Ángela Maria Londoño García, Isabel Cristina Ortiz Trujillo

Abstract:

Excessive exposure to ultraviolet radiation, has shown to be a risk factor for photodamage, alteration of the immune mechanisms to recognize malignant cells and cutaneous pro-inflamatorios States and skin cancers. Objective: Identify the time of exposure to ultraviolet radiation for the production of chromosomal damage in human lymphocytes. Methodology: We conducted an in vitro study serial, in which samples were taken from heparinized blood of healthy people, who do not submit exposure to agents that could induce chromosomal alterations. The samples were cultured in RPMI-1640 medium containing 10% fetal bovine serum, penicillin and streptomycin antibiotic. Subsequently, they were grouped and exposed to ultraviolet light for 1 to 20 seconds. At the end of the treatments, cytology samples were prepared, and it was colored with Giemsa (5%). Reading was carried out in an optical microscope and 100 metaphases analysed by treatment for posting chromosomal alterations. Each treatment was conducted at three separate times and each became two replicas. Results: We only presented chromosomal alterations in lymphocytes exposed to UV for a groups 1 to 3 seconds (p<0.05). Conclusions: Exposure to ultraviolet radiation generates visible damage in chromosomes from human lymphocytes observed in light microscopy, the highest rates of injury was observed between two and three seconds, and above this value, the reduction in the number of mitotic cells was evident.

Keywords: ultraviolet rays, lymphocytes, chromosome breakpoints, photodamage

Procedia PDF Downloads 428
12 Ultraviolet Radiation and Chromosomal Damage in Human Lymphocytes

Authors: Felipe Osorio Ospina, Maria Adelaida Mejia Arango, Esteban Onésimo Vallejo Agudelo, Victoria Lucía Dávila Osorio, Natalia Vargas Grisales, Lina María Martínez Sanchez, Camilo Andrés Agudelo Vélez, Ángela Maria Londoño García, Isabel Cristina Ortiz Trujillo

Abstract:

Excessive exposure to ultraviolet radiation, has shown to be a risk factor for photodamage, alteration of the immune mechanisms to recognize malignant cells and cutaneous pro-inflamatorios states and skin cancers. Objective: To identify the time of exposure to ultraviolet radiation for the production of chromosomal damage in human lymphocytes. Methodology: We conducted an in vitro study serial, in which samples were taken from the heparinized blood of healthy people, who do not submit exposure to agents that could induce chromosomal alterations. The samples were cultured in RPMI-1640 medium containing 10% fetal bovine serum, penicillin, and streptomycin antibiotic. Subsequently, they were grouped and exposed to ultraviolet light for 1 to 20 seconds. At the end of the treatments, cytology samples were prepared, and it was colored with Giemsa (5%). Reading was carried out in an optical microscope and 100 metaphases analysed by treatment for posting chromosomal alterations. Each treatment was conducted at three separate times and each became two replicas. Results: We only presented chromosomal alterations in lymphocytes exposed to UV for groups 1 to 3 seconds (p < 0.05). Conclusions: Exposure to ultraviolet radiation generates visible damage in chromosomes from human lymphocytes observed in light microscopy, the highest rates of injury was observed between two and three seconds, and above this value, the reduction in the number of mitotic cells was evident.

Keywords: chromosome breakpoints, lymphocytes, photodamage, ultraviolet rays

Procedia PDF Downloads 579
11 Characterization of Chest Pain in Patients Consulting to the Emergency Department of a Health Institution High Level of Complexity during 2014-2015, Medellin, Colombia

Authors: Jorge Iván Bañol-Betancur, Lina María Martínez-Sánchez, María de los Ángeles Rodríguez-Gázquez, Estefanía Bahamonde-Olaya, Ana María Gutiérrez-Tamayo, Laura Isabel Jaramillo-Jaramillo, Camilo Ruiz-Mejía, Natalia Morales-Quintero

Abstract:

Acute chest pain is a distressing sensation between the diaphragm and the base of the neck and it represents a diagnostic challenge for any physician in the emergency department. Objective: To establish the main clinical and epidemiological characteristics of patients who present with chest pain to the emergency department in a private clinic from the city of Medellin, during 2014-2015. Methods: Cross-sectional retrospective observational study. Population and sample were patients who consulted for chest pain in the emergency department who met the eligibility criteria. The information was analyzed in SPSS program vr.21; qualitative variables were described through relative frequencies, and the quantitative through mean and standard deviation ‬or medians according to their distribution in the study population. Results: A total of 231 patients were evaluated, the mean age was 49.5 ± 19.9 years, 56.7% were females. The most frequent pathological antecedents were hypertension 35.5%, diabetes 10,8%, dyslipidemia 10.4% and coronary disease 5.2%. Regarding pain features, in 40.3% of the patients the pain began abruptly, in 38.2% it had a precordial location, for 20% of the cases physical activity acted as a trigger, and 60.6% was oppressive. Costochondritis was the most common cause of chest pain among patients with an established etiologic diagnosis, representing the 18.2%. Conclusions: Although the clinical features of pain reported coincide with the clinical presentation of an acute coronary syndrome, the most common cause of chest pain in study population was costochondritis instead, indicating that it is a differential diagnostic in the approach of patients with pain acute chest.

Keywords: acute coronary syndrome, chest pain, epidemiology, osteochondritis

Procedia PDF Downloads 343
10 Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production

Authors: Camilo A. Guerrero-Martin, Erik Montes Paez, Marcia C. K. Oliveira, Jonathan Campos, Elizabete F. Lucas

Abstract:

Asphaltenes precipitation is considered as a formation damage problem, which can reduce the oil recovery factor. It fouls piping and surface installations, as well as cause serious flow assurance complications and decline oil well production. Therefore, researchers have shown an interest in chemical treatments to control this phenomenon. The aim of this paper is to assess the asphaltenes precipitation onset of crude oils in the presence of cardanol, by titrating the crude with n-heptane. Moreover, based on this results obtained at atmosphere pressure, the asphaltenes precipitation onset pressure were calculated to predict asphaltenes precipitation in the reservoir, by using differential liberation and refractive index data of the oils. The influence of cardanol concentrations in the asphaltenes stabilization of three Brazilian crude oils samples (with similar API densities) was studied. Therefore, four formulations of cardanol in toluene were prepared: 0, 3, 5, 10 and 15 m/m%. The formulations were added to the crude at 2:98 ratio. The petroleum samples were characterized by API density, elemental analysis and differential liberation test. The asphaltenes precipitation onset (APO) was determined by titrating with n-heptane and monitoring with near-infrared (NIR). UV-Vis spectroscopy experiments were also done to assess the precipitate asphaltenes content. The asphaltenes precipitation envelopes (APE) were also determined by numerical simulation (Multiflash). In addition, the adequate artificial lift systems (ALS) for the oils were selected. It was based on the downhole well profile and a screening methodology. Finally, the oil flowrates were modelling by NODAL analysis production system in the PIPESIM software. The results of this study show that the asphaltenes precipitation onset of the crude oils were 2.2, 2.3 and 6.0 mL of n-heptane/g of oil. The cardanol was an effective inhibitor of asphaltenes precipitation for the crude oils used in this study, since it displaces the precipitation pressure of the oil to lower values. This indicates that cardanol can increase the oil wells productivity.

Keywords: asphaltenes, NODAL analysis production system, precipitation pressure onset, inhibitory molecule

Procedia PDF Downloads 176
9 Experimental Study of Reflective Roof as a Passive Cooling Method in Homes Under the Paradigm of Appropriate Technology

Authors: Javier Ascanio Villabona, Brayan Eduardo Tarazona Romero, Camilo Leonardo Sandoval Rodriguez, Arly Dario Rincon, Omar Lengerke Perez

Abstract:

Efficient energy consumption in the housing sector in relation to refrigeration is a concern in the construction and rehabilitation of houses in tropical areas. Thermal comfort is aggravated by heat gain on the roof surface by heat gains. Thus, in the group of passive cooling techniques, one of the practices and technologies in solar control that provide improvements in comfortable conditions are thermal insulation or geometric changes of the roofs. On the other hand, methods with reflection and radiation are the methods used to decrease heat gain by facilitating the removal of excess heat inside a building to maintain a comfortable environment. Since the potential of these techniques varies in different climatic zones, their application in different zones should be examined. This research is based on the experimental study of a prototype of a roof radiator as a method of passive cooling in homes, which was developed through an experimental research methodology making measurements in a prototype built by means of the paradigm of appropriate technology, with the aim of establishing an initial behavior of the internal temperature resulting from the climate of the external environment. As a starting point, a selection matrix was made to identify the typologies of passive cooling systems to model the system and its subsequent implementation, establishing its constructive characteristics. Step followed by the measurement of the climatic variables (outside the prototype) and microclimatic variables (inside the prototype) to obtain a database to be analyzed. As a final result, the decrease in temperature that occurs inside the chamber with respect to the outside temperature was evidenced. likewise, a linearity in its behavior in relation to the variations of the climatic variables.

Keywords: appropriate technology, enveloping, energy efficiency, passive cooling

Procedia PDF Downloads 94
8 Phenology and Size in the Social Sweat Bee, Halictus ligatus, in an Urban Environment

Authors: Rachel A. Brant, Grace E. Kenny, Paige A. Muñiz, Gerardo R. Camilo

Abstract:

The social sweat bee, Halictus ligatus, has been documented to alter its phenology as a response to changes in temporal dynamics of resources. Furthermore, H. ligatus exhibits polyethism in natural environments as a consequence of the variation in resources. Yet, we do not know if or how H. ligatus responds to these variations in urban environments. As urban environments become much more widespread, and human population is expected to reach nine billion by 2050, it is crucial to distinguish how resources are allocated by bees in cities. We hypothesize that in urban regions, where floral availability varies with human activity, H. ligatus will exhibit polyethism in order to match the extremely localized spatial variability of resources. We predict that in an urban setting, where resources vary both spatially and temporally, the phenology of H. ligatus will alter in response to these fluctuations. This study was conducted in Saint Louis, Missouri, at fifteen sites each varying in size and management type (community garden, urban farm, prairie restoration). Bees were collected by hand netting from 2013-2016. Results suggest that the largest individuals, mostly gynes, occurred in lower income neighborhood community gardens in May and August. We used a model averaging procedure, based on information theoretical methods, to determine a best model for predicting bee size. Our results suggest that month and locality within the city are the best predictors of bee size. Halictus ligatus was observed to comply with the predictions of polyethism from 2013 to 2015. However, in 2016 there was an almost complete absence of the smallest worker castes. This is a significant deviation from what is expected under polyethism. This could be attributed to shifts in planting decisions, shifts in plant-pollinator matches, or local climatic conditions. Further research is needed to determine if this divergence from polyethism is a new strategy for the social sweat bee as climate continues to alter or a response to human dominated landscapes.

Keywords: polyethism, urban environment, phenology, social sweat bee

Procedia PDF Downloads 221
7 Comparison of Maternal and Perinatal Outcomes of Obstetric Population Diagnosed with Covid-19 in Reference to Influenza A/H1N1: A Systematic Review and Meta-Analysis

Authors: Maria Vargas Hernandez, Jose Rojas Suarez, Carmelo Dueñas Castell, Sandra Contreras, Camilo Bello, Diana Borre, Walter Anichiarico, Harold Vasquez, Eduard Perez, Jose Santacruz

Abstract:

In the last two decades, there have been outbreaks of emerging infectious diseases, with an impact on both the general population and the obstetric population. These infections, which affect the general population, pose a high risk for adverse maternal and perinatal outcomes, taking into account that physiological and immunological changes that occur during pregnancy can increase their risk or severity. Among these, the pandemics of viral infections, Influenza A/H1N1 and SARS-CoV-2/COVID-19, stand out. In 2009, Influenza A/H1N1 infection (H1N1 2009pdm) affected approximately 3,110 obstetric patients, with data reported from 29 countries, including 1,625 (52.3%) cases that were hospitalized, 378 (23.3%) admissions to ICU and 130 (8%) deaths; and since the end of 2019, the Severe Acute Respiratory Syndrome - 2 (SARS-CoV-2) has been identified, causing the COVID-19 pandemic, with global mortality that is around 2-4% for the general population, and higher mortality in patients requiring admission to the intensive care unit. Its impact on the obstetric population is still unknown. Objectives: To evaluate the impact on maternal and perinatal outcomes of COVID-19 infection in reference to influenza A/H1N1 infection in the obstetric population. Methodology: Systematic review of the literature and meta-analysis. Results: Mortality from maternal infection with influenza A/H1N1 appears to be higher (8%) than mortality due to maternal infection with COVID-19 (3%). The rates of ICU admission, hospitalization, the requirement for invasive mechanical ventilation, and fetal death also appear to be higher in the maternal population with A/H1N1 infection, in reference to the maternal population with COVID-19 infection. Within perinatal outcomes, the admission to the neonatal ICU appears to be higher in the infants born to mothers with COVID-19 infection (28% vs. 15% for COVID-19 and A/H1N1, respectively). Conclusion: A/H1N1 infection in the obstetric population seems to be associated with a higher proportion of adverse outcomes in relation to COVID-19 infection. The actual impact of maternal influenza A/H1N1 infection on perinatal outcomes is unknown. More COVID-19 studies are needed to understand the impact of maternal infection on perinatal outcomes in this population.

Keywords: A/H1N1, COVID-19, maternal outcomes, perinatal outcomes

Procedia PDF Downloads 224
6 Reverse Engineering of a Secondary Structure of a Helicopter: A Study Case

Authors: Jose Daniel Giraldo Arias, Camilo Rojas Gomez, David Villegas Delgado, Gullermo Idarraga Alarcon, Juan Meza Meza

Abstract:

The reverse engineering processes are widely used in the industry with the main goal to determine the materials and the manufacture used to produce a component. There are a lot of characterization techniques and computational tools that are used in order to get this information. A study case of a reverse engineering applied to a secondary sandwich- hybrid type structure used in a helicopter is presented. The methodology used consists of five main steps, which can be applied to any other similar component: Collect information about the service conditions of the part, disassembly and dimensional characterization, functional characterization, material properties characterization and manufacturing processes characterization, allowing to obtain all the supports of the traceability of the materials and processes of the aeronautical products that ensure their airworthiness. A detailed explanation of each step is covered. Criticality and comprehend the functionalities of each part, information of the state of the art and information obtained from interviews with the technical groups of the helicopter’s operators were analyzed,3D optical scanning technique, standard and advanced materials characterization techniques and finite element simulation allow to obtain all the characteristics of the materials used in the manufacture of the component. It was found that most of the materials are quite common in the aeronautical industry, including Kevlar, carbon, and glass fibers, aluminum honeycomb core, epoxy resin and epoxy adhesive. The stacking sequence and volumetric fiber fraction are a critical issue for the mechanical behavior; a digestion acid method was used for this purpose. This also helps in the determination of the manufacture technique which for this case was Vacuum Bagging. Samples of the material were manufactured and submitted to mechanical and environmental tests. These results were compared with those obtained during reverse engineering, which allows concluding that the materials and manufacture were correctly determined. Tooling for the manufacture was designed and manufactured according to the geometry and manufacture process requisites. The part was manufactured and the mechanical, and environmental tests required were also performed. Finally, a geometric characterization and non-destructive techniques allow verifying the quality of the part.

Keywords: reverse engineering, sandwich-structured composite parts, helicopter, mechanical properties, prototype

Procedia PDF Downloads 419
5 Evaluation of the Energy Performance and Emissions of an Aircraft Engine: J69 Using Fuel Blends of Jet A1 and Biodiesel

Authors: Gabriel Fernando Talero Rojas, Vladimir Silva Leal, Camilo Bayona-Roa, Juan Pava, Mauricio Lopez Gomez

Abstract:

The substitution of conventional aviation fuels with biomass-derived alternative fuels is an emerging field of study in the aviation transport, mainly due to its energy consumption, the contribution to the global Greenhouse Gas - GHG emissions and the fossil fuel price fluctuations. Nevertheless, several challenges remain as the biofuel production cost and its degradative effect over the fuel systems that alter the operating safety. Moreover, experimentation on full-scale aeronautic turbines are expensive and complex, leading to most of the research to the testing of small-size turbojets with a major absence of information regarding the effects in the energy performance and the emissions. The main purpose of the current study is to present the results of experimentation in a full-scale military turbojet engine J69-T-25A (presented in Fig. 1) with 640 kW of power rating and using blends of Jet A1 with oil palm biodiesel. The main findings are related to the thrust specific fuel consumption – TSFC, the engine global efficiency – η, the air/fuel ratio – AFR and the volume fractions of O2, CO2, CO, and HC. Two fuels are used in the present study: a commercial Jet A1 and a Colombian palm oil biodiesel. The experimental plan is conducted using the biodiesel volume contents - w_BD from 0 % (B0) to 50 % (B50). The engine operating regimes are set to Idle, Cruise, and Take-off conditions. The turbojet engine J69 is used by the Colombian Air Force and it is installed in a testing bench with the instrumentation that corresponds to the technical manual of the engine. The increment of w_BD from 0 % to 50 % reduces the η near 3,3 % and the thrust force in a 26,6 % at Idle regime. These variations are related to the reduction of the 〖HHV〗_ad of the fuel blend. The evolved CO and HC tend to be reduced in all the operating conditions when increasing w_BD. Furthermore, a reduction of the atomization angle is presented in Fig. 2, indicating a poor atomization in the fuel nozzle injectors when using a higher biodiesel content as the viscosity of fuel blend increases. An evolution of cloudiness is also observed during the shutdown procedure as presented in Fig. 3a, particularly after 20 % of biodiesel content in the fuel blend. This promotes the contamination of some components of the combustion chamber of the J69 engine with soot and unburned matter (Fig. 3). Thus, the substitution of biodiesel content above 20 % is not recommended in order to avoid a significant decrease of η and the thrust force. A more detail examination of the mechanical wearing of the main components of the engine is advised in further studies.

Keywords: aviation, air to fuel ratio, biodiesel, energy performance, fuel atomization, gas turbine

Procedia PDF Downloads 109
4 Assessment of DNA Sequence Encoding Techniques for Machine Learning Algorithms Using a Universal Bacterial Marker

Authors: Diego Santibañez Oyarce, Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

The advent of high-throughput sequencing technologies has revolutionized genomics, generating vast amounts of genetic data that challenge traditional bioinformatics methods. Machine learning addresses these challenges by leveraging computational power to identify patterns and extract information from large datasets. However, biological sequence data, being symbolic and non-numeric, must be converted into numerical formats for machine learning algorithms to process effectively. So far, some encoding methods, such as one-hot encoding or k-mers, have been explored. This work proposes additional approaches for encoding DNA sequences in order to compare them with existing techniques and determine if they can provide improvements or if current methods offer superior results. Data from the 16S rRNA gene, a universal marker, was used to analyze eight bacterial groups that are significant in the pulmonary environment and have clinical implications. The bacterial genes included in this analysis are Prevotella, Abiotrophia, Acidovorax, Streptococcus, Neisseria, Veillonella, Mycobacterium, and Megasphaera. These data were downloaded from the NCBI database in Genbank file format, followed by a syntactic analysis to selectively extract relevant information from each file. For data encoding, a sequence normalization process was carried out as the first step. From approximately 22,000 initial data points, a subset was generated for testing purposes. Specifically, 55 sequences from each bacterial group met the length criteria, resulting in an initial sample of approximately 440 sequences. The sequences were encoded using different methods, including one-hot encoding, k-mers, Fourier transform, and Wavelet transform. Various machine learning algorithms, such as support vector machines, random forests, and neural networks, were trained to evaluate these encoding methods. The performance of these models was assessed using multiple metrics, including the confusion matrix, ROC curve, and F1 Score, providing a comprehensive evaluation of their classification capabilities. The results show that accuracies between encoding methods vary by up to approximately 15%, with the Fourier transform obtaining the best results for the evaluated machine learning algorithms. These findings, supported by the detailed analysis using the confusion matrix, ROC curve, and F1 Score, provide valuable insights into the effectiveness of different encoding methods and machine learning algorithms for genomic data analysis, potentially improving the accuracy and efficiency of bacterial classification and related genomic studies.

Keywords: DNA encoding, machine learning, Fourier transform, Fourier transformation

Procedia PDF Downloads 25
3 Economic Valuation of Emissions from Mobile Sources in the Urban Environment of Bogotá

Authors: Dayron Camilo Bermudez Mendoza

Abstract:

Road transportation is a significant source of externalities, notably in terms of environmental degradation and the emission of pollutants. These emissions adversely affect public health, attributable to criteria pollutants like particulate matter (PM2.5 and PM10) and carbon monoxide (CO), and also contribute to climate change through the release of greenhouse gases, such as carbon dioxide (CO2). It is, therefore, crucial to quantify the emissions from mobile sources and develop a methodological framework for their economic valuation, aiding in the assessment of associated costs and informing policy decisions. The forthcoming congress will shed light on the externalities of transportation in Bogotá, showcasing methodologies and findings from the construction of emission inventories and their spatial analysis within the city. This research focuses on the economic valuation of emissions from mobile sources in Bogotá, employing methods like hedonic pricing and contingent valuation. Conducted within the urban confines of Bogotá, the study leverages demographic, transportation, and emission data sourced from the Mobility Survey, official emission inventories, and tailored estimates and measurements. The use of hedonic pricing and contingent valuation methodologies facilitates the estimation of the influence of transportation emissions on real estate values and gauges the willingness of Bogotá's residents to invest in reducing these emissions. The findings are anticipated to be instrumental in the formulation and execution of public policies aimed at emission reduction and air quality enhancement. In compiling the emission inventory, innovative data sources were identified to determine activity factors, including information from automotive diagnostic centers and used vehicle sales websites. The COPERT model was utilized to ascertain emission factors, requiring diverse inputs such as data from the national transit registry (RUNT), OpenStreetMap road network details, climatological data from the IDEAM portal, and Google API for speed analysis. Spatial disaggregation employed GIS tools and publicly available official spatial data. The development of the valuation methodology involved an exhaustive systematic review, utilizing platforms like the EVRI (Environmental Valuation Reference Inventory) portal and other relevant sources. The contingent valuation method was implemented via surveys in various public settings across the city, using a referendum-style approach for a sample of 400 residents. For the hedonic price valuation, an extensive database was developed, integrating data from several official sources and basing analyses on the per-square meter property values in each city block. The upcoming conference anticipates the presentation and publication of these results, embodying a multidisciplinary knowledge integration and culminating in a master's thesis.

Keywords: economic valuation, transport economics, pollutant emissions, urban transportation, sustainable mobility

Procedia PDF Downloads 58
2 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance

Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.

Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning

Procedia PDF Downloads 33
1 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning

Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.

Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene

Procedia PDF Downloads 25