Search results for: macrophage activation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1015

Search results for: macrophage activation

1015 Rapid Mitochondrial Reactive Oxygen Species Production Precedes NF-κB Activation and Pro-inflammatory Responses in Macrophages

Authors: Parinaz Tavakoli Zaniani, Dimitrios Balomenos

Abstract:

Mitochondrial reactive oxygen species (mROS) play a crucial role in macrophage pro-inflammatory activation, although a detailed understanding of the mechanism and kinetics by which mROS drive signaling molecules is still lacking. In general, it is thought that NF-κB activation drives mROS and general ROS production. Here, We performed a detailed kinetic analysis of mROS production during macrophage activation. We found early mROS generation after LPS (lipopolysaccharide) stimulation. Remarkably as early as 5 minutes, mROS signaling promoted initial NF-κB, MAPK activation and pro-inflammatory cytokine production, as established through inhibition or quenching of mROS. On the contrary, NF-κB inhibition had no effect on mROS production. Our findings point to a mechanism by which mROS increase TRAF-6 ubiquitination and, thus NF-κB activity. mROS inhibition reduced LPS-induced lethality in an in vivo septic shock model by controlling pro-inflammatory cytokine production. Overall, our research provides novel insights into the role of mROS as a primary messenger in the pathway of macrophage and as a regulator of inflammatory responses. We found that early mROS production promotes initial NF-κB, and MAPK activation by regulating TRAF-6 ubiquitination and that mROS inhibition can reduce LPS-induced inflammatory cytokines and lethality in a septic shock model. These findings might lead to novel immunotherapeutic strategies targeting early mROS production and control of extreme inflammation in the context of sepsis and other inflammatory diseases.

Keywords: mitochondria, reactive oxygen species, nuclear factor κB, lipopolysaccharide, macrophages

Procedia PDF Downloads 40
1014 STAT6 Mediates Local and Systemic Fibrosis and Type Ii Immune Response via Macrophage Polarization during Acute and Chronic Pancreatitis in Murine Model

Authors: Hager Elsheikh, Matthias Sendler, Juliana Glaubnitz

Abstract:

In pancreatitis, an inflammatory reaction occurs in the pancreatic secretory cells due to premature activation of proteases, leading to pancreatic self-digestion and necrotic cell death of acinar cells. Acute pancreatitis in patients is characterized by a severe immune reaction that could lead to serious complications, such as organ failure or septic shock, if left untreated. Chronic pancreatitis is a recurrence of episodes of acute pancreatitis resulting in a fibro-inflammatory immune response, in which the type 2 immune response is primarily driven by AAMs in the pancreas. One of the most important signaling pathways for M2 macrophage activation is the IL-4/STAT6 pathway. Pancreatic fibrosis is induced by the hyperactivation of pancreatic stellate cells by dysregulation in the inflammatory response, leading to further damage, autodigestion and possibly necrosis of pancreatic acinar cells. The aim of this research is to investigate the effect of STAT6 knockout in disease severity and development of fibrosis wound healing in the presence of different macrophage populations, regulated by the type 2 immune response, after inducing chronic and/or acute pancreatitis in mice models via cerulean injection. We further investigate the influence of the JAK/STAT6 signaling pathway on the balance of fibrosis and regeneration in STAT6 deficient and wild-type mice. The characterization of resident and recruited macrophages will provide insight into the influence of the JAK/STAT6 signaling pathway on infiltrating cells and, ultimately, tissue fibrosis and disease severity.

Keywords: acute and chronic pancreatitis, tissue regeneration, macrophage polarization, Gastroenterology

Procedia PDF Downloads 29
1013 Anti-Inflammatory Effect of Myristic Acid through Inhibiting NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Stimulated RAW 264.7 Macrophage Cells

Authors: Hyun Ji Hyun, Hyo Sun Suh, Min Kook Kim, Yong Chan Kwon, Byung-Mu Lee

Abstract:

Scope: This study is focused on the effect of myristic acid on LPS-induced inflammation in RAW 264.7 macrophage cells. Methods and results: For the experiment, RAW 264.7 mouse macrophage cell line was used. Results showed that treatment with myristic acid can attenuate LPS-induced inflammation. Moreover, myristic acid significantly suppressed expression of inflammatory mediators and down-regulating UVB-induced intracellular ROS generation. Furthermore, myristic acid reduced the expression of NF-κB by inhibiting degradation of IκB-α and ERK, JNK, and p38 pathways by inhibiting phosphorylation in RAW 264.7 macrophage cells. Conclusion: Overall, these data suggest that the myristic acid could reduce LPS-induced inflammation. Acknowledgment: This research was supported by the Ministry of Trade, Industry & Energy(MOTIE), Korea Institute for Advancement of Technology(KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region

Keywords: anti-inflammation, myristic acid, ROS, ultraviolet light

Procedia PDF Downloads 173
1012 The Second Generation of Tyrosine Kinase Inhibitor Afatinib Controls Inflammation by Regulating NLRP3 Inflammasome Activation

Authors: Shujun Xie, Shirong Zhang, Shenglin Ma

Abstract:

Background: Chronic inflammation might lead to many malignancies, and inadequate resolution could play a crucial role in tumor invasion, progression, and metastases. A randomised, double-blind, placebo-controlled trial shows that IL-1β inhibition with canakinumab could reduce incident lung cancer and lung cancer mortality in patients with atherosclerosis. The process and secretion of proinflammatory cytokine IL-1β are controlled by the inflammasome. Here we showed the correlation of the innate immune system and afatinib, a tyrosine kinase inhibitor targeting epidermal growth factor receptor (EGFR) in non-small cell lung cancer. Methods: Murine Bone marrow derived macrophages (BMDMs), peritoneal macrophages (PMs) and THP-1 were used to check the effect of afatinib on the activation of NLRP3 inflammasome. The assembly of NLRP3 inflammasome was check by co-immunoprecipitation of NLRP3 and apoptosis-associated speck-like protein containing CARD (ASC), disuccinimidyl suberate (DSS)-cross link of ASC. Lipopolysaccharide (LPS)-induced sepsis and Alum-induced peritonitis were conducted to confirm that afatinib could inhibit the activation of NLRP3 in vivo. Peripheral blood mononuclear cells (PBMCs) from non-small cell lung cancer (NSCLC) patients before or after taking afatinib were used to check that afatinib inhibits inflammation in NSCLC therapy. Results: Our data showed that afatinib could inhibit the secretion of IL-1β in a dose-dependent manner in macrophage. Moreover, afatinib could inhibit the maturation of IL-1β and caspase-1 without affecting the precursors of IL-1β and caspase-1. Next, we found that afatinib could block the assembly of NLRP3 inflammasome and the ASC speck by blocking the interaction of the sensor protein NLRP3 and the adaptor protein ASC. We also found that afatinib was able to alleviate the LPS-induced sepsis in vivo. Conclusion: Our study found that afatinib could inhibit the activation of NLRP3 inflammasome in macrophage, providing new evidence that afatinib could target the innate immune system to control chronic inflammation. These investigations will provide significant experimental evidence in afatinib as therapeutic drug for non-small cell lung cancer or other tumors and NLRP3-related diseases and will explore new targets for afatinib.

Keywords: inflammasome, afatinib, inflammation, tyrosine kinase inhibitor

Procedia PDF Downloads 88
1011 SLAMF5 Regulates Myeloid Cells Activation in the Eae Model

Authors: Laura Bellassen, Idit Shachar

Abstract:

Multiple sclerosis (MS) is a chronic neurological disorder characterized by demyelination of the central nervous system (CNS), leading to a wide range of physical and cognitive impairments. Myeloid cells in the CNS, such microglia and border associated macrophage cells, participate in the neuroinflammation in MS. Activation of those cells in MS contributes to the inflammatory response in the CNS and recruitment of immune cells in the this compartment. SLAMF5 is a cell surface receptor that functions as a homophilic adhesion molecule, whose signaling can activate or inhibit leukocyte function. In the current study we followed the expression and function of SLAMF5 in myeloid cells in the CNS and in the periphery in the murine model for MS, the experimental autoimmune encephalomyelitis model (EAE). Our results show that SLAMF5 deficiency or blocking decreases the expression of activation molecules and costimulatory molecules such as MHCII and CD80, resulting in delayed onset and reduced progression of the disease. Moreover, blocking SLAMF5 in peripheral monocytes derived from MS patients and iPSC-derived microglia cells, controls the expression of HLA-DR and CD80. Thus, SLAMF5 is a regulator of myeloid cells function and can serve as a therapeutic target in autoimmune disorders as Multiple Sclerosis.

Keywords: multiple sclerosis, EAE model, myeloid cells, new antibody, neuroimmunology

Procedia PDF Downloads 15
1010 Phorbol 12-Myristate 13-Acetate (PMA)-Differentiated THP-1 Monocytes as a Validated Microglial-Like Model in Vitro

Authors: Amelia J. McFarland, Andrew K. Davey, Shailendra Anoopkumar-Dukie

Abstract:

Microglia are the resident macrophage population of the central nervous system (CNS), contributing to both innate and adaptive immune response, and brain homeostasis. Activation of microglia occurs in response to a multitude of pathogenic stimuli in their microenvironment; this induces morphological and functional changes, resulting in a state of acute neuroinflammation which facilitates injury resolution. Adequate microglial function is essential for the health of the neuroparenchyma, with microglial dysfunction implicated in numerous CNS pathologies. Given the critical role that these macrophage-derived cells play in CNS homeostasis, there is a high demand for microglial models suitable for use in neuroscience research. The isolation of primary human microglia, however, is both difficult and costly, with microglial activation an unwanted but inevitable result of the extraction process. Consequently, there is a need for the development of alternative experimental models which exhibit morphological, biochemical and functional characteristics of human microglia without the difficulties associated with primary cell lines. In this study, our aim was to evaluate whether THP-1 human peripheral blood monocytes would display microglial-like qualities following an induced differentiation, and, therefore, be suitable for use as surrogate microglia. To achieve this aim, THP-1 human peripheral blood monocytes from acute monocytic leukaemia were differentiated with a range of phorbol 12-myristate 13-acetate (PMA) concentrations (50-200 nM) using two different protocols: a 5-day continuous PMA exposure or a 3-day continuous PMA exposure followed by a 5-day rest in normal media. In each protocol and at each PMA concentration, microglial-like cell morphology was assessed through crystal violet staining and the presence of CD-14 microglial / macrophage cell surface marker. Lipopolysaccharide (LPS) from Escherichia coli (055: B5) was then added at a range of concentrations from 0-10 mcg/mL to activate the PMA-differentiated THP-1 cells. Functional microglial-like behavior was evaluated by quantifying the release of prostaglandin (PG)-E2 and pro-inflammatory cytokines interleukin (IL)-1β and tumour necrosis factor (TNF)-α using mediator-specific ELISAs. Furthermore, production of global reactive oxygen species (ROS) and nitric oxide (NO) were determined fluorometrically using dichlorodihydrofluorescein diacetate (DCFH-DA) and diaminofluorescein diacetate (DAF-2-DA) respectively. Following PMA-treatment, it was observed both differentiation protocols resulted in cells displaying distinct microglial morphology from 10 nM PMA. Activation of differentiated cells using LPS significantly augmented IL-1β, TNF-α and PGE2 release at all LPS concentrations under both differentiation protocols. Similarly, a significant increase in DCFH-DA and DAF-2-DA fluorescence was observed, indicative of increases in ROS and NO production. For all endpoints, the 5-day continuous PMA treatment protocol yielded significantly higher mediator levels than the 3-day treatment and 5-day rest protocol. Our data, therefore, suggests that the differentiation of THP-1 human monocyte cells with PMA yields a homogenous microglial-like population which, following stimulation with LPS, undergo activation to release a range of pro-inflammatory mediators associated with microglial activation. Thus, the use of PMA-differentiated THP-1 cells represents a suitable microglial model for in vitro research.

Keywords: differentiation, lipopolysaccharide, microglia, monocyte, neuroscience, THP-1

Procedia PDF Downloads 352
1009 Mitochondrial Apolipoprotein A-1 Binding Protein Promotes Repolarization of Inflammatory Macrophage by Repairing Mitochondrial Respiration

Authors: Hainan Chen, Jina Qing, Xiao Zhu, Ling Gao, Ampadu O. Jackson, Min Zhang, Kai Yin

Abstract:

Objective: Editing macrophage activation to dampen inflammatory diseases by promoting the repolarization of inflammatory (M1) macrophages to anti-inflammatory (M2) macrophages is highly associated with mitochondrial respiration. Recent studies have suggested that mitochondrial apolipoprotein A-1 binding protein (APOA1BP) was essential for the cellular metabolite NADHX repair to NADH, which is necessary for the mitochondrial function. The exact role of APOA1BP in the repolarization of M1 to M2, however, is uncertain. Material and method: THP-1-derived macrophages were incubated with LPS (10 ng/ml) or/and IL-4 (100 U/ml) for 24 hours. Biochemical parameters of oxidative phosphorylation and M1/M2 markers were analyzed after overexpression of APOA1BP in cells. Results: Compared with control and IL-4-exposed M2 cells, APOA1BP was downregulated in M1 macrophages. APOA1BP restored the decline in mitochondrial function to improve metabolic and phenotypic reprogramming of M1 to M2 macrophages. Blocking oxidative phosphorylation by oligomycin blunts the effects of APOA1BP on M1 to M2 repolarization. Mechanistically, LPS triggered the hydration of NADH and increased its hydrate NADHX which inhibit cellular NADH dehydrogenases, a key component of electron transport chain for oxidative phosphorylation. APOA1BP decreased the level of NADHX via converting R-NADHX to biologically useful S-NADHX. The mutant of APOA1BP aspartate188, the binding site of NADHX, fail to repair oxidative phosphorylation, thereby preventing repolarization. Conclusions: Restoring mitochondrial function by increasing mitochondrial APOA1BP might be useful to improve the reprogramming of inflammatory macrophages into anti-inflammatory cells to control inflammatory diseases.

Keywords: inflammatory diseases, macrophage repolarization, mitochondrial respiration, apolipoprotein A-1 binding protein, NADHX, NADH

Procedia PDF Downloads 142
1008 Novel Molecular Mechanisms Involved in Macrophage Phenotypic Polarization

Authors: Mansi Srivastava, Uzma Saqib, Adnan Naim, Anjali Roy, Dongfang Liu, Deepak Bhatnagar, Ravinder Ravinder, Mirza S. Baig

Abstract:

Macrophages polarize to proinflammatory M1 or anti-inflammatory M2 states with distinct physiological functions. This transition within the M1 to M2 phenotypes decides the nature, duration, and severity of an inflammatory response. However, inspite of a substantial understanding of the fate of these phenotypes, the underlying molecular mechanisms are not well understood. We have investigated the role of Neuronal nitric oxide synthase (NOS1) mediated regulation of Activator protein 1 (AP-1) transcription factor in macrophages as a critical effector of macrophage phenotypic change. Activator protein 1 (AP-1) is a group of dimeric transcription factors composed of jun, Fos, and ATF family proteins. We determined that NOS1-derived nitric oxide (NO) facilitate Fos and jun interaction which induces IL12 & IL23 expression. Pharmacological inhibition of NOS1 inhibits Fos and jun interaction but increases ATF2 and Fos dimerization. Switching of Fos and jun dimer to ATF2 and jun dimerization switches phenotype from IL–12high IL-23high IL-10low to IL–12low IL-23lowIL-10high phenotype, respectively. Together, these findings highlight a key role of the TLR4-NOS1-AP1 signaling axis in regulating macrophage polarization.

Keywords: inflammation, macrophage, lipopolysaccharide (LPS), proinflammatory cytokines, activator protein 1 (AP-1), neuronal nitric oxide synthase (NOS1)

Procedia PDF Downloads 254
1007 Immunomodulatory Effect of Deer Antler Extract

Authors: Kang-Hyun Leem, Myung-Gyou Kim, Hye Kyung Kim

Abstract:

Velvet antler (VA), the immature antlers of male deer, is traditionally used for thousands of years in Asian countries, such as Korea, China, Taiwan, and Mongolia. It has been considered to improve immune system and physical strength. The goal of this study was to investigate the immunomodulatory effect of deer antler velvet using in vitro system. In the first step, the effects of VA (70% ethanol extract) on the proliferation of splenocytes, bone marrow cell, and macrophages were determined. Next, the effect of VA on the production of nitric oxide and phagocytic activity in macrophage were measured. The results showed that VA treatment increased concanavalin-A stimulated splenocyte, bone marrow cells, and macrophage proliferation in a dose dependent manner. VA at 50 and 100 ug/mL concentrations significantly enhanced the concanavalin-A stimulated splenocyte proliferation by 8.8% and 18.5%, respectively. The proliferation of bone marrow cells, isolated from 5wk-old ICR mice, were increased by 25.2% and 46.5% by 50 and 100 ug/mL VA treatment. RAW 264.7 cell proliferation reached peak value at 50 ug/mL of VA treatment exhibiting 108% of the basal value. Nitric oxide production by RAW 264.7 macrophage cells was slightly reduced by VA treatment but was not statistically significant. Moreover, the phagocytic activity of macrophages was enhanced by VA treatment. These results indicate that VA is effective in immune system.

Keywords: deer antler, splenocyte, bone marrow cells, macrophage proliferation, phagocytosis

Procedia PDF Downloads 243
1006 Polymorphisms of Macrophage Migration Inhibitory Factor (MIF) and Susceptibility to Endometriosis

Authors: Z. Chekini, P. Afsharian, F. Ramezanali, A. A. Akhlaghi, R. Aflatoonian

Abstract:

Macrophage migration inhibitory factor (MIF) is a key pro-inflammatory cytokine that involves in pathophysiological events of endometriosis. We aimed to evaluate the association between mRNA expression levels and polymorphisms of MIF in endometriosis. Seventy endometriosis patients and 70 volunteer fertile women were recruited. RFLP was applied to determine -173G/C polymorphism. ORF polymorphisms and -794(CATT)5-8 were detected by sequencing. Q-PCR was used for expression study of 14 ectopic tissues of patients. Homozygote of CATT5 was observed only in controls. The CATT5/G haplotype related to controls (p=0.094, OR=0.61). Expression level of MIF with -794(CATT)6,7/-173GC was significantly more than the other haplotypes (p=0.00). We identified four SNPs including: +254rs2096525 (p=0.843), +626rs33958703 (p=0.029), +656rs2070766 (p=0.703) and +509rs182012324 (p=1.00). In conclusion, increased repeat of CATT and presence of C allele in promoter of MIF were significantly associated with mRNA level in patients. It seems that +509rs182012324 and +626rs33958703 SNPs were significantly correlated with susceptibility to endometriosis.

Keywords: endometriosis, haplotype, macrophage migration inhibitory factor, polymorphism

Procedia PDF Downloads 434
1005 The Utilization of Tea Residues for Activated Carbon Preparation

Authors: Jiazhen Zhou, Youcai Zhao

Abstract:

Waste tea is commonly generated in certain areas of China and its utilization has drawn a lot of concern nowadays. In this paper, highly microporous and mesoporous activated carbons were produced from waste tea by physical activation in the presence of water vapor in a tubular furnace. The effect of activation temperature on yield and pore properties of produced activated carbon are studied. The yield decreased with the increase of activation temperature. According to the Nitrogen adsorption isotherms, the micropore and mesopore are both developed in the activated carbon. The specific surface area and the mesopore volume fractions of the activated carbon increased with the raise of activation temperature. The maximum specific surface area attained 756 m²/g produced at activation temperature 900°C. The results showed that the activation temperature had a significant effect on the micro and mesopore volumes as well as the specific surface area.

Keywords: activated carbon, nitrogen adsorption isotherm, physical activation, waste tea

Procedia PDF Downloads 296
1004 Research of the Activation Energy of Conductivity in P-I-N SiC Structures Fabricated by Doping with Aluminum Using the Low-Temperature Diffusion Method

Authors: Ilkham Gafurovich Atabaev, Khimmatali Nomozovich Juraev

Abstract:

The activation energy of conductivity in p-i-n SiC structures fabricated by doping with Aluminum using the new low-temperature diffusion method is investigated. In this method, diffusion is stimulated by the flux of carbon and silicon vacancies created by surface oxidation. The activation energy of conductivity in the p - layer is 0.25 eV and it is close to the ionization energy of Aluminum in 4H-SiC from 0.21 to 0.27 eV for the hexagonal and cubic positions of aluminum in the silicon sublattice for weakly doped crystals. The conductivity of the i-layer (measured in the reverse biased diode) shows 2 activation energies: 0.02 eV and 0.62 eV. Apparently, the 0.62 eV level is a deep trap level and it is a complex of Aluminum with a vacancy. According to the published data, an analogous level system (with activation energies of 0.05, 0.07, 0.09 and 0.67 eV) was observed in the ion Aluminum doped 4H-SiC samples.

Keywords: activation energy, aluminum, low temperature diffusion, SiC

Procedia PDF Downloads 245
1003 Pharmacological Mechanisms of an Indolic Compound in Chemoprevention of Colonic Acf Formation in Azoxymethane-Induced Colon Cancer Rat Model and Cell Lines

Authors: Nima Samie, Sekaran Muniandy, Zahurin Mohamed, M. S. Kanthimathi

Abstract:

Although number of indole containing compounds have been reported to have anticancer properties in vitro but only a few of them show potential as anticancer compounds in vivo. The current study was to evaluate the mechanism of cytotoxicity of selected indolic compound in vivo and in vitro. In this context, we determined the potency of the compound in the induction of apoptosis, cell cycle arrest, and cytoskeleton rearrangement. HT-29, WiDr, CCD-18Co, human monocyte/macrophage CRL-9855, and B lymphocyte CCL-156 cell lines were used to determine the IC50 of the compound using the MTT assay. Analysis of apoptosis was carried out using immunofluorescence, acridine orange/ propidium iodide double staining, Annexin-V-FITC assay, evaluation of the translocation of NF-kB, oxygen radical antioxidant capacity, quenching of reactive oxygen species content, measurement of LDH release, caspase-3/-7, -8 and -9 assays and western blotting. The cell cycle arrest was examined using flowcytometry and gene expression was assessed using qPCR array. Results displayed a potent suppressive effect on HT-29 and WiDr after 24 h of treatment with IC50 value of 2.52±0.34 µg/ml and 2.13±0.65 µg/ml respectively. This cytotoxic effect on normal, monocyte/macrophage and B-cells was insignificant. Dipping in the mitochondrial membrane potential and increased release of cytochrome c from the mitochondria indicated induction of the intrinsic apoptosis pathway by the compound. Activation of this pathway was further evidenced by significant activation of caspase-9 and 3/7. The compound was also shown to activate the extrinsic pathways of apoptosis via activation of caspase-8 which is linked to the suppression of NF-kB translocation to the nucleus. Cell cycle arrest in the G1 phase and up-regulation of glutathione reductase, based on excessive ROS production were also observed. These findings were further investigated for inhibitory efficiency of the compound on colonic aberrant crypt foci in male rats. Rats were divided in to 5 groups: vehicle, cancer control, positive control groups and the groups treated with 25 and 50 mg/kg of compounds for 10 weeks. Administration of compound suppressed total colonic ACF formation up to 73.4%. The results also showed that treatment with the compound significantly reduced the level of malondialdehyde while increasing superoxide dismutase and catalase activities. Furthermore, the down-regulation of PCNA and Bcl2 and the up-regulation of Bax was confirmed by immunohistochemical staining. The outcome of this study suggest sthat the indolic compound is a potent anti-cancer agent against colon cancer and can be further evaluated by animal trial.

Keywords: indolic compound, chemoprevention, crypt, azoxymethane, colon cancer

Procedia PDF Downloads 320
1002 Protective Effect of hsa-miR-124 against to Bacillus anthracis Toxins on Human Macrophage Cells

Authors: Ali Oztuna, Meral Sarper, Deniz Torun, Fatma Bayrakdar, Selcuk Kilic, Mehmet Baysallar

Abstract:

Bacillus anthracis is one of the biological agents most likely to be used in case of bioterrorist attack as well as being the cause of anthrax. The bacterium's major virulence factors are the anthrax toxins and an antiphagocytic polyglutamic capsule. TEM8 (ANTXR1) and CMG2 (ANTXR2) are ubiquitously expressed type I transmembrane proteins, and ANTXR2 is the major receptor for anthrax toxins. MicroRNAs are 21-24 bp small noncoding RNAs that regulate gene expression by base pairing with the 3' UTR (untranslated regions) of their target mRNAs resulting in mRNA degradation and/or translational repression. MicroRNAs contribute to regulation of most biological processes and influence numerous pathological states like infectious disease. In this study, post-exposure (toxins) protective effect of the hsa-miR-124-3p against Bacillus anthracis was examined. In this context, i) THP-1 and U937 cells were differentiated to MΦ macrophage, ii) miRNA transfection efficiencies were evaluated by flow cytometry and qPCR, iii) protection against Bacillus anthracis toxins were investigated by XTT, cAMP ELISA and MEK2 cleavage assays. Acknowledgements: This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant SBAG-218S467.

Keywords: ANTXR2, hsa-miR-124-3p, MΦ macrophage, THP-1, U937

Procedia PDF Downloads 122
1001 The Aminoguanidine Reduced NO Synthase Activity and Infiltration of Macrophages in Inflammation Induced by LPS in Rats

Authors: Hakim Chayeb

Abstract:

Macrophages (Mo) play an essential role in host defense against pathogens. These inflammatory cells contain a large group of inducible enzymes such as NO synthase (NOS). This study was conducted to characterize experimentally induced inflammation in vivo by lipopolysaccharides (LPS). LPS is an essential component of the outer membrane of Gram-negative bacteria and a potent inducer of macrophage. Except control rats, all rats received different doses of LPS intra-peritoneally. The involvement of inducible NO synthase (iNOS) and constitutive (cNOS ) in the modulation of the inflammatory response was studied by treating the rats with L-NAME (non-selective NOS inhibitor) or aminoguanidine (AG inhibitor of iNOS). Inhibitors were injected 24 hours before LPS administration. The results showed that esterase activity (a marker of macrophage infiltration) which is induced by LPS is reduced by AG, was potentiated by treatment with L-NAME in tissue homogenates of the liver, kidney and spleen. Meanwhile, the concentrations of nitric oxide (NO) induced by LPS were reduced with AG and are completely inhibited with L-NAME in the tissues studied. NO concentrations and plasma transaminase levels have undergone remarkable increases in rats treated with LPS alone. However, the AG significantly reduced these rates. Our results highlighted the role of NO synthase inhibitors in reducing of inflammatory responses that characterize many infectious diseases.

Keywords: aminoguanidine, esterase, LPS, L-NAME, macrophage, nitric oxide

Procedia PDF Downloads 234
1000 Improving Cyclability and Capacity of Lithium Oxygen Batteries via Low Rate Pre-Activation

Authors: Zhihong Luo, Guangbin Zhu, Lulu Guo, Zhujun Lyu, Kun Luo

Abstract:

Cycling life has become the threshold for the prospective application of Li-O₂ batteries, and the protection of Li anode has recently regarded as the key factor to the performance. Herein, a simple low rate pre-activation (20 cycles at 0.5 Ag⁻¹ and a capacity of 200 mAh g⁻¹) was employed to effectively improve the performance and cyclability of Li-O₂ batteries. The charge/discharge cycles at 1 A g⁻¹ with a capacity of 1000 mAh g⁻¹ were maintained for up to 290 times versus 55 times for the cell without pre-activation. The ultimate battery capacity and high rate discharge property were also largely enhanced. Morphology, XRD and XPS analyses reveal that the performance improvement is in close association with the formation of the smooth and compact surface layer formed on the Li anode after low rate pre-activation, which apparently alleviated the corrosion of Li anode and the passivation of cathode during battery cycling, and the corresponding mechanism was also discussed.

Keywords: lithium oxygen battery, pre-activation, cyclability, capacity

Procedia PDF Downloads 121
999 Comparative Study between Mesenchymal Stem Cells and Regulatory T-Cells in Macrophage Polarization for Organ Transplant Tolerance: In Vitro Study

Authors: Vijaya Madhuri Devraj, Swarnalatha Guditi, Kiran Kumar Bokara, Gangadhar Taduri

Abstract:

Cell-based strategies may open therapeutic approaches that promote tolerance through manipulation of macrophages to increase long-term transplant survival rates and minimize side effects of the current immune suppressive regimens. The aim of the present study was, therefore, to test and compare the therapeutic potential of MSC and Tregs on macrophage polarization to develop an alternate cell-based treatment option in kidney transplantation. In the current protocol, macrophages from kidney transplant recipients with graft dysfunction were co-cultured with MSCs and Treg cells with and without cell-cell contact on transwell plates, further to quantitatively assess macrophage polarization in response to MSC and Treg treatment over time, M1 and M2 cell surface markers were used. Additionally, multiple soluble analytes were analyzed in cell supernatant by using bead-based immunoassays. Furthermore, to confirm our findings, gene expression analysis was done. MSCs induced the formation of M2 macrophages more than Tregs when macrophages M0 were cultured in transwell without cell contact. From this, we deduced the mechanism that soluble factors present in the MSCs condition media are involved in skewing of macrophages towards type 2 macrophages; similarly, in co-culture with cell-cell contact, MSCs resulted in more M2 type macrophages than Tregs. And an important finding of this study is the combination of both MSC-Treg showed significantly effective and consistent results in both with and without cell contact setups. Hence, it is suggestive to prefer MSCs over Tregs for secretome-based therapy and a combination of both for either therapy for effective transplantation outcomes. Our findings underline a key role of Tregs and MSCs in promoting macrophage polarization towards anti-inflammatory type. The study has great importance in prolongation of allograft and patient survival without any rejection by cell-based therapy, which induce self-tolerance and controlling infection.

Keywords: graft rejection, graft tolerance, macrophage polarization, mesenchymal stem cells, regulatory T cells, transplant immunology

Procedia PDF Downloads 86
998 A Study on the Strategy for Domestic Space Industry Activation

Authors: Hangil Park, Hwayeon Song, Jingyung Sim

Abstract:

In this study, a business ecosystem of a domestic space industry is comprehensively analyzed to derive the influence factors. The priority level of each element as well as the disparity between the ideal and reality are investigated through a literature review and an expert survey. The three major influence factors determined are: (a) investment scale and approach, (b) propulsion system, and (c) industrialization with overseas expansion. Related issues based on the current status are evaluated, followed by a proposed activation strategy. This research's findings offer a direction for R&D budget allocation and law system maintenance for the activation of the domestic space industry.

Keywords: space industry, activation, strategy, business ecosystem

Procedia PDF Downloads 337
997 The Effect of Deformation Activation Volume, Strain Rate Sensitivity and Processing Temperature of Grain Size Variants

Authors: P. B. Sob, A. A. Alugongo, T. B. Tengen

Abstract:

The activation volume of 6082T6 aluminum is investigated at different temperatures on grain size variants. The deformation activation volume was computed on the basis of the relationship between the Boltzmann’s constant k, the testing temperatures, the material strain rate sensitivity and the material yield stress of grain size variants. The material strain rate sensitivity is computed as a function of yield stress and strain rate of grain size variants. The effect of the material strain rate sensitivity and the deformation activation volume of 6082T6 aluminum at different temperatures of 3-D grain are discussed. It is shown that the strain rate sensitivities and activation volume are negative for the grain size variants during the deformation of nanostructured materials. It is also observed that the activation volume vary in different ways with the equivalent radius, semi minor axis radius, semi major axis radius and major axis radius. From the obtained results it is shown that the variation of activation volume increased and decreased with the testing temperature. It was revealed that, increased in strain rate sensitivity led to decrease in activation volume whereas increased in activation volume led to decrease in strain rate sensitivity.

Keywords: nanostructured materials, grain size variants, temperature, yield stress, strain rate sensitivity, activation volume

Procedia PDF Downloads 224
996 Immunolabeling of TGF-β during Muscle Regeneration

Authors: K. Nikovics, D. Riccobono, M. Oger, H. Morin, L. Barbier, T. Poyot, X. Holy, A. Bendahmane, M. Drouet, A. L. Favier

Abstract:

Muscle regeneration after injury (as irradiation) is of great importance. However, the molecular and cellular mechanisms are still unclear. Cytokines are believed to play fundamental role in the different stages of muscle regeneration. They are secreted by many cell populations, but the predominant producers are macrophages and helper T cells. On the other hand, it has been shown that adipose tissue derived stromal/stem cell (ASC) injection could improve muscle regeneration. Stem cells probably induce the coordinated modulations of gene expression in different macrophage cells. Therefore, we investigated the patterns and timing of changes in gene expression of different cytokines occurring upon stem cells loading. Muscle regeneration was studied in an irradiated muscle of minipig animal model in presence or absence of ASC treatment (irradiated and treated with ASCs, IRR+ASC; irradiated not-treated with ASCs, IRR; and non-irradiated no-IRR). We characterized macrophage populations by immunolabeling in the different conditions. In our study, we found mostly M2 and a few M1 macrophages in the IRR+ASC samples. However, only few M2b macrophages were noticed in the IRR muscles. In addition, we found intensive fibrosis in the IRR samples. With in situ hybridization and immunolabeling, we analyzed the cytokine expression of the different macrophages and we showed that M2d macrophage are the most abundant in the IRR+ASC samples. By in situ hybridization, strong expression of the transforming growth factor β (TGF-β) was observed in the IRR+ASC but very week in the IRR samples. But when we analyzed TGF-β level with immunolabeling the expression was very different: many M2 macrophages showed week expression in IRR+ASC and few cells expressing stronger level in IRR muscles. Therefore, we investigated the MMP expressions in the different muscles. Our data showed that the M2 macrophages of the IRR+ASC muscle expressed MMP2 proteins. Our working hypothesis is that MMP2 expression of the M2 macrophages can decrease fibrosis in the IRR+ASC muscle by capturing TGF-β.

Keywords: adipose tissue derived stromal/stem cell, cytokine, macrophage, muscle regeneration

Procedia PDF Downloads 203
995 Prednisone and Its Active Metabolite Prednisolone Attenuate Lipid Accumulation in Macrophages

Authors: H. Jeries, N. Volkova, C. G. Iglesias, M. Najjar, M. Rosenblat, M. Aviram, T. Hayek

Abstract:

Background: Synthetic forms of glucocorticoids (e.g., prednisone, prednisolone) are anti-inflammatory drugs which are widely used in clinical practice. The role of glucocorticoids (GCs) in cardiovascular diseases including atherosclerosis is highly controversial, and their impact on macrophage foam cell formation is still unknown. Our aim was to investigate the effects of prednisone or its active metabolite, prednisolone, on macrophage oxidative stress and lipid metabolism using in-vivo, ex-vivo and in-vitro systems. Methods: The in-vivo study included C57BL/6 mice which were intraperitoneally injected with prednisone or prednisolone (5mg/kg) for 4 weeks, followed by lipid metabolism analyses in the mice aorta, and in peritoneal macrophages (MPM). In the ex-vivo study, we analyzed the effect of serum samples obtained from 9 healthy volunteers before or after treatment with oral prednisone (20mg for 5 days), on J774A.1 macrophage atherogenicity. In-vitro studies were conducted using J774A.1 macrophages, human monocyte derived macrophages (HMDM) and fibroblasts. Cells were incubated with increasing concentrations (0-200 ng/ml) of prednisone or prednisolone, followed by determination of cellular oxidative status, triglyceride and cholesterol metabolism. Results: Prednisone or prednisolone treatment resulted in a significant reduction in triglycerides and mainly in cholesterol cellular accumulation in MPM or in J774A.1 macrophages incubated with human serum. Similar resulted were noted in HMDM or in J774A.1 macrophages which were directly incubated with the GCs. These effects were associated with GCs inhibitory effect on triglycerides and cholesterol biosynthesis rates, throughout downregulation of diacylglycerol acyltransferase1 (DGAT1) expression, and of the sterol regulatory element binding protein (SREBP2) and HMGCR expression, respectively. In parallel to prednisone or prednisolone induced reduction in macrophage triglyceride content, paraoxonase 2 (PON2) expression was significantly upregulated. GCs-induced reduction of cellular triglyceride and cholesterol mass was mediated by the GCs receptors on macrophages since the GCs receptor antagonist (RU 486) abolished these effects. In fibroblasts, unlike macrophages, prednisone or prednisolone showed no anti-atherogenic effects. Conclusions: Prednisone or prednisolone are anti-atherogenic since they protected macrophages from lipid accumulation and foam cell formation.

Keywords: atherosclerosis, cholesterol, foam cell, macrophage, prednisone, prednisolone, triglycerides

Procedia PDF Downloads 115
994 Changes in Serum Neopterin in Workers Exposed to Different Mineral Dust

Authors: Gospodinka Prakova, Pavlina Gidikova, Gergana Sandeva, Kamelia Haracherova, Emil Slavov

Abstract:

Neopterin was demonstrated to be a sensitive marker of cell-mediated immune reactions which plays a key role in the interaction of monocyte / macrophage activation. The purpose of this work was to investigate changes in serum neopterin in workers exposed to different composition of mineral dust. Material and Methods: Serum neopterin was studied in 193 exposed workers, divided into three groups, depending on the mineral dust and content of the quartz in the respirable fraction. The I-st group-coal dust containing less than 2% free crystalline silica (n=44), II-nd group-coal dust containing over 2% free crystalline silica (n=94) and the III-rd group-mixed dust with corundum and carborundum (n=55). The control group was composed of 21 individuals without exposure to dust. Serum neopterin was investigated by Elisa method in ng/ml according to the instructions of the manufacturer. Results and Discussion: It was found significantly higher level of serum neopterin in exposed workers of mineral dust (2,10 ± 0,62 ng / ml), compared with that of the control group (1,10 ± 0,85 ng/ml; p < 0,05). Neopterin levels in workers exposed to coal dust (1,87 ± 0,42 ng / ml-I-st and 3,32 ± 0,77 ng / ml-II-nd group) were significantly higher compared with those exposed to a mixed dust (1,31±0,68 mg / ml-third) and control group (p < 0,05). No significant difference in serum neopterin when exposed to a mixed dust composed of corundum and carborundum (III-rd) and a control group. Conclusion: The results of this study indicate activates a cell-mediated immune response when exposed to a mineral dust. The level of that activation depends mainly on the composition of the dust and is significantly highest in workers exposed to coal dust.

Keywords: mineral dust, neopterin, occupational exposure, respirable crystalline silica

Procedia PDF Downloads 240
993 Saturation Misbehavior and Field Activation of the Mobility in Polymer-Based OTFTs

Authors: L. Giraudet, O. Simonetti, G. de Tournadre, N. Dumelié, B. Clarenc, F. Reisdorffer

Abstract:

In this paper we intend to give a comprehensive view of the saturation misbehavior of thin film transistors (TFTs) based on disordered semiconductors, such as most organic TFTs, and its link to the field activation of the mobility. Experimental evidence of the field activation of the mobility is given for disordered semiconductor based TFTs, when reducing the gate length. Saturation misbehavior is observed simultaneously. Advanced transport models have been implemented in a quasi-2D numerical TFT simulation software. From the numerical simulations it is clearly established that field activation of the mobility alone cannot explain the saturation misbehavior. Evidence is given that high longitudinal field gradient at the drain end of the channel is responsible for an excess charge accumulation, preventing saturation. The two combined effects allow reproducing the experimental output characteristics of short channel TFTs, with S-shaped characteristics and saturation failure.

Keywords: mobility field activation, numerical simulation, OTFT, saturation failure

Procedia PDF Downloads 490
992 Study of the Microstructural Evolution and Precipitation Kinetic in AZ91 Alloys

Authors: A. Azizi, M. Toubane, L. Chetibi

Abstract:

Differential scanning calorimetry (DSC) is a widely used technique for the study of phase transformations, particularly in the study of precipitation. The kinetic of the precipitation and dissolution is always related to the concept of activation energy Ea. The determination of the activation energy gives important information about the kinetic of the precipitation reaction. In this work, we were interested in the study of the isothermal and non-isothermal treatments on the decomposition of the supersaturated solid solution in the alloy AZ91 (Mg-9 Al-Zn 1-0.2 Mn. mass fraction %), using Differential Calorimetric method. Through this method, the samples were heat treated up to 425° C, using different rates. To calculate the apparent activation energies associated with the formation of precipitated phases, we used different isoconversional methods. This study was supported by other analysis: X-ray diffraction and microhardness measurements.

Keywords: calorimetric, activation energy, AZ91 alloys, microstructural evolution

Procedia PDF Downloads 411
991 Effect of Removing Hub Domain on Human CaMKII Isoforms Sensitivity to Calcium/Calmodulin

Authors: Ravid Inbar

Abstract:

CaMKII (calcium-calmodulin dependent protein kinase II) makes up 2% of the protein in our brain and has a critical role in memory formation and long-term potentiation of neurons. Despite this, research has yet to uncover the role of one of the domains on the activation of this kinase. The following proposes to express the protein without the hub domain in E. coli, leaving only the kinase and regulatory segment of the protein. Next, a series of kinase assays will be conducted to elucidate the role the hub domain plays on CaMKII sensitivity to calcium/calmodulin activation. The hub domain may be important for activation; however, it may also be a variety of domains working together to influence protein activation and not the hub alone. Characterization of a protein is critical to the future understanding of the protein's function, as well as for producing pharmacological targets in cases of patients with diseases.

Keywords: CaMKII, hub domain, kinase assays, kinase + reg seg

Procedia PDF Downloads 52
990 Physical Contact Modulation of Macrophage-Mediated Anti-Inflammatory Response in Osteoimmune Microenvironment by Pollen-Like Nanoparticles

Authors: Qing Zhang, Janak L. Pathak, Macro N. Helder, Richard T. Jaspers, Yin Xiao

Abstract:

Introduction: Nanomaterial-based bone regeneration is greatly influenced by the immune microenvironment. Tissue-engineered nanomaterials mediate the inflammatory response of macrophages to regulate bone regeneration. Silica nanoparticles have been widely used in tissue engineering-related preclinical studies. However, the effect of topological features on the surface of silica nanoparticles on the immune response of macrophages remains unknown. Purposes: The aims of this research are to compare the influences of normal and pollen-like silica nano-surface topography on macrophage immune responses and to obtain insight into their potential regulatory mechanisms. Method: Macrophages (RAW 264.7 cells) were exposed to mesoporous silica nanoparticles with normal morphology (MSNs) and pollen-like morphology (PMSNs). RNA-seq, RT-qPCR, and LSCM were used to assess the changes in expression levels of immune response-related genes and proteins. SEM and TEM were executed to evaluate the contact and adherence of silica nanoparticles by macrophages. For the assessment of the immunomodulation-mediated osteogenic potential, BMSCs were cultured with conditioned medium (CM) from LPS pre-stimulated macrophage cultures treated with MSNs or PMSNs. Osteoimmunomodulatory potential of MSNs and PMSNs in vivo was tested in a mouse cranial bone osteolysis model. Results: The results of the RNA-seq, RT-qPCR, and LSCM assays showed that PMSNs inhibited the expression of pro-inflammatory genes and proteins in macrophages. SEM images showed distinct macrophage membrane surface binding patterns of MSNs and PMSNs. MSNs were more evenly dispersed across the macrophage cell membrane, while PMSNs were aggregated. PMSNs-induced macrophage anti-inflammatory response was associated with upregulation of the cell surface receptor CD28 and inhibition of ERK phosphorylation. TEM images showed that both MSNs and PMSNs could be phagocytosed by macrophages, and inhibiting nanoparticle phagocytosis did not affect the expression of anti-inflammatory genes and proteins. Moreover, PMSNs-induced conditioned medium from macrophages enhanced BMP-2 expression and osteogenic differentiation mBMSCs. Similarly, PMSNs prevented LPS-induced bone resorption via downregulation of inflammatory reaction. Conclusions: PMSNs can promote bone regeneration by modulating osteoimmunological processes through surface topography. The study offers insights into how surface physical contact cues can modulate the regulation of osteoimmunology and provides a basis for the application of nanoparticles with pollen-like morphology to affect immunomodulation in bone tissue engineering and regeneration.

Keywords: physical contact, osteoimmunology, macrophages, silica nanoparticles, surface morphology, membrane receptor, osteogenesis, inflammation

Procedia PDF Downloads 18
989 Activation Parameters of the Low Temperature Creep Controlling Mechanism in Martensitic Steels

Authors: M. Münch, R. Brandt

Abstract:

Martensitic steels with an ultimate tensile strength beyond 2000 MPa are applied in the powertrain of vehicles due to their excellent fatigue strength and high creep resistance. However, the creep controlling mechanism in martensitic steels at ambient temperatures up to 423 K is not evident. The purpose of this study is to review the low temperature creep (LTC) behavior of martensitic steels at temperatures from 363 K to 523 K. Thus, the validity of a logarithmic creep law is reviewed and the stress and temperature dependence of the creep parameters α and β are revealed. Furthermore, creep tests are carried out, which include stepped changes in temperature or stress, respectively. On one hand, the change of the creep rate due to a temperature step provides information on the magnitude of the activation energy of the LTC controlling mechanism and on the other hand, the stress step approach provides information on the magnitude of the activation volume. The magnitude, the temperature dependency, and the stress dependency of both material specific activation parameters may deliver a significant contribution to the disclosure of the nature of the LTC rate controlling mechanism.

Keywords: activation parameters, creep mechanisms, high strength steels, low temperature creep

Procedia PDF Downloads 144
988 IL-33 Production in Murine Macrophages via PGE2-E Prostanoid Receptor 2/4 Signaling

Authors: Sachin K. Samuchiwal, Barbara Balestrieri, Amanda Paskavitz, Hannah Raff, Joshua A. Boyce

Abstract:

IL-33, a recently discovered member of the IL-1 cytokine family, binds to the TLR/IL1R super family receptor ST2 and induces type 2 immune responses. IL-33 is constitutively expressed in structural cells at barrier sites such as skin, lung, and intestine, and also inducibly expressed by hematopoietic cells including macrophages. Stimulation of macrophages by Lipopolysaccharide (LPS) can induce de novo IL-33 expression, and also causes the production of prostaglandin-E2 (PGE2) via cyclooxygenase (COX)-2 and microsomal PGE2 synthase-1 (mPGES-1). Because PGE2 can regulate macrophage functions through both autocrine and paracrine mechanisms, the potential interplay of endogenous PGE2 on IL-33 production was explored. Bone-marrow derived murine macrophages (bmMF) that lack either mPGES-1 or EP2 receptor expression were stimulated with LPS in the absence or presence of exogenous PGE2 along with pharmacological agonists and antagonists. The study results demonstrate that endogenous PGE2 markedly enhances LPS-induced IL-33 production by bmMFs via EP2 receptors. Moreover, exogenous PGE2 can amplify LPS-induced IL-33 expression dominantly by EP2 and partly by EP4 receptors by a pathway involving cAMP and exchange protein activated by cAMP (EPAC), but not protein kinase A (PKA). Though both IL-33 production and PGE2 generation in response to LPS require activation of both p38 MAPK and NF-κB, PGE2 did not influence this activation. In conclusion, it is demonstrated that endogenous PGE2 signaling through EP2 and EP4 receptors is a prerequisite for LPS-induced IL-33 production in bmMFs and the underlying cAMP mediated pathway involves EPAC. Since IL-33 is a critical pro-inflammatory cytokine in various pathological disorders, this PGE2-EP2/EP4-cAMP mediated pathway can be exploited to intervene in IL-33 driven pathologies.

Keywords: bone marrow macrophages, EPAC, IL-33, PGE2

Procedia PDF Downloads 151
987 Regulation on Macrophage and Insulin Resistance after Aerobic Exercise in High-Fat Diet Mice

Authors: Qiaofeng Guo

Abstract:

Aims: Obesity is often accompanied by insulin resistance (IR) and whole-body inflammation. Aerobic exercise is an effective treatment to improve insulin resistance and inflammation. However, the anti-inflammatory mechanisms of exercise on epididymal and subcutaneous adipose remain to be elucidated. Here, we compared the macrophage polarization between epididymal and subcutaneous adipose after aerobic exercise. Methods: Male C57BL/6 mice were fed a normal diet group or a high-fat diet group for 12 weeks and performed aerobic training on a treadmill at 55%~65% VO₂ max for eight weeks. Food intake, body weight, and fasting blood glucose levels were monitored weekly. The intraperitoneal glucose tolerance test was to evaluate the insulin resistance model. Fat mass, blood lipid profile, serum IL-1β, TNF-α levels, and CD31/CD206 rates were analysed after the intervention. Results: FBG (P<0.01), AUCIPGTT (P<0.01), and HOMA-IR (P<0.01) increased significantly for a high-fat diet and decreased significantly after the exercise. Eight weeks of aerobic exercise attenuated HFD-induced weight gain and glucose intolerance and improved insulin sensitivity. Serum IL-1β, TNF-α, CD11C/CD206 expression in subcutaneous adipose tissue were not changed before and after exercise, but not in epididymal adipose tissue (P<0.01). Conclusion: Insulin resistance is not accompanied by chronic inflammation and M1 polarization of subcutaneous adipose tissue macrophages in high-fat diet mice. Aerobic exercise effectively improved lipid metabolism and insulin sensitivity, which may be closely associated with reduced M1 polarization of epididymal adipose macrophages.

Keywords: aerobic exercise, insulin resistance, chronic inflammation, adipose, macrophage polarization

Procedia PDF Downloads 49
986 Inhibitory Effects of PPARγ Ligand, KR-62980, on Collagen-Stimulated Platelet Activation

Authors: Su Bin Wang, Jin Hee Ahn, Tong-Shin Chang

Abstract:

The peroxisome proliferator-activated receptors (PPARs) are member of nuclear receptor superfamily that act as a ligand-activated transcription factors. Although platelets lack a nucleus, previous studies have shown that PPARγ agonists, rosiglitazone, inhibited platelet activation induced by collagen. In this study, we investigated the inhibitory effects of KR-62980, a newly synthesized PPARγ agonist, on collagen receptor-stimulated platelet activation. The specific tyrosine phosphorylations of key components (Syk, Vav1, Btk and PLCγ2) for collagen receptor signaling pathways were suppressed by KR-62980. KR-62980 also attenuated downstream responses including cytosolic calcium elevation, P-selectin surface exposure, and integrin αIIbβ3 activation. PPARγ was found to associate with multiple proteins within the LAT signaling complex in collagen-stimulated platelets. This association was prevented by KR-62980, indicating a potential mechanism for PPARγ function in collagen-stimulated platelet activation. Furthermore, KR-62980 inhibited platelet aggregation and adhesion in response to collagen in vitro and prolonged in vivo thrombotic response in carotid arteries of mice. Collectively, these data suggest that KR-62980 inhibits collagen-stimulated platelet activation and thrombus formation through modulating the collagen receptor signaling pathways.

Keywords: KR-62980, PPARγ, antiplatelet, thrombosis

Procedia PDF Downloads 303