Search results for: native plants
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3261

Search results for: native plants

321 Early Predictive Signs for Kasai Procedure Success

Authors: Medan Isaeva, Anna Degtyareva

Abstract:

Context: Biliary atresia is a common reason for liver transplants in children, and the Kasai procedure can potentially be successful in avoiding the need for transplantation. However, it is important to identify factors that influence surgical outcomes in order to optimize treatment and improve patient outcomes. Research aim: The aim of this study was to develop prognostic models to assess the outcomes of the Kasai procedure in children with biliary atresia. Methodology: This retrospective study analyzed data from 166 children with biliary atresia who underwent the Kasai procedure between 2002 and 2021. The effectiveness of the operation was assessed based on specific criteria, including post-operative stool color, jaundice reduction, and bilirubin levels. The study involved a comparative analysis of various parameters, such as gestational age, birth weight, age at operation, physical development, liver and spleen sizes, and laboratory values including bilirubin, ALT, AST, and others, measured pre- and post-operation. Ultrasonographic evaluations were also conducted pre-operation, assessing the hepatobiliary system and related quantitative parameters. The study was carried out by two experienced specialists in pediatric hepatology. Comparative analysis and multifactorial logistic regression were used as the primary statistical methods. Findings: The study identified several statistically significant predictors of a successful Kasai procedure, including the presence of the gallbladder and levels of cholesterol and direct bilirubin post-operation. A detectable gallbladder was associated with a higher probability of surgical success, while elevated post-operative cholesterol and direct bilirubin levels were indicative of a reduced chance of positive outcomes. Theoretical importance: The findings of this study contribute to the optimization of treatment strategies for children with biliary atresia undergoing the Kasai procedure. By identifying early predictive signs of success, clinicians can modify treatment plans and manage patient care more effectively and proactively. Data collection and analysis procedures: Data for this analysis were obtained from the health records of patients who received the Kasai procedure. Comparative analysis and multifactorial logistic regression were employed to analyze the data and identify significant predictors. Question addressed: The study addressed the question of identifying predictive factors for the success of the Kasai procedure in children with biliary atresia. Conclusion: The developed prognostic models serve as valuable tools for early detection of patients who are less likely to benefit from the Kasai procedure. This enables clinicians to modify treatment plans and manage patient care more effectively and proactively. Potential limitations of the study: The study has several limitations. Its retrospective nature may introduce biases and inconsistencies in data collection. Being single centered, the results might not be generalizable to wider populations due to variations in surgical and postoperative practices. Also, other potential influencing factors beyond the clinical, laboratory, and ultrasonographic parameters considered in this study were not explored, which could affect the outcomes of the Kasai operation. Future studies could benefit from including a broader range of factors.

Keywords: biliary atresia, kasai operation, prognostic model, native liver survival

Procedia PDF Downloads 28
320 Inverterless Grid Compatible Micro Turbine Generator

Authors: S. Ozeri, D. Shmilovitz

Abstract:

Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.

Keywords: gas turbine, inverter, power multiplier, distributed generation

Procedia PDF Downloads 212
319 Identification of Lipo-Alkaloids and Fatty Acids in Aconitum carmichaelii Using Liquid Chromatography–Mass Spectrometry and Gas Chromatography–Mass Spectrometry

Authors: Ying Liang, Na Li

Abstract:

Lipo-alkaloid is a kind of C19-norditerpenoid alkaloids existed in Aconitum species, which usually contains an aconitane skeleton and one or two fatty acid residues. The structures are very similar to that of diester-type alkaloids, which are considered as the main bioactive components in Aconitum carmichaelii. They have anti-inflammatory, anti-nociceptive, and anti-proliferative activities. So far, more than 200 lipo-alkaloids were reported from plants, semisynthesis, and biotransformations. In our research, by the combination of ultra-high performance liquid chromatography-quadruple-time of flight mass spectrometry (UHPLC-Q-TOF-MS) and an in-house database, 148 lipo-alkaloids were identified from A. carmichaelii, including 93 potential new compounds and 38 compounds with oxygenated fatty acid moieties. To our knowledge, this is the first time of the reporting of the oxygenated fatty acids as the side chains in naturally-occurring lipo-alkaloids. Considering the fatty acid residues in lipo-alkaloids should come from the free acids in the plant, the fatty acids and their relationship with lipo-alkaloids were further investigated by GC-MS and LC-MS. Among 17 fatty acids identified by GC-MS, 12 were detected as the side chains of lipo-alkaloids, which accounted for about 1/3 of total lipo-alkaloids, while these fatty acid residues were less than 1/4 of total fatty acid residues. And, total of 37 fatty acids were determined by UHPCL-Q-TOF-MS, including 18 oxidized fatty acids firstly identified from A. carmichaelii. These fatty acids were observed as the side chains of lipo-alkaloids. In addition, although over 140 lipo-alkaloids were identified, six lipo-alkaloids, 8-O-linoleoyl-14-benzoylmesaconine (1), 8-O-linoleoyl-14-benzoylaconine (2), 8-O-palmitoyl-14-benzoylmesaconine (3), 8-O-oleoyl-14-benzoylmesaconine (4), 8-O-pal-benzoylaconine (5), and 8-O-ole-Benzoylaconine (6), were found to be the main components, which accounted for over 90% content of total lipo-alkaloids. Therefore, using these six components as standards, a UHPLC-Triple Quadrupole-MS (UHPLC-QQQ-MS) approach was established to investigate the influence of processing on the contents of lipo-alkaloids. Although it was commonly supposed that the contents of lipo-alkaloids increased after processing, our research showed that no significant change was observed before and after processing. Using the same methods, the lipo-alkaloids in the lateral roots of A. carmichaelii and the roots of A. kusnezoffii were determined and quantified. The contents of lipo-alkaloids in A. kusnezoffii were close to that of the parent roots of A. carmichaelii, while the lateral roots had less lipo-alkaloids than the parent roots. This work was supported by Macao Science and Technology Development Fund (086/2013/A3 and 003/2016/A1).

Keywords: Aconitum carmichaelii, fatty acids, GC-MS, LC-MS, lipo-alkaloids

Procedia PDF Downloads 271
318 Effect of Plant Growth Promoting Rhizobacteria on the Germination and Early Growth of Onion (Allium cepa)

Authors: Dragana R. Stamenov, Simonida S. Djuric, Timea Hajnal Jafari

Abstract:

Plant growth promoting rhizobacteria (PGPR) are a heterogeneous group of bacteria that can be found in the rhizosphere, at root surfaces and in association with roots, enhancing the growth of the plant either directly and/or indirectly. Increased crop productivity associated with the presence of PGPR has been observed in a broad range of plant species, such as raspberry, chickpeas, legumes, cucumber, eggplant, pea, pepper, radish, tobacco, tomato, lettuce, carrot, corn, cotton, millet, bean, cocoa, etc. However, until now there has not been much research about influences of the PGPR on the growth and yield of onion. Onion (Allium cepa L.), of the Liliaceae family, is a species of great economic importance, widely cultivated all over the world. The aim of this research was to examine the influence of plant growth promoting bacteria Pseudomonas sp. Dragana, Pseudomonas sp. Kiš, Bacillus subtillis and Azotobacter sp. on the seed germination and early growth of onion (Allium cepa). PGPR Azotobacter sp., Bacillus subtilis, Pseudomonas sp. Dragana, Pseudomonas sp. Kiš, from the collection of the Faculty of Agriculture, Novi Sad, Serbia, were used as inoculants. The number of cells in 1 ml of the inoculum was 10⁸ CFU/ml. The control variant was not inoculated. The effect of PGPR on seed germination and hypocotyls length of Allium cepa was evaluated in controlled conditions, on filter paper in the dark at 22°C, while effect on the plant length and mass in semicontrol conditions, in 10 l volume vegetative pots. Seed treated with fungicide and untreated seed were used. After seven days the percentage of germination was determined. After seven and fourteen days hypocotil length was measured. Fourteen days after germination, length and mass of plants were measured. Application of Pseudomonas sp. Dragana and Kiš and Bacillus subtillis had a negative effect on onion seed germination, while the use of Azotobacter sp. gave positive results. On average, application of all investigated inoculants had a positive effect on the measured parameters of plant growth. Azotobacter sp. had the greatest effect on the hypocotyls length, length and mass of the plant. In average, better results were achieved with untreated seeds in compare with treated. Results of this study have shown that PGPR can be used in the production of onion.

Keywords: germination, length, mass, microorganisms, onion

Procedia PDF Downloads 207
317 Spatial Distribution and Source Identification of Trace Elements in Surface Soil from Izmir Metropolitan Area

Authors: Melik Kara, Gulsah Tulger Kara

Abstract:

The soil is a crucial component of the ecosystem, and in industrial and urban areas it receives large amounts of trace elements from several sources. Therefore, accumulated pollutants in surface soils can be transported to different environmental components, such as deep soil, water, plants, and dust particles. While elemental contamination of soils is caused mainly by atmospheric deposition, soil also affects the air quality since enriched trace elemental contents in atmospheric particulate matter originate from resuspension of polluted soils. The objectives of this study were to determine the total and leachate concentrations of trace elements in soils of city area in Izmir and characterize their spatial distribution and to identify the possible sources of trace elements in surface soils. The surface soil samples were collected from 20 sites. They were analyzed for total element concentrations and leachate concentrations. Analyses of trace elements (Ag, Al, As, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Dy, Er, Eu, Fe, Ga, Gd, Hf, Ho, K, La, Li, Lu, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pr, Rb, Sb, Sc, Se, Si, Sm, Sn, Sr, Tb, Th, Ti, Tl, Tm, U, V, W, Y, Yb, Zn and Zr) were carried out using ICP-MS (Inductively Coupled Plasma-Mass Spectrometer). The elemental concentrations were calculated along with overall median, kurtosis, and skewness statistics. Elemental composition indicated that the soil samples were dominated by crustal elements such as Si, Al, Fe, Ca, K, Mg and the sea salt element, Na which is typical for Aegean region. These elements were followed by Ti, P, Mn, Ba and Sr. On the other hand, Zn, Cr, V, Pb, Cu, and Ni (which are anthropogenic based elements) were measured as 61.6, 39.4, 37.9, 26.9, 22.4, and 19.4 mg/kg dw, respectively. The leachate element concentrations were showed similar sorting although their concentrations were much lower than total concentrations. In the study area, the spatial distribution patterns of elemental concentrations varied among sampling sites. The highest concentrations were measured in the vicinity of industrial areas and main roads. To determine the relationships among elements and to identify the possible sources, PCA (Principal Component Analysis) was applied to the data. The analysis resulted in six factors. The first factor exhibited high loadings of Co, K, Mn, Rb, V, Al, Fe, Ni, Ga, Se, and Cr. This factor could be interpreted as residential heating because of Co, K, Rb, and Se. The second factor associated positively with V, Al, Fe, Na, Ba, Ga, Sr, Ti, Se, and Si. Therefore, this factor presents mixed city dust. The third factor showed high loadings with Fe, Ni, Sb, As, Cr. This factor could be associated with industrial facilities. The fourth factor associated with Cu, Mo, Zn, Sn which are the marker elements of traffic. The fifth factor presents crustal dust, due to its high correlation with Si, Ca, and Mg. The last factor is loaded with Pb and Cd emitted from industrial activities.

Keywords: trace elements, surface soil, source apportionment, Izmir

Procedia PDF Downloads 115
316 Thermal Analysis of Adsorption Refrigeration System Using Silicagel–Methanol Pair

Authors: Palash Soni, Vivek Kumar Gaba, Shubhankar Bhowmick, Bidyut Mazumdar

Abstract:

Refrigeration technology is a fast developing field at the present era since it has very wide application in both domestic and industrial areas. It started from the usage of simple ice coolers to store food stuffs to the present sophisticated cold storages along with other air conditioning system. A variety of techniques are used to bring down the temperature below the ambient. Adsorption refrigeration technology is a novel, advanced and promising technique developed in the past few decades. It gained attention due to its attractive property of exploiting unlimited natural sources like solar energy, geothermal energy or even waste heat recovery from plants or from the exhaust of locomotives to fulfill its energy need. This will reduce the exploitation of non-renewable resources and hence reduce pollution too. This work is aimed to develop a model for a solar adsorption refrigeration system and to simulate the same for different operating conditions. In this system, the mechanical compressor is replaced by a thermal compressor. The thermal compressor uses renewable energy such as solar energy and geothermal energy which makes it useful for those areas where electricity is not available. Refrigerants normally in use like chlorofluorocarbon/perfluorocarbon have harmful effects like ozone depletion and greenhouse warming. It is another advantage of adsorption systems that it can replace these refrigerants with less harmful natural refrigerants like water, methanol, ammonia, etc. Thus the double benefit of reduction in energy consumption and pollution can be achieved. A thermodynamic model was developed for the proposed adsorber, and a universal MATLAB code was used to simulate the model. Simulations were carried out for a different operating condition for the silicagel-methanol working pair. Various graphs are plotted between regeneration temperature, adsorption capacities, the coefficient of performance, desorption rate, specific cooling power, adsorption/desorption times and mass. The results proved that adsorption system could be installed successfully for refrigeration purpose as it has saving in terms of power and reduction in carbon emission even though the efficiency is comparatively less as compared to conventional systems. The model was tested for its compliance in a cold storage refrigeration with a cooling load of 12 TR.

Keywords: adsorption, refrigeration, renewable energy, silicagel-methanol

Procedia PDF Downloads 182
315 Isolation and Probiotic Characterization of Lactobacillus plantarum and Lactococcus lactis from Gut Microbiome of Rohu (Labeo rohita)

Authors: Prem Kumar, Anuj Tyagi, Harsh Panwar, Vaneet Inder Kaur

Abstract:

Though aquaculture started as an occupation for poor and weak farmers for livelihood, it has now acquired the shape of one of the biggest industry to grow live protein in the form of aquatic organisms. Industrialization of the aquaculture sector has led to intensification resulting in stress on aquatic organisms and frequent disease outbreaks leading to huge economic impacts. Indiscriminate use of antibiotics as growth promoter and prophylactic agent in aquaculture has resulted in rapid emergence and spread of antibiotic resistance in bacterial pathogens. Over the past few years, use of probiotics (as an alternative of antibiotics) in aquaculture has gained attention due to their immunostimulant and growth promoting properties. It has now well known that after administration, a probiotic bacterium has to compete and establish itself against native microbiota to show its eventual beneficial properties. Due to their non-fish origin, commercial probiotics sometimes may display poor probiotic functionalities and antagonistic effects. Thus, isolation and characterization of probiotic bacteria from same fish host is very much necessary. In this study, attempts were made to isolate potent probiotic lactic acid bacteria (LAB) from intestinal microflora of rohu fish. Twenty-five experimental rohu fishes (mean weight 400 ± 20gm, mean standard length 20 ± 3cm) were used in the study to collect fish gut after dissection in a sterile condition. A total of 150 tentative LAB isolates from selective agar media (de Man-Rogosa-Sharpe (MRS)) were screened for their antimicrobial activity against Aeromonas hydrophila and Microccocus leuteus. A total of 17 isolates, identified as Lactobacillus plantarum and Lactococcus lactis, identified by biochemical tests and PCR amplification and sequencing of 16S rRNA gene fragment, displayed promising antimicrobial activity against both the pathogens. Two isolates from each species (FLB1, FLB2 from L. plantarum; and FLC1, FLC2 from L. lactis) were subjected to downstream probiotic potential characterization. These isolates were compared in vitro for their hemolytic activity, acid and bile tolerance for growth kinetics, auto-aggregation, cell-surface hydrophobicity against xylene, and chloroform, tolerance to phenol, cell adhesion, and safety parameters (by intraperitoneal and intramuscular injections). None of the tested isolates showed any hemolytic activity indicating their potential safety. Moreover, these isolates were tolerant to 0.3% bile (75-82% survival), phenol stress (96-99% survival) with 100% viability at pH 3 over a period of 3 h. Antibiotic sensitivity test revealed that all the tested LAB isolates were resistant to vancomycin, gentamicin, streptomycin, and erythromycin and sensitive to Erythromycin, Chloramphenicol, Ampicillin, Trimethoprim, and Nitrofurantoin. Tetracycline resistance was found in L. plantarum (FLB1 and FLB2 isolates), whereas L. lactis were susceptible to it. Intramuscular and intraperitoneal challenges to fingerlings of rohu fish (5 ± 1gm weight) with FLB1 showed no pathogenicity and occurrence of disease symptoms in fishes over an observation period of 7 days. The results revealed FLB1 as a potential probiotic candidate for aquaculture application among other isolates.

Keywords: aquaculture, Lactobacillus plantarum, Lactococcus lactis, probiotics

Procedia PDF Downloads 111
314 Anti-Aging Effects of Two Agricultural Plant Extracts and Their Underlying Mechanism

Authors: Shwu-Ling Peng, Chiung-Man Tsai, Chia-Jui Weng

Abstract:

Chronic micro-inflammation is a hallmark of many aging-related neurodegenerative and metabolic syndrome-driven diseases. In high glucose (HG) environment, reactive oxygen species (ROS) is generated and the ROS induced inflammation, cytokines secretion, DNA damage, and cell cycle arrest to lead to cellular senescence. Water chestnut shell (WCS) is a plant hull which containing polyphenolic compounds and showed antioxidant and anticancer activities. Orchid, which containing a natural polysaccharide compound, possesses many physiological activities including anti-inflammatory and neuroprotective effects. These agricultural plants might be able to reduce oxidative stress and inflammation. This study was used HG-induced human normal dermal fibroblasts (HG-HNDFs) as an in vitro model to disclose the effects of water extract of Phalaenopsis orchid flower (WEPF) and ethanol extract of water chestnut shell (EEWCS) on the anti-aging and their underlying molecular mechanisms. The toxicity of extracts on human normal dermal fibroblasts (HNDFs) was determined by MTT method. The senescence of cells was assayed by β-galactosidase (SA-β-gal) kit. ROS and nitrate production was analyzed by Intracellular ROS contents and ELISA, respectively. Western blotting was used to detect the proteins in cells. The results showed that the exposure of HNDFs to HG (30 mM) for 72 h were caused cellular senescence and arrested cells at G0/G1 phase. Indeed, the treatment of HG-HNDFs with WEPF (200 μg/ml) and EEWCS (10 μg/ml) significantly released cell cycle arrest and promoted cell proliferation. The G1/S phase transition regulatory proteins such as protein retinoblastoma (pRb), p53, and p16ᴵᴺᴷ⁴ᵃ depressed by WEPF and EEWCS were also observed. Additionally, the treatment of WEPF and EEWCS increased the activity of HO-1 through upregulating Nrf2 as well as decreased the ROS and NO of HG-HNDFs. Therefore, the senescence marker protein-30 (SMP30) in cells was diminished. In conclusion, the WEPF and EEWCS might inhibit HG-induced aging of HNDFs by reducing oxidative stress and free radicals.

Keywords: agricultural plant extract, anti-aging, high glucose, Phalaenopsis orchid flower, water chestnut shell

Procedia PDF Downloads 129
313 Strawberry Productivity of Peri-Urban and Urban Locations across Southeast Michigan, USA

Authors: Maria E. Laconi, Kyla D. Scherr, Mary A. Jamieson

Abstract:

Human populations in urban environments have rapidly grown in recent decades. Consequently, the intensity of land-use and development has also increased in many urban and peri-urban environments. Some cities, such as Detroit, Michigan, USA, have embraced urban agriculture and local food production. Little is known, however, about how the local and landscape scale environmental factors influence crop productivity on urban farms. Our study aims to evaluate factors influencing the productivity of strawberries on community farms and gardens in the Detroit metropolitan area. Strawberries are one of few fruits that can provide an abundant harvest just after the first season of being planted, which is ideal for urban gardeners in developed areas. In the spring of 2016, we planted six different strawberry cultivars (three everbearing and three June bearing varieties) at five farm sites in Wayne and Oakland County (six replicate plants per cultivar per site). We surveyed flower and fruit phenology and production for everbearing varieties weekly (flowers for June bearing varieties were removed to enhance productivity in the coming growing season). Additionally, we conducted one initial 36hr pollinator survey in mid-September during peak fruit production and characterized local and landscape scale land-cover data. Preliminary results and observations from this first year of our study revealed that strawberry production varied significantly by site. Specifically, productivity at our most northern site appeared to suffer from delayed phenology and early frost damage to ripening strawberries. Bee abundance and diversity also differed among farms, though further surveys are needed to adequately inventory the pollinator community. Finally, strawberry cultivars demonstrated significant differences in the number and size of fruits produced. We plan to continue this study in the coming years, increasing the number of sites surveyed and number of pollinator sampling events. Our study aims to inform strategies for enhancing crop productivity on urban and peri-urban farms.

Keywords: insect pollination, strawberry productivity, sustainable agriculture, urban gardening

Procedia PDF Downloads 253
312 Agro-Morphological Traits Based Genetic Diversity Analysis of ‘Ethiopian Dinich’ Plectranthus edulis (Vatke) Agnew Populations Collected from Diverse Agro-Ecologies in Ethiopia

Authors: Fekadu Gadissa, Kassahun Tesfaye, Kifle Dagne, Mulatu Geleta

Abstract:

‘Ethiopian dinich’ also called ‘Ethiopian potato’ is one of the economically important ‘orphan’ edible tuber crops indigenous to Ethiopia. We evaluated the morphological and agronomic traits performances of 174 samples from Ethiopia at multiple locations using 12 qualitative and 16 quantitative traits, recorded at the correct growth stages. We observed several morphotypes and phenotypic variations for qualitative traits along with a wide range of mean performance values for all quantitative traits. Analysis of variance for each quantitative trait showed a highly significant (p<0.001) variation among the collections with eventually non-significant variation for environment-traits interaction for all but flower length. A comparatively high phenotypic and genotypic coefficient of variation was observed for plant height, days to flower initiation, days to 50% flowering and tuber number per hill. Moreover, the variability and coefficients of variation due to genotype-environment interaction was nearly zero for all the traits except flower length. High genotypic coefficients of variation coupled with a high estimate of broad sense heritability and high genetic advance as a percent of collection mean were obtained for tuber weight per hill, number of primary branches per plant, tuber number per hill and number of plants per hill. Association of tuber yield per hectare of land showed a large magnitude of positive phenotypic and genotypic correlation with those traits. Principal components analysis revealed 76% of the total variation for the first six principal axes with high factor loadings again from tuber number per hill, number of primary branches per plant and tuber weight. The collections were grouped into four clusters with the weak region (zone) of origin based pattern. In general, there is high genetic-based variability for ‘Ethiopian dinich’ improvement and conservation. DNA based markers are recommended for further genetic diversity estimation for use in breeding and conservation.

Keywords: agro-morphological traits, Ethiopian dinich, genetic diversity, variance components

Procedia PDF Downloads 165
311 The Need for Automation in the Domestic Food Processing Sector and its Impact

Authors: Shantam Gupta

Abstract:

The objective of this study is to address the critical need for automation in the domestic food processing sector and study its impact. Food is the one of the most basic physiological needs essential for the survival of a living being. Some of them have the capacity to prepare their own food (like most plants) and henceforth are designated as primary food producers; those who depend on these primary food producers for food form the primary consumers’ class (herbivores). Some of the organisms relying on the primary food are the secondary food consumers (carnivores). There is a third class of consumers called tertiary food consumers/apex food consumers that feed on both the primary and secondary food consumers. Humans form an essential part of the apex predators and are generally at the top of the food chain. But still further disintegration of the food habits of the modern human i.e. Homo sapiens, reveals that humans depend on other individuals for preparing their own food. The old notion of eating raw/brute food is long gone and food processing has become very trenchant in lives of modern human. This has led to an increase in dependence on other individuals for ‘processing’ the food before it can be actually consumed by the modern human. This has led to a further shift of humans in the classification of food chain of consumers. The effects of the shifts shall be systematically investigated in this paper. The processing of food has a direct impact on the economy of the individual (consumer). Also most individuals depend on other processing individuals for the preparation of food. This dependency leads to establishment of a vital link of dependency in the food web which when altered can adversely affect the food web and can have dire consequences on the health of the individual. This study investigates the challenges arising out due to this dependency and the impact of food processing on the economy of the individual. A comparison of Industrial food processing and processing at domestic platforms (households and restaurants) has been made to provide an idea about the present scenario of automation in the food processing sector. A lot of time and energy is also consumed while processing food at home for consumption. The high frequency of consumption of meals (greater than 2 times a day) makes it even more laborious. Through the medium of this study a pressing need for development of an automatic cooking machine is proposed with a mission to reduce the inter-dependency & human effort of individuals required for the preparation of food (by automation of the food preparation process) and make them more self-reliant The impact of development of this product has also further been profoundly discussed. Assumption used: The individuals those who process food also consume the food that they produce. (They are also termed as ‘independent’ or ‘self-reliant’ modern human beings.)

Keywords: automation, food processing, impact on economy, processing individual

Procedia PDF Downloads 447
310 Impact of Air Pressure and Outlet Temperature on Physicochemical and Functional Properties of Spray-dried Skim Milk Powder

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder, to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 52
309 Effects of Caprine Arthritis-Encephalitis Virus (CAEV) Infection on the Expression of Cathelicidin Genes in Goat Blood Leukocytes

Authors: Daria Reczynska, Justyna Jarczak, Michal Czopowicz, Danuta Sloniewska, Karina Horbanczuk, Wieslaw Jarmuz, Jaroslaw Kaba, Emilia Bagnicka

Abstract:

Since people, animals and plants are constantly exposed to pathogens they have developed very complex systems of defense. Among ca. 1000 antimicrobial peptides from different families so far identified, approximately 30 belonging to cathelicidin family can be found in mammals. Cathelicidins probably constitute the first line of defense because they can act at a physiological salt concentration which is present in healthy tissues. Moreover, the low salt concentration which is present in infected tissues inhibits their activity. In goat bactenecin 7.5 (BAC7.5), bactenecin 5 (BAC5), myeloid antimicrobial peptide 28 (MAP28), myeloid antimicrobial peptide 34 (MAP34 A and B), goat bactenecin3.4 (ChBac3.4) were identified. Caprine arthritis-encephalitis (CAE) caused by small ruminant lentivirus (SRLV) is economic problem. The main CAE symptoms are weight loss, arthritis, pneumonia and mastitis (significant elevation of the somatic cell count and deterioration of some technological parameters). The study was conducted on 24 dairy goats. The animals were divided into two groups: experimental (SRLV-infected) and control (non-infected). The blood samples were collected five times: on the 1st, 7th, 30th, 90th and 150thday of lactation. The levels of transcripts of BAC7.5, BAC5, MAP28 and MAP34 genes in blood leucocytes were measured using qPCR method. There were no differences in mRNA levels of studied genes between stages of lactation. The differences were observed in expressions of BAC5, MAP28 and MAP34 genes with lower levels in the experimental group. There was no difference in BAC7.5 expression between groups. The decreased levels of transcripts of cathelicidin genes in blood leucocytes of SRLV-infected goats may indicate the disturbances of homeostasis in organisms. It can be concluded that SRLV infection seems to inhibit expression of cathelicidin genes. The study was financed by a grant from the National Scientific Center No. UMO-2013/09/B/NZ/03514.

Keywords: goat, CAEV, cathelicidins, blood leukocytes, gene expression

Procedia PDF Downloads 256
308 Analytical Study and Conservation Processes of Scribe Box from Old Kingdom

Authors: Mohamed Moustafa, Medhat Abdallah, Ramy Magdy, Ahmed Abdrabou, Mohamed Badr

Abstract:

The scribe box under study dates back to the old kingdom. It was excavated by the Italian expedition in Qena (1935-1937). The box consists of 2pieces, the lid and the body. The inner side of the lid is decorated with ancient Egyptian inscriptions written with a black pigment. The box was made using several panels assembled together by wooden dowels and secured with plant ropes. The entire box is covered with a red pigment. This study aims to use analytical techniques in order to identify and have deep understanding for the box components. Moreover, the authors were significantly interested in using infrared reflectance transmission imaging (RTI-IR) to improve the hidden inscriptions on the lid. The identification of wood species included in this study. The visual observation and assessment were done to understand the condition of this box. 3Ddimensions and 2D programs were used to illustrate wood joints techniques. Optical microscopy (OM), X-ray diffraction (XRD), X-ray fluorescence portable (XRF) and Fourier Transform Infrared spectroscopy (FTIR) were used in this study in order to identify wood species, remains of insects bodies, red pigment, fibers plant and previous conservation adhesives, also RTI-IR technique was very effective to improve hidden inscriptions. The analysis results proved that wooden panels and dowels were identified as Acacia nilotica, wooden rail was Salix sp. the insects were identified as Lasioderma serricorne and Gibbium psylloids, the red pigment was Hematite, while the fiber plants were linen, previous adhesive was identified as cellulose nitrates. The historical study for the inscriptions proved that it’s a Hieratic writings of a funerary Text. After its transportation from the Egyptian museum storage to the wood conservation laboratory of the Grand Egyptian museum –conservation center (GEM-CC), conservation techniques were applied with high accuracy in order to restore the object including cleaning , consolidating of friable pigments and writings, removal of previous adhesive and reassembly, finally the conservation process that were applied were extremely effective for this box which became ready for display or storage in the grand Egyptian museum.

Keywords: scribe box, hieratic, 3D program, Acacia nilotica, XRD, cellulose nitrate, conservation

Procedia PDF Downloads 250
307 Hybrid Fermentation System for Improvement of Ergosterol Biosynthesis

Authors: Alexandra Tucaliuc, Alexandra C. Blaga, Anca I. Galaction, Lenuta Kloetzer, Dan Cascaval

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol), also known as provitamin D2, is the precursor of vitamin D2 (ergocalciferol), because it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). In the yeasts cells, ergosterol is accumulated in membranes, especially in free form in the plasma membrane, but also as esters with fatty acids in membrane lipids. The chemical synthesis of ergosterol does not represent an efficient method for its production, in these circumstances, the most attractive alternative for producing ergosterol at larger-scale remains the aerobic fermentation using S. cerevisiae on glucose or by-products from agriculture of food industry as substrates, in batch or fed-batch operating systems. The aim of this work is to analyze comparatively the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. The effects of the studied factors are quantitatively described by means of the mathematical correlations proposed for each of the two fermentation systems, valid both for the absence and presence of oxygen-vector inside the broth. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. n-Dodecane was used as oxygen-vector and the ergosterol content inside the yeasts cells has been considered at the fermentation moment related to the maximum concentration of ergosterol, 9 hrs for batch process and 20 hrs for fed-batch one. Ergosterol biosynthesis is strongly dependent on the dissolved oxygen concentration. The hydrocarbon concentration exhibits a significant influence on ergosterol production mainly by accelerating the oxygen transfer rate. Regardless of n-dodecane addition, by maintaining the glucose concentration at a constant level in the fed-batch process, the amount of ergosterol accumulated into the yeasts cells has been almost tripled. In the presence of hydrocarbon, the ergosterol concentration increased by over 50%. The value of oxygen-vector concentration corresponding to the maximum level of ergosterol depends mainly on biomass concentration, due to its negative influences on broth viscosity and interfacial phenomena of air bubbles blockage through the adsorption of hydrocarbon droplets–yeast cells associations. Therefore, for the batch process, the maximum ergosterol amount was reached for 5% vol. n-dodecane, while for the fed-batch process for 10% vol. hydrocarbon.

Keywords: bioreactors, ergosterol, fermentation, oxygen-vector

Procedia PDF Downloads 147
306 Algae Biofertilizers Promote Sustainable Food Production and Nutrient Efficiency: An Integrated Empirical-Modeling Study

Authors: Zeenat Rupawalla, Nicole Robinson, Susanne Schmidt, Sijie Li, Selina Carruthers, Elodie Buisset, John Roles, Ben Hankamer, Juliane Wolf

Abstract:

Agriculture has radically changed the global biogeochemical cycle of nitrogen (N). Fossil fuel-enabled synthetic N-fertiliser is a foundation of modern agriculture but applied to soil crops only use about half of it. To address N-pollution from cropping and the large carbon and energy footprint of N-fertiliser synthesis, new technologies delivering enhanced energy efficiency, decarbonisation, and a circular nutrient economy are needed. We characterised algae fertiliser (AF) as an alternative to synthetic N-fertiliser (SF) using empirical and modelling approaches. We cultivated microalgae in nutrient solution and modelled up-scaled production in nutrient-rich wastewater. Over four weeks, AF released 63.5% of N as ammonium and nitrate, and 25% of phosphorous (P) as phosphate to the growth substrate, while SF released 100% N and 20% P. To maximise crop N-use and minimise N-leaching, we explored AF and SF dose-response-curves with spinach in glasshouse conditions. AF-grown spinach produced 36% less biomass than SF-grown plants due to AF’s slower and linear N-release, while SF resulted in 5-times higher N-leaching loss than AF. Optimised blends of AF and SF boosted crop yield and minimised N-loss due to greater synchrony of N-release and crop uptake. Additional benefits of AF included greener leaves, lower leaf nitrate concentration, and higher microbial diversity and water holding capacity in the growth substrate. Life-cycle-analysis showed that replacing the most effective SF dosage with AF lowered the carbon footprint of fertiliser production from 2.02 g CO₂ (C-producing) to -4.62 g CO₂ (C-sequestering), with a further 12% reduction when AF is produced on wastewater. Embodied energy was lowest for AF-SF blends and could be reduced by 32% when cultivating algae on wastewater. We conclude that (i) microalgae offer a sustainable alternative to synthetic N-fertiliser in spinach production and potentially other crop systems, and (ii) microalgae biofertilisers support the circular nutrient economy and several sustainable development goals.

Keywords: bioeconomy, decarbonisation, energy footprint, microalgae

Procedia PDF Downloads 115
305 Advanced Technology for Natural Gas Liquids (NGL) Recovery Using Residue Gas Split

Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel

Abstract:

The competitive scenario of the oil and gas market is a challenge for today’s plant designers to achieve designs that meet client expectations with shrinking budgets, safety requirements, and operating flexibility. Natural Gas Liquids have three main industrial uses. They can be used as fuels, or as petrochemical feedstock or as refinery blends that can be further processed and sold as straight run cuts, such as naphtha, kerosene and gas oil. NGL extraction is not a chemical reaction. It involves the separation of heavier hydrocarbons from the main gas stream through pressure as temperature reduction, which depending upon the degree of NGL extraction may involve cryogenic process. Previous technologies i.e. short cycle dry desiccant absorption, Joule-Thompson or Low temperature refrigeration, lean oil absorption have been giving results of only 40 to 45% ethane recoveries, which were unsatisfying depending upon the current scenario of down turn market. Here new technology has been suggested for boosting up the recoveries of ethane+ up to 95% and up to 99% for propane+ components. Cryogenic plants provide reboiling to demethanizers by using part of inlet feed gas, or inlet feed split. If the two stream temperatures are not similar, there is lost work in the mixing operation unless the designer has access to some proprietary design. The concept introduced in this process consists of reboiling the demethanizer with the residue gas, or residue gas split. The innovation of this process is that it does not use the typical inlet gas feed split type of flow arrangement to reboil the demethanizer or deethanizer column, but instead uses an open heat pump scheme to that effect. The residue gas compressor provides the heat pump effect. The heat pump stream is then further cooled and entered in the top section of the column as a cold reflux. Because of the nature of this design, this process offers the opportunity to operate at full ethane rejection or recovery. The scheme is also very adaptable to revamp existing facilities. This advancement can be proven not only in enhancing the results but also provides operational flexibility, optimize heat exchange, introduces equipment cost reduction, opens a future for the innovative designs while keeping execution costs low.

Keywords: deethanizer, demethanizer, residue gas, NGL

Procedia PDF Downloads 237
304 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 46
303 Phytoremediation of Heavy Metals by the Perennial Tussock Chrysopogon Zizanioides Grown on Zn and Cd Contaminated Soil Amended with Biochar

Authors: Dhritilekha Deka, Deepak Patwa, Ravi K., Archana M. Nair

Abstract:

Bioaccumulation of heavy metal contaminants due to intense anthropogenic interference degrades the environment and ecosystem functions. Conventional physicochemical methods involve energy-intensive and costly methodologies. Phytoremediation, on the other hand, provides an efficient nature-based strategy for the reclamation of heavy metal-contaminated sites. However, the slow process and adaptation to high-concentration contaminant sequestration often limit the efficiency of the method. This necessitates natural amendments such as biochar to improve phytoextraction and stabilize the green cover. Biochar is a highly porous structure with high carbon sequestration potential and containing negatively charged functional groups that provide binding sites for the positively charged metals. This study aims to develop and determine the synergy between sugarcane bagasse biochar content and phytoremediation. A 60-day pot experiment using perennial tussock vetiver grass (Chrysopogon zizanioides) was conducted for different biochar contents of 1%, 2%, and 4% for the removal of cadmium and zinc. A concentration of 500 ppm is maintained for the amended and unamended control (CK) samples. The survival rates of the plants, biomass production, and leaf area index were measured for the plant growth characteristics. Results indicate a visible change in the plant growth and the heavy metal concentration with the biochar content. The bioconcentration factor (BCF) in the plant improved significantly for the 4% biochar content by 57% in comparison to the control CK treatment in Cd-treated soils. The Zn soils indicated the highest reduction in the metal concentration by 50% in the 2% amended samples and an increase in the BCF in all the amended samples. The translocation from the rhizosphere to the shoots was low but not dependent on the amendment content and varied for each contaminant type. The root-to-shoot ratio indicates higher values compared to the control samples. The enhanced tolerance capacities can be attributed to the nutrients released by the biochar in the soil. The study reveals the high potential of biochar as a phytoremediation amendment, but its effect is dependent on the soil and heavy metal and accumulator species.

Keywords: phytoextraction, biochar, heavy metals, chrysopogon zizanioides, bioaccumulation factor

Procedia PDF Downloads 41
302 Screening Maize for Compatibility with F. Oxysporum to Enhance Striga asiatica (L.) Kuntze Resistance

Authors: Admire Isaac Tichafa Shayanowako, Mark Laing, Hussein Shimelis

Abstract:

Striga asiatica is among the leading abiotic constraints to maize production under small-holder farming communities in southern African. However, confirmed sources of resistance to the parasitic weed are still limited. Conventional breeding programmes have been progressing slowly due to the complex nature of the inheritance of Striga resistance, hence there is a need for more innovative approaches. This study aimed to achieve partial resistance as well as to breed for compatibility with Fusarium oxysporum fsp strigae, a soil fungus that is highly specific in its pathogenicity. The agar gel and paper roll assays in conjunction with a glass house pot trial were done to select genotypes based on their potential to stimulate germination of Striga and to test the efficacy of Fusarium oxysporum as a biocontrol agent. Results from agar gel assays showed a moderate to high potential in the release of Strigalactones among the 33 OPVs. Maximum Striga germination distances from the host root of 1.38 cm and up to 46% germination were observed in most of the populations. Considerable resistance was observed in a landrace ‘8lines’ which had the least Striga germination percentage (19%) with a maximum distance of 0.93 cm compared to the resistant check Z-DPLO-DTC1 that had 23% germination at a distance of 1.4cm. The number of fusarium colony forming units significantly deferred (P < 0.05) amongst the genotypes growing between germination papers. The number of crown roots, length of primary root and fresh weight of shoot and roots were highly correlated with concentration of fusarium macrospore counts. Pot trials showed significant differences between the fusarium coated and the uncoated treatments in terms of plant height, leaf counts, anthesis-silks intervals, Striga counts, Striga damage rating and Striga vigour. Striga emergence counts and Striga flowers were low in fusarium treated pots. Plants in fusarium treated pots had non-significant differences in height with the control treatment. This suggests that foxy 2 reduces the impact of Striga damage severity. Variability within fusarium treated genotypes with respect to traits under evaluation indicates the varying degree of compatibility with the biocontrol.

Keywords: maize, Striga asiaitca, resistance, compatibility, F. oxysporum

Procedia PDF Downloads 219
301 Long Time Oxidation Behavior of Machined 316 Austenitic Stainless Steel in Primary Water Reactor

Authors: Siyang Wang, Yujin Hu, Xuelin Wang, Wenqian Zhang

Abstract:

Austenitic stainless steels are widely used in nuclear industry to manufacture critical components owing to their excellent corrosion resistance at high temperatures. Almost all the components used in nuclear power plants are produced by surface finishing (surface cold work) such as milling, grinding and so on. The change of surface states induced by machining has great influence on the corrosion behavior. In the present study, long time oxidation behavior of machined 316 austenitic stainless steel exposed to simulated pressure water reactor environment was investigated considering different surface states. Four surface finishes were produced by electro-polishing (P), grinding (G), and two milling (M and M1) processes respectively. Before oxidation, the surface Vickers micro-hardness, surface roughness of each type of sample was measured. Corrosion behavior of four types of sample was studied by using oxidation weight gain method for six oxidation periods. The oxidation time of each period was 120h, 216h, 336h, 504h, 672h and 1344h, respectively. SEM was used to observe the surface morphology of oxide film in several period. The results showed that oxide film on austenitic stainless steel has a duplex-layer structure. The inner oxide film is continuous and compact, while the outer layer is composed of oxide particles. The oxide particle consisted of large particles (nearly micron size) and small particles (dozens of nanometers to a few hundred nanometers). The formation of oxide particle could be significantly affected by the machined surface states. The large particle on cold worked samples (grinding and milling) appeared earlier than electro-polished one, and the milled sample has the largest particle size followed by ground one and electro-polished one. For machined samples, the large particles were almost distributed along the direction of machining marks. Severe exfoliation was observed on one milled surface (M) which had the most heavily cold worked layer, while rare local exfoliation occurred on the ground sample (G) and the other milled sample (M1). The electro-polished sample (P) entirely did not exfoliate.

Keywords: austenitic stainless steel, oxidation, machining, SEM

Procedia PDF Downloads 264
300 Living in the Edge: Crisis in Indian Tea Industry and Social Deprivation of Tea Garden Workers in Dooars Region of India

Authors: Saraswati Kerketta

Abstract:

Tea industry is one of the oldest organised sector of India. It employs roughly 1.5 million people directly. Since the last decade Indian tea industry, especially in the northern region is experiencing worst crisis in the post-independence period. Due to many reason the prices of tea show steady decline. The workers are paid one of the lowest wage in tea industry in the world (1.5$ a day) below the UN's $2 a day for extreme poverty. The workers rely on addition benefits from plantation which includes food, housing and medical facilities. These have been effective means of enslavement of generations of labourers by the owners. There is hardly any change in the tea estates where the owners determine the fate of workers. When the tea garden is abandoned or is closed all the facilities disappear immediately. The workers are the descendants of tribes from central India also known as 'tea tribes'. Alienated from their native place, the geographical and social isolation compounded their vulnerability of these people. The economy of the region being totally dependent on tea has resulted in absolute unemployment for the workers of these tea gardens. With no other livelihood and no land to grow food, thousands of workers faced hunger and starvation. The Plantation Labour Act which ensures the decent working and living condition is violated continuously. The labours are forced to migrate and are also exposed to the risk of human trafficking. Those who are left behind suffers from starvation, malnutrition and disease. The condition in the sick tea plantation is no better. Wage are not paid regularly, subsidised food, fuel are also not supplied properly. Health care facilities are in very bad shape. Objectives: • To study the socio-cultural and demographic characteristics of the tea garden labourers in the study area. • To examine the social situation of workers in sick estates in dooars region. • To assess the magnitude of deprivation the impact of economic crisis on abandoned and closed tea estates in the region. Data Base: The study is based on data collected from field survey. Methods: Quantative: Cross-Tabulation, Regression analysis. Qualitative: Household Survey, Focussed Group Discussion, In-depth interview of key informants. Findings: Purchasing power parity has declined since in last three decades. There has been many fold increase in migration. Males migrates long distance towards central and west and south India. Females and children migrates both long and short distance. No one has reported to migrate back to the place of origin of their ancestors. Migrant males work mostly as construction labourers and as factory workers whereas females and children work as domestic help and construction labourers. In about 37 cases either they haven't contacted their families in last six months or are not traceable. The families with single earning members are more likely to migrate. Burden of disease and the duration of sickness, abandonment and closure of plantation are closely related. Death tolls are likely to rise 1.5 times in sick tea gardens and three times in closed tea estates. Sixty percent of the people are malnourished in the sick tea gardens and more than eighty five per cent in abandoned and sick tea gardens.

Keywords: migration, trafficking, starvation death, tea garden workers

Procedia PDF Downloads 361
299 Influence of Farnesol on Growth and Development of Dysdercus koenigii

Authors: Shailendra Kumar, Kamal Kumar Gupta

Abstract:

Dysdercus koenigii is an economically important pest of cotton worldwide. The pest damages the crop by sucking sap, staining lint, reducing the oil content of the seeds and deteriorating the quality of cotton. Plant possesses a plethora of secondary metabolites which are used as defense mechanism against herbivores. One of the important categories of such chemicals is insect growth regulators and the intermediates in their biosynthesis. Farnesol belongs to sesquiterpenoid. It is an intermediate in Juvenile hormone biosynthetic pathway in insects has been widely reported in the variety of plants. This chemical can disrupt the normal metabolic function and therefore, affects various life processes of the insects. Present study tested the efficacy of farnesol against Dysdercus koenigii. 2μl of 5% (100µg) and 10% (200µg) of the farnesol was applied topically on the dorsum of thoracic region of the newly emerged fifth instar nymphs of Dysdercus. The treated insects were observed daily for their survival, weight gain, and developmental anomalies for a period of ten days. The results indicated that treatment with 200µg farnesol decreased survival of the insects to 70% after 24h of exposure. At lower doses, no significant decrease in the survival was observed. However, the surviving nymphs showed alteration in growth, development, and metamorphosis. The weight gain in the treated nymphs showed deviation from control. The treated nymphs showed an increase in mortality during subsequent days and increase in the nymphal duration. The number of nymphs undergoing metamorphosis decreased to 46% and 88% in the treatments with the dose of 200µg and 100µg respectively. Severe developmental anomalies were also observed in the treated nymphs. The treated nymphs moulted into supernumerary nymphs, adultoids, adults with exuviae attached and adults with wing deformities. On treatment with 200µg; 26% adultoid, 4% adults with exuviae attached and 12% adults with wing deformed were produced. Treatment with 100µg resulted in production of 34% adultoid, 26% adults with deformed wing and 4% adults with exuviae attached. Many of the treated nymphs did not metamorphose into adults, remained in nymphal stage and died. Our results indicated potential application plant-derived secondary metabolites like farnesol in the management of Dysdercus population.

Keywords: development, Dysdercus koenigii, farnesol, survival

Procedia PDF Downloads 323
298 Robust Batch Process Scheduling in Pharmaceutical Industries: A Case Study

Authors: Tommaso Adamo, Gianpaolo Ghiani, Antonio Domenico Grieco, Emanuela Guerriero

Abstract:

Batch production plants provide a wide range of scheduling problems. In pharmaceutical industries a batch process is usually described by a recipe, consisting of an ordering of tasks to produce the desired product. In this research work we focused on pharmaceutical production processes requiring the culture of a microorganism population (i.e. bacteria, yeasts or antibiotics). Several sources of uncertainty may influence the yield of the culture processes, including (i) low performance and quality of the cultured microorganism population or (ii) microbial contamination. For these reasons, robustness is a valuable property for the considered application context. In particular, a robust schedule will not collapse immediately when a cell of microorganisms has to be thrown away due to a microbial contamination. Indeed, a robust schedule should change locally in small proportions and the overall performance measure (i.e. makespan, lateness) should change a little if at all. In this research work we formulated a constraint programming optimization (COP) model for the robust planning of antibiotics production. We developed a discrete-time model with a multi-criteria objective, ordering the different criteria and performing a lexicographic optimization. A feasible solution of the proposed COP model is a schedule of a given set of tasks onto available resources. The schedule has to satisfy tasks precedence constraints, resource capacity constraints and time constraints. In particular time constraints model tasks duedates and resource availability time windows constraints. To improve the schedule robustness, we modeled the concept of (a, b) super-solutions, where (a, b) are input parameters of the COP model. An (a, b) super-solution is one in which if a variables (i.e. the completion times of a culture tasks) lose their values (i.e. cultures are contaminated), the solution can be repaired by assigning these variables values with a new values (i.e. the completion times of a backup culture tasks) and at most b other variables (i.e. delaying the completion of at most b other tasks). The efficiency and applicability of the proposed model is demonstrated by solving instances taken from Sanofi Aventis, a French pharmaceutical company. Computational results showed that the determined super-solutions are near-optimal.

Keywords: constraint programming, super-solutions, robust scheduling, batch process, pharmaceutical industries

Procedia PDF Downloads 592
297 Nitrogen Fixation of Soybean Approaches for Enhancing under Saline and Water Stress Conditions

Authors: Ayman El Sabagh, AbdElhamid Omar, Dekoum Assaha, Khair Mohammad Youldash, Akihiro Ueda, Celaleddin Barutçular, Hirofumi Saneoka

Abstract:

Drought and salinity stress are a worldwide problem, constraining global crop production seriously. Hence, soybean is susceptible to yield loss from water deficit and salinity stress. Therefore, different approaches have been suggested to solve these issues. Osmoprotectants play an important role in protection the plants from various environmental stresses. Moreover, organic fertilization has several beneficial effects on agricultural fields. Presently, efforts to maximize nitrogen fixation in soybean are critical because of widespread increase in soil degradation in Egypt. Therefore, a greenhouse research was conducted at plant nutritional physiology laboratory, Hiroshima University, Japan for assessing the impact of exogenous osmoregulators and compost application in alleviating the adverse effects of salinity and water stress on soybean. Treatments was included (i) water stress treatments (different soil moisture levels consisting of (100%, 75%, and 50% of field water holding capacity), (ii) salinity concentrations (0 and 15 mM) were applied in fully developed trifoliolate leaf node (V1), (iii) compost treatments (0 and 24 t ha-1) and (iv) the exogenous, proline and glycine betaine concentrations (0 mM and 25 mM) for each, was applied at two growth stages (V1 and R1). The seeds of soybean cultivar Giza 111, was sown into basin from wood (length10 meter, width 50cm, height 50cm and depth 350cm) containing a soil mixture of granite regosol soil and perlite (2:1 v/v). The nitrogen-fixing activity was estimated by using gas chromatography and all measurements were made in three replicates. The results showed that water deficit and salinity stress reduced biological nitrogen fixation and specific nodule activity than normal irrigation conditions. Exogenous osmoprotectants were improved biological nitrogen fixation and specific nodule activity as well as, applying of compost led to improving many of biological nitrogen fixation and specific nodule activity with superiority than stress conditions. The combined application compost fertilizer and exogenous osmoprotectants were more effective in alleviating the adverse effect of stress to improve biological nitrogen fixation and specific nodule activity of Soybean.

Keywords: a biotic stress, biological nitrogen fixation, compost, osmoprotectants, specific nodule activity, soybean

Procedia PDF Downloads 284
296 Detailed Sensitive Detection of Impurities in Waste Engine Oils Using Laser Induced Breakdown Spectroscopy, Rotating Disk Electrode Optical Emission Spectroscopy and Surface Plasmon Resonance

Authors: Cherry Dhiman, Ayushi Paliwal, Mohd. Shahid Khan, M. N. Reddy, Vinay Gupta, Monika Tomar

Abstract:

The laser based high resolution spectroscopic experimental techniques such as Laser Induced Breakdown Spectroscopy (LIBS), Rotating Disk Electrode Optical Emission spectroscopy (RDE-OES) and Surface Plasmon Resonance (SPR) have been used for the study of composition and degradation analysis of used engine oils. Engine oils are mainly composed of aliphatic and aromatics compounds and its soot contains hazardous components in the form of fine, coarse and ultrafine particles consisting of wear metal elements. Such coarse particulates matter (PM) and toxic elements are extremely dangerous for human health that can cause respiratory and genetic disorder in humans. The combustible soot from thermal power plants, industry, aircrafts, ships and vehicles can lead to the environmental and climate destabilization. It contributes towards global pollution for land, water, air and global warming for environment. The detection of such toxicants in the form of elemental analysis is a very serious issue for the waste material management of various organic, inorganic hydrocarbons and radioactive waste elements. In view of such important points, the current study on used engine oils was performed. The fundamental characterization of engine oils was conducted by measuring water content and kinematic viscosity test that proves the crude analysis of the degradation of used engine oils samples. The microscopic quantitative and qualitative analysis was presented by RDE-OES technique which confirms the presence of elemental impurities of Pb, Al, Cu, Si, Fe, Cr, Na and Ba lines for used waste engine oil samples in few ppm. The presence of such elemental impurities was confirmed by LIBS spectral analysis at various transition levels of atomic line. The recorded transition line of Pb confirms the maximum degradation which was found in used engine oil sample no. 3 and 4. Apart from the basic tests, the calculations for dielectric constants and refractive index of the engine oils were performed via SPR analysis.

Keywords: surface plasmon resonance, laser-induced breakdown spectroscopy, ICCD spectrometer, engine oil

Procedia PDF Downloads 118
295 Molecular Implication of Interaction of Human Enteric Pathogens with Phylloplane of Tomato

Authors: Shilpi, Indu Gaur, Neha Bhadauria, Susmita Goswami, Prabir K. Paul

Abstract:

Cultivation and consumption of organically grown fruits and vegetables have increased by several folds. However, the presence of Human Enteric Pathogens on the surface of organically grown vegetables causing Gastro-intestinal diseases, are most likely due to contaminated water and fecal matter of farm animals. Human Enteric Pathogens are adapted to colonize the human gut, and also colonize plant surface. Microbes on plant surface communicate with each other to establish quorum sensing. The cross talk study is important because the enteric pathogens on phylloplane have been reported to mask the beneficial resident bacteria of plant. In the present study, HEPs and bacterial colonizers were identified using 16s rRNA sequencing. Microbial colonization patterns after interaction between Human Enteric Pathogens and natural bacterial residents on tomato phylloplane was studied. Tomato plants raised under aseptic conditions were inoculated with a mixture of Serratia fonticola and Klebsiella pneumoniae. The molecules involved in cross-talk between Human Enteric Pathogens and regular bacterial colonizers were isolated and identified using molecular techniques and HPLC. The colonization pattern was studied by leaf imprint method after 48 hours of incubation. The associated protein-protein interaction in the host cytoplasm was studied by use of crosslinkers. From treated leaves the crosstalk molecules and interaction proteins were separated on 1D SDS-PAGE and analyzed by MALDI-TOF-TOF analysis. The study is critical in understanding the molecular aspects of HEP’s adaption to phylloplane. The study revealed human enteric pathogens aggressively interact among themselves and resident bacteria. HEPs induced establishment of a signaling cascade through protein-protein interaction in the host cytoplasm. The study revealed that the adaptation of Human Enteric Pathogens on phylloplane of Solanum lycopersicum involves the establishment of complex molecular interaction between the microbe and the host including microbe-microbe interaction leading to an establishment of quorum sensing. The outcome will help in minimizing the HEP load on fresh farm produce, thereby curtailing incidences of food-borne diseases.

Keywords: crosslinkers, human enteric pathogens (HEPs), phylloplane, quorum sensing

Procedia PDF Downloads 249
294 Optimization Approach to Integrated Production-Inventory-Routing Problem for Oxygen Supply Chains

Authors: Yena Lee, Vassilis M. Charitopoulos, Karthik Thyagarajan, Ian Morris, Jose M. Pinto, Lazaros G. Papageorgiou

Abstract:

With globalisation, the need to have better coordination of production and distribution decisions has become increasingly important for industrial gas companies in order to remain competitive in the marketplace. In this work, we investigate a problem that integrates production, inventory, and routing decisions in a liquid oxygen supply chain. The oxygen supply chain consists of production facilities, external third-party suppliers, and multiple customers, including hospitals and industrial customers. The product produced by the plants or sourced from the competitors, i.e., third-party suppliers, is distributed by a fleet of heterogenous vehicles to satisfy customer demands. The objective is to minimise the total operating cost involving production, third-party, and transportation costs. The key decisions for production include production and inventory levels and product amount from third-party suppliers. In contrast, the distribution decisions involve customer allocation, delivery timing, delivery amount, and vehicle routing. The optimisation of the coordinated production, inventory, and routing decisions is a challenging problem, especially when dealing with large-size problems. Thus, we present a two-stage procedure to solve the integrated problem efficiently. First, the problem is formulated as a mixed-integer linear programming (MILP) model by simplifying the routing component. The solution from the first-stage MILP model yields the optimal customer allocation, production and inventory levels, and delivery timing and amount. Then, we fix the previous decisions and solve a detailed routing. In the second stage, we propose a column generation scheme to address the computational complexity of the resulting detailed routing problem. A case study considering a real-life oxygen supply chain in the UK is presented to illustrate the capability of the proposed models and solution method. Furthermore, a comparison of the solutions from the proposed approach with the corresponding solutions provided by existing metaheuristic techniques (e.g., guided local search and tabu search algorithms) is presented to evaluate the efficiency.

Keywords: production planning, inventory routing, column generation, mixed-integer linear programming

Procedia PDF Downloads 92
293 Anaerobic Co-digestion in Two-Phase TPAD System of Sewage Sludge and Fish Waste

Authors: Rocio López, Miriam Tena, Montserrat Pérez, Rosario Solera

Abstract:

Biotransformation of organic waste into biogas is considered an interesting alternative for the production of clean energy from renewable sources by reducing the volume and organic content of waste Anaerobic digestion is considered one of the most efficient technologies to transform waste into fertilizer and biogas in order to obtain electrical energy or biofuel within the concept of the circular economy. Currently, three types of anaerobic processes have been developed on a commercial scale: (1) single-stage process where sludge bioconversion is completed in a single chamber, (2) two-stage process where the acidogenic and methanogenic stages are separated into two chambers and, finally, (3) temperature-phase sequencing (TPAD) process that combines a thermophilic pretreatment unit prior to mesophilic anaerobic digestion. Two-stage processes can provide hydrogen and methane with easier control of the first and second stage conditions producing higher total energy recovery and substrate degradation than single-stage processes. On the other hand, co-digestion is the simultaneous anaerobic digestion of a mixture of two or more substrates. The technology is similar to anaerobic digestion but is a more attractive option as it produces increased methane yields due to the positive synergism of the mixtures in the digestion medium thus increasing the economic viability of biogas plants. The present study focuses on the energy recovery by anaerobic co-digestion of sewage sludge and waste from the aquaculture-fishing sector. The valorization is approached through the application of a temperature sequential phase process or TPAD technology (Temperature - Phased Anaerobic Digestion). Moreover, two-phase of microorganisms is considered. Thus, the selected process allows the development of a thermophilic acidogenic phase followed by a mesophilic methanogenic phase to obtain hydrogen (H₂) in the first stage and methane (CH₄) in the second stage. The combination of these technologies makes it possible to unify all the advantages of these anaerobic digestion processes individually. To achieve these objectives, a sequential study has been carried out in which the biochemical potential of hydrogen (BHP) is tested followed by a BMP test, which will allow checking the feasibility of the two-stage process. The best results obtained were high total and soluble COD yields (59.8% and 82.67%, respectively) as well as H₂ production rates of 12LH₂/kg SVadded and methane of 28.76 L CH₄/kg SVadded for TPAD.

Keywords: anaerobic co-digestion, TPAD, two-phase, BHP, BMP, sewage sludge, fish waste

Procedia PDF Downloads 125
292 Ethnic Andean Concepts of Health and Illness in the Post-Colombian World and Its Relevance Today

Authors: Elizabeth J. Currie, Fernando Ortega Perez

Abstract:

—‘MEDICINE’ is a new project funded under the EC Horizon 2020 Marie-Sklodowska Curie Actions, to determine concepts of health and healing from a culturally specific indigenous context, using a framework of interdisciplinary methods which integrates archaeological-historical, ethnographic and modern health sciences approaches. The study will generate new theoretical and methodological approaches to model how peoples survive and adapt their traditional belief systems in a context of alien cultural impacts. In the immediate wake of the conquest of Peru by invading Spanish armies and ideology, native Andeans responded by forming the Taki Onkoy millenarian movement, which rejected European philosophical and ontological teachings, claiming “you make us sick”. The study explores how people’s experience of their world and their health beliefs within it, is fundamentally shaped by their inherent beliefs about the nature of being and identity in relation to the wider cosmos. Cultural and health belief systems and related rituals or behaviors sustain a people’s sense of identity, wellbeing and integrity. In the event of dislocation and persecution these may change into devolved forms, which eventually inter-relate with ‘modern’ biomedical systems of health in as yet unidentified ways. The development of new conceptual frameworks that model this process will greatly expand our understanding of how people survive and adapt in response to cultural trauma. It will also demonstrate the continuing role, relevance and use of TM in present-day indigenous communities. Studies will first be made of relevant pre-Colombian material culture, and then of early colonial period ethnohistorical texts which document the health beliefs and ritual practices still employed by indigenous Andean societies at the advent of the 17th century Jesuit campaigns of persecution - ‘Extirpación de las Idolatrías’. Core beliefs drawn from these baseline studies will then be used to construct a questionnaire about current health beliefs and practices to be taken into the study population of indigenous Quechua peoples in the northern Andean region of Ecuador. Their current systems of knowledge and medicine have evolved within complex historical contexts of both the conquest by invading Inca armies in the late 15th century, followed a generation later by Spain, into new forms. A new model will be developed of contemporary  Andean concepts of health, illness and healing demonstrating  the way these have changed through time. With this, a ‘policy tool’ will be constructed as a bridhging facility into contemporary global scenarios relevant to other Indigenous, First Nations, and migrant peoples to provide a means through which their traditional health beliefs and current needs may be more appropriately understood and met. This paper presents findings from the first analytical phases of the work based upon the study of the literature and the archaeological records. The study offers a novel perspective and methods in the development policies sensitive to indigenous and minority people’s health needs.

Keywords: Andean ethnomedicine, Andean health beliefs, health beliefs models, traditional medicine

Procedia PDF Downloads 324