Search results for: interfaces of processes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5935

Search results for: interfaces of processes

2995 Microstructural and Tribological Properties of Thermally Sprayed High Entropy Alloys Coating

Authors: Abhijith N. V., Abhijit Pattnayak, Deepak Kumar

Abstract:

Nowadays, a group of alloys, namely high entropy alloys (HEA), because of their excellent properties. However, the fabrication of HEAs requires multistage techniques, especially mill-ing, sieving, compaction, sintering, inert media, etc. These processes are laborious, costly, time-oriented, and unsuitable for commercial application. This study adopted a single-stage process-based HVOF thermal spray to develop HEA coating on SS304L substrates. The wear behavior of the deposited HEA coating was explored under different milling time durations (5h, 10h, and 15h, respectively). The effect of feedstock preparation, microstructure, surface chemistry, and mechanical and metallurgical properties on wear resistance was also investigated. The microstructure and composition of both coating and feedstock were evaluated by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis. Finally, the phase distribution was correlated by X-ray diffraction (XRD ) analysis. The results showed that 15h milled powder coating indicated better tribological than the base substrate and 5h,10h milled powder coating. A chemically stable Body Centered Cubic (BCC) solid solution phase was generated within the 15h milled powder-coated system, which resulted in superior tribological properties.

Keywords: high entropy alloys coating, wear mechanism, HVOF coating, microstructure

Procedia PDF Downloads 98
2994 Comparative Canadian Online News Coverage Analysis of Sex Trafficking Reported Cases in Ontario, and Nova Scotia

Authors: Alisha Fisher

Abstract:

Sex trafficking is a worldwide crisis that requires trauma-informed and survivor-centered media attention to accurate disseminate information. Much of the previous literature on sex trafficking tends to focus on the frequency of incidents, intervention, and support strategies for survivors, with few of them looking to how the media is conducting their reporting on sex trafficking cases to the public. Utilizing data of reports from the media of cases of sex trafficking in the two Canadian provinces with the highest cases of sex trafficking, Ontario and Nova Scotia, the authors sought to analyze the similarities and differences of how sex trafficking cases were being reported. A total of twenty articles were examined, with ten based within the province of Ontario and the remaining ten from the province of Nova Scotia. The authors coded in two processes, first, who the article was about, and second, the framing and content inclusion. The results suggest that there is high usage and reliance of voices and images of authority, with male people of color being shown as the perpetrators and white women being shown as the survivors. These findings can aid in the expansion of trauma-informed, survivor-centered media literacy of reports of sex trafficking to provide accurate insights and further developing robust methods to intersectional approaches to reporting cases of sex trafficking.

Keywords: sex trafficking, media coverage, Canada sex trafficking, content analysis

Procedia PDF Downloads 189
2993 Analysis Mechanized Boring (TBM) of Tehran Subway Line 7

Authors: Shahin Shabani, Pouya Pourmadadi

Abstract:

Tunnel boring machines (TBMs) have been used for the construction of various tunnels for mining projects for the purpose of access, conveyance of ore and waste, drainage, exploration, water supply and water diversion. Several mining projects have seen the successful and economic beneficial use of TBMs, and there is an increasing awareness of the benefits of TBMs for mining projects. Key technical considerations for the use of TBMs for the construction of tunnels for mining projects include geological issues (rock type, rock alteration, rock strength, rock abrasivity, durability, ground water inflows), depth of cover and the potential for overstressing/rockbursts, site access and terrain, portal locations, TBM constraints, minimum tunnel size, tunnel support requirements, contractor and labor experience, and project schedule demands. This study focuses on tunnelling mining, with the goal to develop methods and tools to be used to gain understanding of these processes, and to analyze metro of Tehran. The Metro Line 7 of Tehran is one of the Longest (26 Km) and deepest (27m) of projects that’s under implementation. Because of major differences like passing under all geotechnical layers of the town and encountering part of it with underground water table and also using mechanized excavation system, is one of special metro projects.

Keywords: TBM, tunnel boring machines economic, metro, line 7

Procedia PDF Downloads 384
2992 Thermal Decontamination of Soils Polluted by Polychlorinated Biphenyls and Microplastics

Authors: Roya Biabani, Mentore Vaccari, Piero Ferrari

Abstract:

Accumulated microplastic (MPLs) in soil pose the risk of adsorbing and transporting polychlorinated biphenyls (PCBs) into the food chain or bodies. PCBs belong to a class of man-made hydrophobic organic chemicals (HOCs) that are classified as probable human carcinogens and a hazard to biota. Therefore, to take effective action and not aggravate the already recognized problems, the knowledge of PCB remediation in the presence of MPLs needs to be complete. Due to the high efficiency and little secondary pollution production, thermal desorption (TD) has been widely used for processing a variety of pollutants, especially for removing volatile and semi-volatile organic matter from contaminated solids and sediment. This study investigates the fate of PCB compounds during the thermal remediation method. For this, the PCB-contaminated soil was collected from the earth-canal downstream Caffaro S.p.A. chemical factory, which produced PCBs and PCB mixtures between 1930 and 1984. For MPL analysis, MPLs were separated by density separation and oxidation of organic matter. An operational range for the key parameters of thermal desorption processes was experimentally evaluated. Moreover, the temperature treatment characteristics of the PCBs-contaminated soil under anaerobic and aerobic conditions were studied using the Thermogravimetric Analysis (TGA).

Keywords: contaminated soils, microplastics, polychlorinated biphenyls, thermal desorption

Procedia PDF Downloads 104
2991 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection

Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen

Abstract:

Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.

Keywords: big data analytics, Industry 4.0, SPI threshold setting, surface mount technology

Procedia PDF Downloads 116
2990 Implementation of Lean Manufacturing in Some Companies in Colombia: A Case Study

Authors: Natalia Marulanda, Henry González, Gonzalo León, Alejandro Hincapié

Abstract:

Continuous improvement tools are the result of a set of studies that developed theories and methodologies. These methodologies enable organizations to increase their levels of efficiency, effectiveness, and productivity. Based on these methodologies, lean manufacturing philosophy, which is based on the optimization of resources, waste disposal, and generation of value to products and services, was developed. Lean application has been massive globally, but Colombian companies have been made it incipiently. Therefore, the purpose of this article is to identify the impacts generated by the implementation of lean manufacturing tools in five companies located in Colombia and Medellín metropolitan area. It also seeks to make a comparison of the results obtained from the implementation of lean philosophy and Theory of Constraints. The methodology is qualitative and quantitative, is based on the case study interview from dialogue with the leaders of the processes that used lean tools. The most used tools by research companies are 5's with 100% and TPM with 80%. The less used tool is the synchronous production with 20%. The main reason for the implementation of lean was supply chain management with 83.3%. For the application of lean and TOC, we did not find significant differences between the impact, in terms of methodology, areas of application, staff initiatives, supply chain management, planning, and training.

Keywords: business strategy, lean manufacturing, theory of constraints, supply chain

Procedia PDF Downloads 354
2989 Physico-Chemical Characterization of Vegetable Oils from Oleaginous Seeds (Croton megalocarpus, Ricinus communis L., and Gossypium hirsutum L.)

Authors: Patrizia Firmani, Sara Perucchini, Irene Rapone, Raffella Borrelli, Stefano Chiaberge, Manuela Grande, Rosamaria Marrazzo, Alberto Savoini, Andrea Siviero, Silvia Spera, Fabio Vago, Davide Deriu, Sergio Fanutti, Alessandro Oldani

Abstract:

According to the Renewable Energy Directive II, the use of palm oil in diesel will be gradually reduced from 2023 and should reach zero in 2030 due to the deforestation caused by its production. Eni aims at finding alternative feedstocks for its biorefineries to eliminate the use of palm oil by 2023. Therefore, the ideal vegetable oils to be used in bio-refineries are those obtainable from plants that grow in marginal lands and with low impact on food-and-feed chain; hence, Eni research is studying the possibility of using oleaginous seeds, such as castor, croton, and cotton, to extract the oils to be exploited as feedstock in bio-refineries. To verify their suitability for the upgrading processes, an analytical protocol for their characterization has been drawn up and applied. The analytical characterizations include a step of water and ashes content determination, elemental analysis (CHNS analysis, X-Ray Fluorescence, Inductively Coupled Plasma - Optical Emission Spectroscopy, ICP– Mass Spectrometry), and total acid number determination. Gas chromatography coupled to flame ionization detector (GC-FID) is used to quantify the lipid content in terms of free fatty acids, mono-, di- and triacylglycerols, and fatty acids composition. Eventually, Nuclear Magnetic Resonance and Fourier Transform-Infrared spectroscopies are exploited with GC-MS and Fourier Transform-Ion Cyclotron Resonance to study the composition of the oils. This work focuses on the GC-FID analysis of the lipid fraction of these oils, as the main constituent and of greatest interest for bio-refinery processes. Specifically, the lipid component of the extracted oil was quantified after sample silanization and transmethylation: silanization allows the elution of high-boiling compounds and is useful for determining the quantity of free acids and glycerides in oils, while transmethylation leads to a mixture of fatty acid esters and glycerol, thus allowing to evaluate the composition of glycerides in terms of Fatty Acids Methyl Esters (FAME). Cotton oil was extracted from cotton oilcake, croton oil was obtained by seeds pressing and seeds and oilcake ASE extraction, while castor oil comes from seed pressing (not performed in Eni laboratories). GC-FID analyses reported that the cotton oil is 90% constituted of triglycerides and about 6% diglycerides, while free fatty acids are about 2%. In terms of FAME, C18 acids make up 70% of the total and linoleic acid is the major constituent. Palmitic acid is present at 17.5%, while the other acids are in low concentration (<1%). Both analyzes show the presence of non-gas chromatographable compounds. Croton oils from seed pressing and extraction mainly contain triglycerides (98%). Concerning FAME, the main component is linoleic acid (approx. 80%). Oilcake croton oil shows higher abundance of diglycerides (6% vs ca 2%) and a lower content of triglycerides (38% vs 98%) compared to the previous oils. Eventually, castor oil is mostly constituted of triacylglycerols (about 69%), followed by diglycerides (about 10%). About 85.2% of total FAME is ricinoleic acid, as a constituent of triricinolein, the most abundant triglyceride of castor oil. Based on the analytical results, these oils represent feedstocks of interest for possible exploitation as advanced biofuels.

Keywords: analytical protocol, biofuels, biorefinery, gas chromatography, vegetable oil

Procedia PDF Downloads 144
2988 Vertical Accuracy Evaluation of Indian National DEM (CartoDEM v3) Using Dual Frequency GNSS Derived Ground Control Points for Lower Tapi Basin, Western India

Authors: Jaypalsinh B. Parmar, Pintu Nakrani, Ashish Chaurasia

Abstract:

Digital Elevation Model (DEM) is considered as an important data in GIS-based terrain analysis for many applications and assessment of processes such as environmental and climate change studies, hydrologic modelling, etc. Vertical accuracy of DEM having geographically dynamic nature depends on different parameters which affect the model simulation outcomes. Vertical accuracy assessment in Indian landscape especially in low-lying coastal urban terrain such as lower Tapi Basin is very limited. In the present study, attempt has been made to evaluate the vertical accuracy of 30m resolution open source Indian National Cartosat-1 DEM v3 for Lower Tapi Basin (LTB) from western India. The extensive field investigation is carried out using stratified random fast static DGPS survey in the entire study region, and 117 high accuracy ground control points (GCPs) have been obtained. The above open source DEM was compared with obtained GCPs, and different statistical attributes were envisaged, and vertical error histograms were also evaluated.

Keywords: CartoDEM, Digital Elevation Model, GPS, lower Tapi basin

Procedia PDF Downloads 358
2987 Observations of Magnetospheric Ulf Waves in Connection to the Kelvin-Helmholtz Instability at Mercury

Authors: Elisabet Liljeblad, Tomas Karlsson, Torbjorn Sundberg, Anita Kullen

Abstract:

The magnetospheric magnetic field data from the MESSENGER spacecraft is investigated to establish the presence of ultra-low frequency (ULF) waves in connection to 131 previously observed nonlinear Kelvin-Helmholtz waves (KHWs) at Mercury. Distinct ULF signatures are detected in 44 out of the 131 magnetospheric traversals prior to or after observing a KHW. In particular, 39 of these 44 ULF events are highly coherent at the frequency of maximum power spectral density. The waves observed at the dayside, which appears mainly at the duskside and naturally following the KHW occurrence asymmetry, are significantly different to the events behind the dawn-dusk terminator and have the following distinct wave characteristics: they oscillate clearly in the perpendicular (azimuthal) direction to the mean magnetic field with a wave normal angle more in the parallel than the perpendicular direction, increase in absolute ellipticity with distance from noon, are almost exclusively right-hand polarized, and are observed mainly for frequencies in the range 0.02-0.04 Hz. These results indicate that the dayside ULF waves are likely to shear Alfvén waves driven by KHWs at the magnetopause, which in turn manifests the importance of the Kelvin-Helmholtz instability in terms of mass transport throughout the Mercury magnetosphere.

Keywords: ultra-low frequency waves, kelvin-Helmholtz instability, magnetospheric processes, mercury, messenger, energy and momentum transfer in planetary environments

Procedia PDF Downloads 240
2986 Assessment of Environmental Impact of Rain Water and Industrial Water Leakage in the Libyan Iron and Steel Company in the Sea Water

Authors: Mohamed Alzarug Aburugba, Rashid Mohamed Eltanashi

Abstract:

Rainwater is considered an essential water resource, as it contributes to filling the deficit in water resources, especially in countries that suffer from a scarcity of natural water sources. One of the important issues facing the Water and Gas Services Department at the Libyan Iron and Steel Company is the large loss of quantities of industrial water, both direct and indirect cooling water (DCW, ICW), produced within the company due to leaks in the cooling systems of the factories of the Libyan Iron and Steel Company. These amounts of polluted industrial water leakage are mixed with rainwater collected by stormwater stations (6 stations) in LISCO, which is pumped to the sea through pumps with a very high flow rate, and thus, this will carry a lot of waste, heavy metals, and oils to the sea, which negatively affects marine environmental resources. This paper assesses the environmental impact of the quantities of rainwater and mixed industrial water in stormwater stations in the Libyan Iron and Steel Company and methods of mitigation, treating pollutants and reusing them as industrial water in the production processes of the steel industry.

Keywords: rainwater, mitigation, impact, sewage, heavy metals, assessment, pollution, environment, natural resources, industrial water.

Procedia PDF Downloads 64
2985 Pressure Drop Study in Moving and Stationary Beds with Lateral Gas Injection

Authors: Vinci Mojamdar, Govind S. Gupta

Abstract:

Moving beds in the presence of gas flow are widely used in metallurgical and chemical industries like blast furnaces, catalyst reforming, drying, etc. Pressure drop studies in co- and counter – current conditions have been done by a few researchers. However, to the best of authours knowledge, proper pressure drop study with lateral gas injection lacks especially in the presence of cavity and nozzle protrusion inside the packed bed. The latter study is more useful for metallurgical industries for the processes such as blast furnaces, shaft reduction and, COREX. In this experimental work, a two dimensional cold model with slot type nozzle for lateral gas injection along with the plastic beads as packing material and dry air as gas have been used. The variation of pressure drop is recorded at various horizontal and vertical directions in the presence of cavity and nozzle protrusion. The study has been performed in both moving and stationary beds. Also, the experiments have been carried out in both increasing as well as decreasing gas flow conditions. Experiments have been performed at various gas flow rates and packed bed heights. Some interesting results have been reported such as there is no pressure variation in the moving bed for both the increasing and decreasing gas flow condition that is different from the stationary bed. Pressure hysteresis loop has been observed in a stationary bed.

Keywords: lateral gas injection, moving bed, pressure drop, pressure hysteresis, stationary bed

Procedia PDF Downloads 313
2984 Comparative Study of Deep Reinforcement Learning Algorithm Against Evolutionary Algorithms for Finding the Optimal Values in a Simulated Environment Space

Authors: Akshay Paranjape, Nils Plettenberg, Robert Schmitt

Abstract:

Traditional optimization methods like evolutionary algorithms are widely used in production processes to find an optimal or near-optimal solution of control parameters based on the simulated environment space of a process. These algorithms are computationally intensive and therefore do not provide the opportunity for real-time optimization. This paper utilizes the Deep Reinforcement Learning (DRL) framework to find an optimal or near-optimal solution for control parameters. A model based on maximum a posteriori policy optimization (Hybrid-MPO) that can handle both numerical and categorical parameters is used as a benchmark for comparison. A comparative study shows that DRL can find optimal solutions of similar quality as compared to evolutionary algorithms while requiring significantly less time making them preferable for real-time optimization. The results are confirmed in a large-scale validation study on datasets from production and other fields. A trained XGBoost model is used as a surrogate for process simulation. Finally, multiple ways to improve the model are discussed.

Keywords: reinforcement learning, evolutionary algorithms, production process optimization, real-time optimization, hybrid-MPO

Procedia PDF Downloads 112
2983 AI as a Tool Hindering Digital Education

Authors: Justyna Żywiołek, Marek Matulewski

Abstract:

The article presents the results of a survey conducted among students from various European countries. The aim of the study was to understand how artificial intelligence (AI) affects educational processes in a digital environment. The survey covered a wide range of topics, including students' understanding and use of AI, its impact on motivation and engagement, interaction and support issues, accessibility and equity, and data security and privacy concerns. Most respondents admitted having difficulties comprehending the advanced functions of AI in educational tools. Many students believe that excessive use of AI in education can decrease their motivation for self-study and active participation in classes. Additionally, students reported that interaction with AI-based tools is often less satisfying compared to direct contact with teachers. Furthermore, the survey highlighted inequalities in access to advanced AI tools, which can widen the educational gap between students from different economic backgrounds. Students also expressed concerns about the security and privacy of their personal data collected and processed by AI systems. The findings suggest that while AI has the potential to support digital education, significant challenges need to be addressed to make these tools more effective and acceptable for students. Recommendations include increasing training for students and teachers on using AI, providing more interactive and engaging forms of education, and implementing stricter regulations on data protection.

Keywords: AI, digital education, education tools, motivation and engagement

Procedia PDF Downloads 29
2982 An Effective and Efficient Web Platform for Monitoring, Control, and Management of Drones Supported by a Microservices Approach

Authors: Jorge R. Santos, Pedro Sebastiao

Abstract:

In recent years there has been a great growth in the use of drones, being used in several areas such as security, agriculture, or research. The existence of some systems that allow the remote control of drones is a reality; however, these systems are quite simple and directed to specific functionality. This paper proposes the development of a web platform made in Vue.js and Node.js to control, manage, and monitor drones in real time. Using a microservice architecture, the proposed project will be able to integrate algorithms that allow the optimization of processes. Communication with remote devices is suggested via HTTP through 3G, 4G, and 5G networks and can be done in real time or by scheduling routes. This paper addresses the case of forest fires as one of the services that could be included in a system similar to the one presented. The results obtained with the elaboration of this project were a success. The communication between the web platform and drones allowed its remote control and monitoring. The incorporation of the fire detection algorithm in the platform proved possible a real time analysis of the images captured by the drone without human intervention. The proposed system has proved to be an asset to the use of drones in fire detection. The architecture of the application developed allows other algorithms to be implemented, obtaining a more complex application with clear expansion.

Keywords: drone control, microservices, node.js, unmanned aerial vehicles, vue.js

Procedia PDF Downloads 148
2981 In-situ Fabrication of a Metal-Intermetallic Composite: Microstructure Evolution and Mechanical Response

Authors: Monireh Azimi, Mohammad Reza Toroghinejad, Leo A. I. Kestens

Abstract:

The role of different metallic and intermetallic reinforcements on the microstructure and the associated mechanical response of a composite is of crucial importance. To investigate this issue, a multiphase metal-intermetallic composite was in-situ fabricated through reactive annealing and accumulative roll bonding (ARB) processes. EBSD results indicated that the lamellar grain structure of the Al matrix after the first cycle has evolved with increasing strain to a mixed structure consisting of equiaxed and lamellar grains, whereby the steady-state did not occur after the 3rd (last) cycle—applying a strain of 6.1 in the Al phase, the length and thickness of the grains reduced by 92.2% and 97.3%, respectively, compared to the annealed state. Intermetallic phases together with the metallic reinforcement of Ni influence grain fragmentation of the Al matrix and give rise to a specific texture evolution by creating heterogeneity in the strain and flow patterns. Mechanical properties of the multiphase composite demonstrated the yield and ultimate tensile strengths of 217.9 MPa and 340.1 MPa, respectively, compared to 48.7 MPa and 55.4 MPa in the metal-intermetallic laminated (MIL) sandwich before applying the ARB process, which corresponds to an increase of 347% and 514% of yield and tensile strength, respectively.

Keywords: accumulative roll bonding, mechanical properties, metal-intermetallic composite, severe plastic deformation, texture

Procedia PDF Downloads 194
2980 Analytic Network Process in Location Selection and Its Application to a Real Life Problem

Authors: Eylem Koç, Hasan Arda Burhan

Abstract:

Location selection presents a crucial decision problem in today’s business world where strategic decision making processes have critical importance. Thus, location selection has strategic importance for companies in boosting their strength regarding competition, increasing corporate performances and efficiency in addition to lowering production and transportation costs. A right choice in location selection has a direct impact on companies’ commercial success. In this study, a store location selection problem of Carglass Turkey which operates in vehicle glass branch is handled. As this problem includes both tangible and intangible criteria, Analytic Network Process (ANP) was accepted as the main methodology. The model consists of control hierarchy and BOCR subnetworks which include clusters of actors, alternatives and criteria. In accordance with the management’s choices, five different locations were selected. In addition to the literature review, a strict cooperation with the actor group was ensured and maintained while determining the criteria and during whole process. Obtained results were presented to the management as a report and its feasibility was confirmed accordingly.

Keywords: analytic network process (ANP), BOCR, multi-actor decision making, multi-criteria decision making, real-life problem, location selection

Procedia PDF Downloads 470
2979 Simulation of Single-Track Laser Melting on IN718 using Material Point Method

Authors: S. Kadiyala, M. Berzins, D. Juba, W. Keyrouz

Abstract:

This paper describes the Material Point Method (MPM) for simulating a single-track laser melting process on an IN718 solid plate. MPM, known for simulating challenging multiphysics problems, is used to model the intricate thermal, mechanical, and fluid interactions during the laser sintering process. This study analyzes the formation of single tracks, exploring the impact of varying laser parameters such as speed, power, and spot diameter on the melt pool and track formation. The focus is on MPM’s ability to accurately simulate and capture the transient thermo-mechanical and phase change phenomena, which are critical in predicting the cooling rates before and after solidification of the laser track and the final melt pool geometry. The simulation results are rigorously compared with experimental data (AMB2022 benchmarks), demonstrating the effectiveness of MPM in replicating the physical processes in laser sintering. This research highlights the potential of MPM in advancing the understanding and simulation of melt pool physics in metal additive manufacturing, paving the way for optimized process parameters and improved material performance.

Keywords: dditive manufacturing simulation, material point method, phase change, melt pool physics

Procedia PDF Downloads 59
2978 ‘Groupitizing’ – A Key Factor in Math Learning Disabilities

Authors: Michal Wolk, Bat-Sheva Hadad, Orly Rubinsten

Abstract:

Objective: The visuospatial perception system process that allows us to decompose and recompose small quantities into a whole is often called “groupitizing.” Previous studies have been found that adults use groupitizing processes in quantity estimation tasks and link this ability of subgroups recognition to arithmetic proficiency. This pilot study examined if adults with math difficulties benefit from visuospatial grouping cues when asked to estimate the quantity of a given set. It also compared the tipping point in which a significant improvement occurs in adults with typical development compared to adults with math difficulties. Method: In this pilot research, we recruited adults with low arithmetic abilities and matched controls. Participants were asked to estimate the quantity of a given set. Different grouping cues were displayed (space, color, or none) with different visual configurations (different quantities-different shapes, same quantities- different shapes, same quantities- same shapes). Results: Both groups showed significant performance improvement when grouping cues appeared. However, adults with low arithmetic abilities benefited from the grouping cues already in very small quantities as four. Conclusion: impaired perceptual groupitizing abilities may be a characteristic of low arithmetic abilities.

Keywords: groupitizing, math learning disability, quantity estimation, visual perception system

Procedia PDF Downloads 204
2977 Simulation and Experimental Research on Pocketing Operation for Toolpath Optimization in CNC Milling

Authors: Rakesh Prajapati, Purvik Patel, Avadhoot Rajurkar

Abstract:

Nowadays, manufacturing industries augment their production lines with modern machining centers backed by CAM software. Several attempts are being made to cut down the programming time for machining complex geometries. Special programs/software have been developed to generate the digital numerical data and to prepare NC programs by using suitable post-processors for different machines. By selecting the tools and manufacturing process then applying tool paths and NC program are generated. More and more complex mechanical parts that earlier were being cast and assembled/manufactured by other processes are now being machined. Majority of these parts require lots of pocketing operations and find their applications in die and mold, turbo machinery, aircraft, nuclear, defense etc. Pocketing operations involve removal of large quantity of material from the metal surface. The modeling of warm cast and clamping a piece of food processing parts which the used of Pro-E and MasterCAM® software. Pocketing operation has been specifically chosen for toolpath optimization. Then after apply Pocketing toolpath, Multi Tool Selection and Reduce Air Time give the results of software simulation time and experimental machining time.

Keywords: toolpath, part program, optimization, pocket

Procedia PDF Downloads 288
2976 Sensor Monitoring of the Concentrations of Different Gases Present in Synthesis of Ammonia Based on Multi-Scale Entropy and Multivariate Statistics

Authors: S. Aouabdi, M. Taibi

Abstract:

The supervision of chemical processes is the subject of increased development because of the increasing demands on reliability and safety. An important aspect of the safe operation of chemical process is the earlier detection of (process faults or other special events) and the location and removal of the factors causing such events, than is possible by conventional limit and trend checks. With the aid of process models, estimation and decision methods it is possible to also monitor hundreds of variables in a single operating unit, and these variables may be recorded hundreds or thousands of times per day. In the absence of appropriate processing method, only limited information can be extracted from these data. Hence, a tool is required that can project the high-dimensional process space into a low-dimensional space amenable to direct visualization, and that can also identify key variables and important features of the data. Our contribution based on powerful techniques for development of a new monitoring method based on multi-scale entropy MSE in order to characterize the behaviour of the concentrations of different gases present in synthesis and soft sensor based on PCA is applied to estimate these variables.

Keywords: ammonia synthesis, concentrations of different gases, soft sensor, multi-scale entropy, multivarite statistics

Procedia PDF Downloads 336
2975 Floodplain Modeling of River Jhelum Using HEC-RAS: A Case Study

Authors: Kashif Hassan, M.A. Ahanger

Abstract:

Floods have become more frequent and severe due to effects of global climate change and human alterations of the natural environment. Flood prediction/ forecasting and control is one of the greatest challenges facing the world today. The forecast of floods is achieved by the use of hydraulic models such as HEC-RAS, which are designed to simulate flow processes of the surface water. Extreme flood events in river Jhelum , lasting from a day to few are a major disaster in the State of Jammu and Kashmir, India. In the present study HEC-RAS model was applied to two different reaches of river Jhelum in order to estimate the flood levels corresponding to 25, 50 and 100 year return period flood events at important locations and to deduce flood vulnerability of important areas and structures. The flow rates for the two reaches were derived from flood-frequency analysis of 50 years of historic peak flow data. Manning's roughness coefficient n was selected using detailed analysis. Rating Curves were also generated to serve as base for determining the boundary conditions. Calibration and Validation procedures were applied in order to ensure the reliability of the model. Sensitivity analysis was also performed in order to ensure the accuracy of Manning's n in generating water surface profiles.

Keywords: flood plain, HEC-RAS, Jhelum, return period

Procedia PDF Downloads 426
2974 Physicochemical, Heavy Metals Analysis of Some Multi-Floral Algerian Honeys

Authors: Assia Amri, Naima Layachi, Ali Ladjama

Abstract:

The characterization of some Algerian honey was carried out on the basis of their physico-chemical properties: moisture,hydroxy methyl furfural, diastase activity, pH,free, total and lactonic acidity, electrical conductivity, minerals and proline content. Studied samples are found to be low in moisture and therefore safe from fermentation, low in HMF level and high in diastase activity. Additionally the diastase activity and the HMF content are widely recognized parameters indicating the freshness of honey. Phenolic compounds present in honey are classified into two groups - simple phenols and polyphenols. The simple phenols in honey are various phenol acids, but polyphenols are various flavonoids and flavonides. The aim of our work was to determine antioxidant properties of various Algerian honey samples–the total phenol content, total flavonoids content, as well as honey anti radical activity.The quality of honey samples differs on account of various factors such as season, packaging and processing conditions, floral source, geographical origin and storage period. It is important that precautions should be taken to ensure standardization and rationalization of beekeeping techniques, manufacturing procedures and storing processes to improve honey quality.

Keywords: honey, physico-chemical characterization, phenolic coumpound, HMF, diastase activity

Procedia PDF Downloads 423
2973 A Study on the Stabilization of the Swell Behavior of Basic Oxygen Furnace Slag by Using Geopolymer Technology

Authors: K. Y. Lin, W. H. Lee, T. W. Cheng, S. W. Huang

Abstract:

Basic Oxygen Furnace (BOF) Slag is a by-product of iron making. It has great engineering properties, such as, high hardness and density, high compressive strength, low abrasion ratio, and can replace natural aggregate for building materials. However, the main problem for BOF slag is expansion, due to it contains free lime or free magnesium. The purpose of this study was to stabilize the BOF slag by using geopolymeric technology, hoping can prevent BOF slag expansion. Geopolymer processes contain a large amount of free silicon. These free silicon can react with free-lime or free magnesium oxide in BOF slag, and thus to form stable compound, therefore inhibit the expansion of the BOF slag. In this study for the successful preparation of geopolymer mortar with BOF slag, and their main properties are analyzed with regard to their use as building materials. Autoclave is used to study the volume stability of these geopolymer mortar. Finally, the compressive strength of geopolymer mortar with BOF slag can be reached 33MPa in 28 days. After autoclave testing, the volume expansion does not exceed 0.2%. Even after the autoclave test, the compressive strength can increase to 35MPa. According to the research results can be proved that using geopolymer technology for stabilizing BOF slag is very effective.

Keywords: BOF slag, autoclave test, geopolymer, swell behavior

Procedia PDF Downloads 136
2972 The Effect of Perceived Organizational Support and Leader Member Exchange on Turnover Intention: A Field Study in the Healthcare Industry

Authors: Mehtap Öztürk, Adem Öğüt, Emine Öğüt

Abstract:

Leader member exchange is considered as relationship-based approach to leadership. The focal point of this theory is that effective leadership processes occur when leaders and followers are able to develop mature leadership relationships and thus gain access to a variety of benefits these relationships bring. In this context, it can be claimed that the quality of leader member exchange appears to have a strong affect on perceived organizational support and reduce turnover intention. The purpose of this study is to determine the relationship between the levels of leader member exchange, perceived organizational support and turnover intention on the employees of a health institution operating in the province of Konya. A field study based on survey method on 134 physicians who are employees of a health institution operating in the mentioned sample. In accordance with this purpose, it has been observed that there is a negative and statistically significant relationship between leader member exchange and turnover intention. Furthermore, it has been also realized that there is a negative and statistically significant relationship between perceived organizational support and turnover intention.

Keywords: leader member exchange, perceived organizational support, social exchange theory, turnover intention

Procedia PDF Downloads 358
2971 Defining a Pathway to Zero Energy Building: A Case Study on Retrofitting an Old Office Building into a Net Zero Energy Building for Hot-Humid Climate

Authors: Kwame B. O. Amoah

Abstract:

This paper focuses on retrofitting an old existing office building to a net-zero energy building (NZEB). An existing small office building in Melbourne, Florida, was chosen as a case study to integrate state-of-the-art design strategies and energy-efficient building systems to improve building performance and reduce energy consumption. The study aimed to explore possible ways to maximize energy savings and renewable energy generation sources to cover the building's remaining energy needs necessary to achieve net-zero energy goals. A series of retrofit options were reviewed and adopted with some significant additional decision considerations. Detailed processes and considerations leading to zero energy are well documented in this study, with lessons learned adequately outlined. Based on building energy simulations, multiple design considerations were investigated, such as emerging state-of-the-art technologies, material selection, improvements to the building envelope, optimization of the HVAC, lighting systems, and occupancy loads analysis, as well as the application of renewable energy sources. The comparative analysis of simulation results was used to determine how specific techniques led to energy saving and cost reductions. The research results indicate this small office building can meet net-zero energy use after appropriate design manipulations and renewable energy sources.

Keywords: energy consumption, building energy analysis, energy retrofits, energy-efficiency

Procedia PDF Downloads 223
2970 Accountants and Anti-Money Laundering Compliance in the Real Estate Sector

Authors: Mark E. Lokanan, Liz Lee

Abstract:

This paper aims to examine the role of accountants as gatekeepers in anti-money laundering compliance in real estate transactions. The paper seeks to answer questions on ways in which accountants are involved in real estate transactions and mandatory compliance with regulatory authorities in Canada. The data for the study came from semi-structured interviews with accountants, lawyers, and government officials. Preliminary results reveal that there is a conflict between accountants’ obligation to disclose and loyalty to their clients. Accountants often do not see why they are obligated to disclose their clients' information to government agencies. The importance of the client in terms of the amount of revenue contributed to the accounting firm also plays a significant role in accountants' reporting decision-making process. Although the involvement of accountants in real estate purchase and sale transactions is limited to lawyers or notaries, they are often involved in designing financing schemes, which may involve money laundering activities. The paper is of wider public policy interests to both accountants and regulators. It is hard not to see Chartered Professional Accountant (CPA) Canada and government regulators using the findings to better understand the decision-making processes of accountants in their reporting practices to regulatory authorities.

Keywords: money laundering, real estate, disclosure, legislation, compliance

Procedia PDF Downloads 231
2969 The Choicest Design of InGaP/GaAs Heterojunction Solar Cell

Authors: Djaafar Fatiha, Ghalem Bachir, Hadri Bagdad

Abstract:

We studied mainly the influence of temperature, thickness, molar fraction and the doping of the various layers (emitter, base, BSF and window) on the performances of a photovoltaic solar cell. In a first stage, we optimized the performances of the InGaP/GaAs dual-junction solar cell while varying its operation temperature from 275°K to 375 °K with an increment of 25°C using a virtual wafer fabrication TCAD Silvaco. The optimization at 300 °K led to the following result: Icc =14.22 mA/cm2, Voc =2.42V, FF=91.32 %, η= 22.76 % which is close with those found in the literature. In a second stage ,we have varied the molar fraction of different layers as well their thickness and the doping of both emitters and bases and we have registered the result of each variation until obtaining an optimal efficiency of the proposed solar cell at 300°K which was of Icc=14.35mA/cm2,Voc=2.47V,FF=91.34,and η=23.33% for In(1-x)Ga(x)P molar fraction( x=0.5).The elimination of a layer BSF on the back face of our cell, enabled us to make a remarkable improvement of the short-circuit current (Icc=14.70 mA/cm2) and a decrease in open circuit voltage Voc and output η which reached 1.46V and 11.97% respectively. Therefore, we could determine the critical parameters of the cell and optimize its various technological parameters to obtain the best performance for a dual junction solar cell .This work opens the way with new prospects in the field of the photovoltaic one. Such structures will thus simplify the manufacturing processes of the cells; will thus reduce the costs while producing high outputs of photovoltaic conversion.

Keywords: modeling, simulation, multijunction, optimization, Silvaco ATLAS

Procedia PDF Downloads 503
2968 Enhancing Plant Throughput in Mineral Processing Through Multimodal Artificial Intelligence

Authors: Muhammad Bilal Shaikh

Abstract:

Mineral processing plants play a pivotal role in extracting valuable minerals from raw ores, contributing significantly to various industries. However, the optimization of plant throughput remains a complex challenge, necessitating innovative approaches for increased efficiency and productivity. This research paper investigates the application of Multimodal Artificial Intelligence (MAI) techniques to address this challenge, aiming to improve overall plant throughput in mineral processing operations. The integration of multimodal AI leverages a combination of diverse data sources, including sensor data, images, and textual information, to provide a holistic understanding of the complex processes involved in mineral extraction. The paper explores the synergies between various AI modalities, such as machine learning, computer vision, and natural language processing, to create a comprehensive and adaptive system for optimizing mineral processing plants. The primary focus of the research is on developing advanced predictive models that can accurately forecast various parameters affecting plant throughput. Utilizing historical process data, machine learning algorithms are trained to identify patterns, correlations, and dependencies within the intricate network of mineral processing operations. This enables real-time decision-making and process optimization, ultimately leading to enhanced plant throughput. Incorporating computer vision into the multimodal AI framework allows for the analysis of visual data from sensors and cameras positioned throughout the plant. This visual input aids in monitoring equipment conditions, identifying anomalies, and optimizing the flow of raw materials. The combination of machine learning and computer vision enables the creation of predictive maintenance strategies, reducing downtime and improving the overall reliability of mineral processing plants. Furthermore, the integration of natural language processing facilitates the extraction of valuable insights from unstructured textual data, such as maintenance logs, research papers, and operator reports. By understanding and analyzing this textual information, the multimodal AI system can identify trends, potential bottlenecks, and areas for improvement in plant operations. This comprehensive approach enables a more nuanced understanding of the factors influencing throughput and allows for targeted interventions. The research also explores the challenges associated with implementing multimodal AI in mineral processing plants, including data integration, model interpretability, and scalability. Addressing these challenges is crucial for the successful deployment of AI solutions in real-world industrial settings. To validate the effectiveness of the proposed multimodal AI framework, the research conducts case studies in collaboration with mineral processing plants. The results demonstrate tangible improvements in plant throughput, efficiency, and cost-effectiveness. The paper concludes with insights into the broader implications of implementing multimodal AI in mineral processing and its potential to revolutionize the industry by providing a robust, adaptive, and data-driven approach to optimizing plant operations. In summary, this research contributes to the evolving field of mineral processing by showcasing the transformative potential of multimodal artificial intelligence in enhancing plant throughput. The proposed framework offers a holistic solution that integrates machine learning, computer vision, and natural language processing to address the intricacies of mineral extraction processes, paving the way for a more efficient and sustainable future in the mineral processing industry.

Keywords: multimodal AI, computer vision, NLP, mineral processing, mining

Procedia PDF Downloads 68
2967 The Effect of Environmental CSR on Corporate Social Performance: The Mediating Role of Green Innovation and Corporate Image

Authors: Edward Fosu

Abstract:

Green innovation has emerged as a significant environmental concern across the world. Green innovation refers to the utilization of technological developments that facilitate energy savings and waste material recycling. The stakeholder theory and resourced-based theory were used to examine how stakeholders' expectations affect corporate green innovation activities and how corporate innovation initiatives affect the corporate image and social performance. This study used structural equation modelling (SEM) and hierarchical regression to test the effects of environmental corporate social responsibility on social performance through mediators: green innovation and corporate image. A quantitative design was employed using data from Chinese companies in Ghana for this study. The study assessed. The results revealed that environmental practices promote corporate social performance (β = 0.070, t = 1.974, p = 0.049), positively affect green product innovation (β = 0.251, t = 7.478, p < 0.001), and has direct effect on green process innovation (β = 0.174, t = 6.192, p < 0.001). Green product innovation and green process innovation significantly promote corporate image respectively (β = 0.089, t = 2.581, p = 0.010), (β = 0.089, t = 2.367, p = 0.018). Corporate image has significant direct effects on corporate social performance (β = 0.146, t = 4.256, p < 0.001). Corporate environmental practices have an impact on the development of green products and processes which promote companies’ social performance. Additionally, evidence supports that corporate image influences companies’ social performance.

Keywords: environmental CSR, corporate image, green innovation, coprorate social performance

Procedia PDF Downloads 126
2966 The Impact of Life Skills in the Educational Context on the Integration Processes of Migrants

Authors: Hala Abdulhafiz, Steffi Robak

Abstract:

Introduction: Refugees often arrive in Germany with traumatic experiences, leading to psy-chosocial challenges. According to the World Health Organization's definition, psychosocial life skills help individuals effectively cope with everyday challenges and enhance their overall health and well-being. This study explores life skills acquired in integration courses and their impact on the integration of Syrian migrants. Methods: Qualitative expert interviews identified crucial life skills for successful integration, followed by a qualitative content analysis of integration course textbooks. Additionally, written interviews with former participants of integration courses were conducted. Results: Expert interviews highlighted the significance of communication skills and problem-solving abilities in promoting integration. Emotional and stress management, however, ranked lower in the hierarchy of essential life skills. While many highlighted life skills were addressed and encouraged in textbooks, there was a deficiency in opportunities to strengthen empathy, creativity, emotions, and stress management. The participant survey revealed that respondents possessed some of the defined life skills positively affecting their integration. However, there was a need for enhancing self-esteem, and many struggled with handling emotions and stress situations. Conclusion: The analyzed life skills should be further developed through educational programs and initiatives, with increased emphasis on textbooks.

Keywords: life skills, integration, migration, integration course

Procedia PDF Downloads 79