Search results for: healthcare access
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4696

Search results for: healthcare access

1756 Transformation and Integration: Iranian Women Migrants and the Use of Social Media in Australia

Authors: Azadeh Davachi

Abstract:

Although there is a growing interest in Iranian female migration and gender roles, little attention has been paid to how Iranian migrant women in Australia access and sustain social networks, both locally and spatially dispersed over time. Social network theories have much to offer an analysis of migrant’s social ties and interpersonal relationships. Thus, it is important to note that social media are not only new communication channels in a migration network but also that they actively transform the nature of these networks and thereby facilitate migration for migrants. Drawing on that, this article will focus on Iranian women migrants and the use of social media in migration in Australia. Based on the case of main social networks such as Facebook and Instagram; this paper will investigate that how women migrants use these networks to facilitate the process of migration and integration. In addition, with the use of social networks, they could promote their home business and as a result become more engaged economically in Australian society. This paper will focus on three main Iranian pages in Instagram and Facebook, they will contend that compared to men, women are more active in these social networks. Consequently, as this article will discuss with the use of these social media Iranian migrant women can become more engaged and overcome post migration hardships, thus, gender plays a key role in using social media in migrant communities. Based on these findings from these social media pages, this paper will conclude that social media are transforming migration networks and thereby lowering the threshold for migration. It also will be demonstrated that these networks boost Iranian women’s confidence and lead them to become more visible in Iranian migrant communities comparing to men.

Keywords: integration, gender, migration, women migrants

Procedia PDF Downloads 162
1755 Indigenous Knowledge Management: Towards Identification of Challenges and Opportunities in Developing Countries

Authors: Desmond Chinedu Oparaku, Emmanuel Uwazie Anyanwu, Oyemike Victor Benson, Ogbonna Isaac-Nnadimele

Abstract:

The purpose of this paper is to provide a theoretical discourse that highlights the challenges associated with management of indigenous knowledge with reference to developing countries. Literature review and brainstorming were used to collect relevant data and draw inferences. The findings indicate that non-existence of indigenous knowledge management policy (IKMP), low level of partnership drive among library and information services providers, non-uniformity of format and content of indigenous knowledge, inadequate funding, and lack of access to ICTs, lack of indigenous people with indigenous expertise and hoarding of knowledge as challenges to indigenous knowledge management. The study is based on literature review and information gathered through brain storming with professional colleagues the geographic scope as developing countries. The study has birth several implication based on the findings made. Professionally, it has necessitated the need for formulating a viable indigenous knowledge management policy (IKMP), creating of collaborative network through partnership, and integration of ICTs to indigenous knowledge management practices by libraries in developing countries etc. The originality of this paper is revealed in its capability as serving as an eye opener to librarians on the need for preserving and managing indigenous knowledge in developing countries. It further unlocks the possibilities of exploring empirical based researches to substantiate the theoretical issues raised in this paper. The findings may be used by library managers to improve indigenous knowledge management (IKM).

Keywords: developing countries, ICTs, indigenous knowledge, knowledge management

Procedia PDF Downloads 343
1754 Prevalence of Dengue in Sickle Cell Disease in Pre-school Children

Authors: Nikhil A. Gavhane, Sachin Shah, Ishant S. Mahajan, Pawan D. Bahekar

Abstract:

Introduction: Millions of people are affected with dengue fever every year, which drives up healthcare expenses in many low-income countries. Organ failure and other serious symptoms may result. Another worldwide public health problem is sickle cell anaemia, which is most prevalent in Africa, the Caribbean, and Europe. Dengue epidemics have reportedly occurred in locations with a high frequency of sickle cell disease, compounding the health problems in these areas. Aims and Objectives: This study examines dengue infection in sickle cell disease-afflicted pre-schoolers. Method:This Retrospective cohort study examined paediatric patients. Young people with sickle cell disease (SCD), dengue infection, and a control group without SCD or dengue were studied. Data on demographics, SCD consequences, medical treatments, and laboratory findings were gathered to analyse the influence of SCD on dengue severity and clinical outcomes, classified as severe or non-severe by the 2009 WHO classification. Using fever or admission symptoms, the research estimated acute illness duration. Result: Table 1 compares haemoglobin genotype-based dengue episode features in SS, SC, and controls. Table 2 shows that severe dengue cases are older, have longer admission delays, and have particular symptoms. Table 3's multivariate analysis indicates SS genotype's high connection with severe dengue, multiorgan failure, and acute pulmonary problems. Table 4 relates severe dengue to greater white blood cell counts, anaemia, liver enzymes, and reduced lactate dehydrogenase. Conclusion: This study is valuable but confined to hospitalised dengue patients with sickle cell illness. Small cohorts limit comparisons. Further study is needed since findings contradict predictions.

Keywords: dengue, chills, headache, severe myalgia, vomiting, nausea, prostration

Procedia PDF Downloads 74
1753 Flow: A Fourth Musical Element

Authors: James R. Wilson

Abstract:

Music is typically defined as having the attributes of melody, harmony, and rhythm. In this paper, a fourth element is proposed -"flow". "Flow" is a new dimension in music that has always been present but only recently identified and measured. The Adagio "Flow Machine" enables us to envision this component and even suggests a new approach to music theory and analysis. The Adagio was created specifically to measure the underlying “flow” in music. The Adagio is an entirely new way to experience and visualize the music, to assist in performing music (both as a conductor and/or performer), and to provide a whole new methodology for music analysis and theory. The Adagio utilizes musical “hit points”, such as a transition from one musical section to another (for example, in a musical composition utilizing the sonata form, a transition from the exposition to the development section) to help define the compositions flow rate. Once the flow rate is established, the Adagio can be used to determine if the composer/performer/conductor has correctly maintained the proper rate of flow throughout the performance. An example is provided using Mozart’s Piano Concerto Number 21. Working with the Adagio yielded an unexpected windfall; it was determined via an empirical study conducted at Nova University’s Biofeedback Lab that watching the Adagio helped volunteers participating in a controlled experiment recover from stressors significantly faster than the control group. The Adagio can be thought of as a new arrow in the Musicologist's quiver. It provides a new, unique way of viewing the psychological impact and esthetic effectiveness of music composition. Additionally, with the current worldwide access to multi-media via the internet, flow analysis can be performed and shared with others with little time and/or expense.

Keywords: musicology, music analysis, music flow, music therapy

Procedia PDF Downloads 184
1752 Post Injury Experiences of New Immigrant Workers

Authors: Janki Shankar, Shu Ping Chen

Abstract:

Background: New immigrants are one of most vulnerable sections of the Canadian society. Unable to gain entry into Canada’s strictly regulated professions and trades, several skilled and qualified new immigrants take up precarious jobs without adequate occupational health and safety training, thereby increasing their risk of sustaining occupational injury and illness compared to Canadian born workers. Access to timely and appropriate support is critical for injured new immigrant workers who face additional challenges compared to Canadian born workers in accessing information and support post-injury. The purpose of our study was to explore the post-injury experiences and support needs of new immigrant workers who have sustained work-related injuries. Methods: Using an interpretive research approach and semi structured face to face qualitative interviews, 27 new immigrant workers from a range of industries operating in two cities in a province in Canada were interviewed. All had sustained work-related injuries and reported these to their work supervisors. A constant comparative approach was used to identify key themes across the worker experiences. Results: Findings reveal several factors that can shape the experiences of new immigrant workers and influence their return-to-work outcomes. Conclusion: Based on the insights of study participants, policies, practices, and potential interventions informed by their needs and preferences are proposed that can improve return to work outcomes for these workers.

Keywords: new immigrant workers, post-injury experiences, return to work outcomes, qualified

Procedia PDF Downloads 103
1751 21st Century Gunboat Diplomacy and Strategic Sea Areas

Authors: Mustafa Avsever

Abstract:

Throughout history, states have attached great importance to seas in terms of economic and security. Advanced civilizations have always founded in coastal regions. Over time, human being has tended to trade and naturally always aimed get more and more. Seas by covering 71% of the earth, provide the greatest economic opportunities for access to raw material resources and the world market. As a result, seas have become the most important areas of conflict over the course of time. Coastal states, use seas as a tool for defense zone, trade, marine transportation and power transfer, they have acquired colonies overseas and increased their capital, raw materials and labor. Societies, have increased their economic prosperity, though their navies in order to retain their welfare and achieve their foreign policy objectives. Sometimes they have imposed their demands through the use or threat of limited naval force in accordance with their interests that is gunboat diplomacy. Today we can see samples of gunboat diplomacy used in the Eastern Mediterranean, during Ukraine crisis, in dispute between North Korea and South Korea and the ongoing power struggle in Asia-Pacific. Gunboat diplomacy has been and continues to be applied consistently in solving problems by the stronger side of the problem. The purpose of this article is to examine using navy under the gunboat diplomacy as an active instrument of foreign policy and security policy and reveal the strategic sea areas in which gunboat diplomacy is used effectively in the matrix of international politics in the 21st century.

Keywords: gunboat diplomacy, maritime strategy, sea power, strategic sea lands

Procedia PDF Downloads 434
1750 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 58
1749 Digital Marketing Maturity Models: Overview and Comparison

Authors: Elina Bakhtieva

Abstract:

The variety of available digital tools, strategies and activities might confuse and disorient even an experienced marketer. This applies in particular to B2B companies, which are usually less flexible in uptaking of digital technology than B2C companies. B2B companies are lacking a framework that corresponds to the specifics of the B2B business, and which helps to evaluate a company’s capabilities and to choose an appropriate path. A B2B digital marketing maturity model helps to fill this gap. However, modern marketing offers no widely approved digital marketing maturity model, and thus, some marketing institutions provide their own tools. The purpose of this paper is building an optimized B2B digital marketing maturity model based on a SWOT (strengths, weaknesses, opportunities, and threats) analysis of existing models. The current study provides an analytical review of the existing digital marketing maturity models with open access. The results of the research are twofold. First, the provided SWOT analysis outlines the main advantages and disadvantages of existing models. Secondly, the strengths of existing digital marketing maturity models, helps to identify the main characteristics and the structure of an optimized B2B digital marketing maturity model. The research findings indicate that only one out of three analyzed models could be used as a separate tool. This study is among the first examining the use of maturity models in digital marketing. It helps businesses to choose between the existing digital marketing models, the most effective one. Moreover, it creates a base for future research on digital marketing maturity models. This study contributes to the emerging B2B digital marketing literature by providing a SWOT analysis of the existing digital marketing maturity models and suggesting a structure and main characteristics of an optimized B2B digital marketing maturity model.

Keywords: B2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis

Procedia PDF Downloads 347
1748 The Impact of Stigma on the Course of Mental Illness: A Brief Review

Authors: Mariana Mangas, Yaroslava Martins, Ana Matos Pires

Abstract:

Introduction: Stigmatization is a common problem to overcome for people suffering from chronic diseases. It usually follows mental disorders and complicates the course of illness and reduces quality of life for people with mental illness. Objective: unsystematic review concerning stigma and mental illness, its impact on psychiatric disease and strategies to eradicate stigma. Methods: A search was conducted on PubMed, using keywords 'stigma' and 'mental illness'. Results and Discussion: Stigma is a psychosocial process that identifies individuals by the negative label of their differences. Stigma often brings a loss of occupational success and social support, reduced functioning and lower quality of life. The sense of stigma is common in individuals with mental illness and has considerable negative repercussions: delays treatment achievement, promotes social isolation, stress and maladaptive coping behaviors and it is associated with higher symptom levels, placing these individuals at higher risk for a poorer outcome and prognoses. Conclusion: Given the interrelation between stigma, symptoms, treatment seeking and disease management, stigma is a key construct in mental illness upon which anti-stigma initiatives may have considerable therapeutic potential. It will take multidisciplinary interventions to overcome mental illness stigma, including changes in social policy, attitudes and practices among mental health professionals, liaison between general public and people with a mental illness under conditions of equity and parity, family support, and easy access to evidence-based treatments.

Keywords: discrimination, stigma, mental illness, quality of life

Procedia PDF Downloads 341
1747 Pathogenic Candida Biofilms Producers Involved in Healthcare Associated Infections

Authors: Ouassila Bekkal Brikci Benhabib, Zahia Boucherit Otmani, Kebir Boucherit, A. Seghir

Abstract:

The establishment of intravenous catheters in hospitalized patient is an act common in many clinical situations. These therapeutic tools, from their insertion in the body, represent gateways including fungal germs prone. The latter can generate the growth of biofilms, which can be the cause of fungal infection. Faced with this problem, we conducted a study at the University Hospital of Tlemcen in the neurosurgery unit and aims to isolate and identify Candida yeasts from intravenous catheters. Then test their ability to form biofilms. Materials and methods: 256 patient hospitalized in surgery of the hospital in west Algeria were submitted to this study. All samples were taken from peripheral venous catheters implanted for 72 hours or more days. A total of 31 isolates of Candida species were isolated. MIC and SMIC are determined at 80% inhibition by the test XTT tetrazolium measured at 490 nm. The final concentrations of antifungal agent being between 0.03 and 16 mg / ml for amphotericin B and from 0.015 to 8 mg / mL caspofungin. Results: 31 Candida species isolates from catheters including 14 Candida albicans and 17 Candida non albicans . 21 strains of all the isolates were able to form biofilms. In their form of Planktonic cells, all isolates are 100% susceptible to antifungal agents tested. However, in their state of biofilms, more isolates have become tolerant to the tested antifungals. Conclusion: Candida yeasts isolated from intravascular catheters are considered an important virulence factor in the pathogenesis of infections. Their involvement in catheter-related infections can be disastrous for their potential to generate biofilms. They survive high concentrations of antifungal where treatment failure. Pending the development of a therapeutic approach antibiofilm related to catheters, their mastery is going through: -The risk of infection prevention based on the training and awareness of medical staff, -Strict hygiene and maximum asepsis, and -The choice of material limiting microbial colonization.

Keywords: candida, biofilm, hospital, infection, amphotericin B, caspofungin

Procedia PDF Downloads 325
1746 Effective Public Health Communication: Vaccine Health Messaging with Aboriginal and Torres Strait Islander Peoples

Authors: Maria Karidakis, Barbara Kelly

Abstract:

The challenges precipitated by the advent of COVID-19 have brought to the fore the task governments and key stakeholders are faced with; ensuring public health communication is readily accessible to vulnerable populations. COVID-19 has presented challenges for the provision and reception of timely, accessible, and accurate health information pertaining to vaccine health messaging to Aboriginal and Torres Strait Islander peoples. The aim of this qualitative study was to explore strategies used by Aboriginal-led organisations to improve communication about COVID-19 and vaccination for their communities and to explore how these mediation and outreach strategies were received by community members. We interviewed 6 Aboriginal-led organisations and 15 community members from several states across Australian, and these interviews were analysed thematically. The findings suggest that effective public health communication is enhanced when aFirst nations-led response defines the governance that happens in First Nations communities. Pro-active and self-determining Aboriginal leadership and decision-making helps drive the response to counter a growing trend towards vaccine hesitancy. Other strategies include establishing partnerships with government departments and relevant non-governmental organisations to ensure services are implemented and culturally appropriate. The outcomes of this research will afford policymakers, stakeholders in healthcare, and cultural mediators the capacity to identify strengths and potential problems associated with pandemic health information and to subsequently implement creative and culturally specific solutions that go beyond the provision of written documentation via translation or interpreting. It will also enable governing bodies to adjust multilingual polices and to adopt mediation strategies that will improve information delivery and intercultural services on a national and international level.

Keywords: intercultural communication, qualitative, public health communication, COVID-19, pandemic, mediated communication, first nations people

Procedia PDF Downloads 162
1745 Assessment of Availability and Factors Associated with Improved Sanitation Facilities in Urban Kebeles of Dire Dawa City, Eastern Ethiopia in 2022

Authors: Meki Detamo, Ahmed

Abstract:

Access to improved sanitation facilities is crucial for promoting community sanitation worldwide. In Ethiopia, however, sanitation remains a major development challenge despite growing attention and efforts by governments and donors. This study aimed to assess the availability of improved sanitation facilities and associated factors in urban kebeles of Dire Dawa City, Eastern Ethiopia, in 2022. A community-based cross-sectional study was conducted from March 6 to 30, 2022, using a multi-stage sampling technique to select 508 households. Data was collected through structured and pre-tested questionnaires using face-to-face interviews and observations and analyzed using SPSS Version 23. The availability of improved sanitation facilities was found to be remarkably high at 98.2% (95% CI: 97.0, 99.2), with 60.8% of households having a handwashing facility in or around the latrine, 86.0% using soap and water, and 89.0% using an improved water source for drinking. Logistic regression analysis revealed that households with a family size of less than four, those who owned their own house, and those who had self-initiated latrine construction were significantly associated with the availability of improved sanitation facilities. The study recommends the implementation of continuous refreshment training to emphasize the benefits of improved sanitation facilities in the urban community and family planning. This study provides valuable insights into the high availability of improved sanitation facilities in urban areas of Ethiopia and can inform future efforts to improve community sanitation.

Keywords: sanitation facilities, availability, improved, Dire Dawa, Ethiopia

Procedia PDF Downloads 79
1744 Intrarenal Injection of Pentobarbital Sodium for Euthanasia in Cats: 131 Cases, 2010-2011

Authors: Kathleen Cooney, Jennifer Coates, Lesley Leach, Kristin Hrenchir

Abstract:

The objective of this retrospective study was to determine whether intrarenal injection of pentobarbital sodium is a practicable method of euthanasia in client-owned cats. 131 Cats were anesthetized using a combination of tiletamine, zolazepam, and acepromazine given by of subcutaneous or intramuscular injection. Once an appropriate plane of anesthesia was reached, 6 ml of pentobarbital sodium was injected into either the left or right kidney. The patient’s age, sex, estimated weight, presenting condition, estimated dehydration level, palpable characteristics of the kidney pre and post injection, physical response of the cat, and time to cardiopulmonary arrest were recorded. Analysis of 131 records revealed that cats receiving an intrarenal injection of pentobarbital sodium had an average time to cardiopulmonary arrest of 1 minute. The great majority (79%) experienced cardiopulmonary arrest in less than one minute with the remainder experiencing cardiopulmonary arrest between 1 and 8 minutes of the injection. 95% of cats had no observable reaction to intrarenal injection other than cardiopulmonary arrest. In the 19% of cases where kidney swelling was not palpable upon injection, average time to cardiopulmonary arrest increased from 0.9 to 1.6 min. Conclusions and Clinical Relevance: Intrarenal injections of pentobarbital sodium are similar in effect to intravenous methods of euthanasia. Veterinarians who elect to use intrarenal injections can expect cardiopulmonary arrest to occur quickly in the majority of patients with few agonal reactions. Intrarenal injection of pentobarbital sodium in anesthetized cats has ideally suited for cases of owner observed euthanasia when obtaining intravenous access would difficult or disruptive.

Keywords: euthanasia, injection, intrarenal, pentobarbital sodium

Procedia PDF Downloads 344
1743 A Systematic Review of the Predictors, Mediators and Moderators of the Uncanny Valley Effect in Human-Embodied Conversational Agent Interaction

Authors: Stefanache Stefania, Ioana R. Podina

Abstract:

Background: Embodied Conversational Agents (ECAs) are revolutionizing education and healthcare by offering cost-effective, adaptable, and portable solutions. Research on the Uncanny Valley effect (UVE) involves various embodied agents, including ECAs. Achieving the optimal level of anthropomorphism, no consensus on how to overcome the uncanniness problem. Objectives: This systematic review aims to identify the user characteristics, agent features, and context factors that influence the UVE. Additionally, this review provides recommendations for creating effective ECAs and conducting proper experimental studies. Methods: We conducted a systematic review following the PRISMA 2020 guidelines. We included quantitative, peer-reviewed studies that examined human-ECA interaction. We identified 17,122 relevant records from ACM Digital Library, IEE Explore, Scopus, ProQuest, and Web of Science. The quality of the predictors, mediators, and moderators adheres to the guidelines set by prior systematic reviews. Results: Based on the included studies, it can be concluded that females and younger people perceive the ECA as more attractive. However, inconsistent findings exist in the literature. ECAs characterized by extraversion, emotional stability, and agreeableness are considered more attractive. Facial expressions also play a role in the UVE, with some studies indicating that ECAs with more facial expressions are considered more attractive, although this effect is not consistent across all studies. Few studies have explored contextual factors, but they are nonetheless crucial. The interaction scenario and exposure time are important circumstances in human-ECA interaction. Conclusions: The findings highlight a growing interest in ECAs, which have seen significant developments in recent years. Given this evolving landscape, investigating the risk of the UVE can be a promising line of research.

Keywords: human-computer interaction, uncanny valley effect, embodied conversational agent, systematic review

Procedia PDF Downloads 85
1742 Let’s Make Waves – Changing the Landscape for the Solent’s Film Industry

Authors: Roy Hanney

Abstract:

This research study aims to develop an evidential basis to inform strategic development of the film industry in the Solent (south central) region of the UK. The density of the creative industries around the region is driving the growth of jobs. Yet, film production in particular, appears to struggle with field configuration, lacks ecological cohesion, and suffers from underdeveloped ecosystems when compared to other areas bordering the region. Though thriving, a lack of coordinated leadership results in the continued reproduction of an ill-configured, constricted and socio-economically filtered workforce. One that struggles to seize strategic opportunities arising as a consequence of the ongoing investment in UK film production around the west of London. Taking a participatory approach, the study seeks to avoid the universalism of place marketing and focus on the situatedness of the region and its specific cultural, social, and economic contexts. The staging of a series of high profile networking events provided a much needed field configuring activity and enabled the capture of voices of those currently working in the sector. It will also provided the opportunity for an exploratory network mapping of the regional creative industries as a value exchange ecosystem. It is understood that a focus on production is not in itself a solution to the challenges faced in the region. There is a need to address issues of access as a counterbalance to skewed representation among the creative workforces thus the study also aims to report on opportunities for embedding diversity and inclusion in any strategic solutions.

Keywords: creative, industries, ecosystem, ecology

Procedia PDF Downloads 100
1741 When Mobile Work Creates More Discrimination

Authors: Marie-Therese Claes, Anett Hermann

Abstract:

With the advent of the web and information technology since the end of the 20ᵗʰ century, digitalization has revolutionized our everyday life, from shopping and dating to education and transportation. The world of work is one of the areas that has been highly transformed by changing the time and spatial limits of the work. The expansion of the internet, wireless, and easily portable devices such as laptop computers and mobile phones has enabled us to work almost from any place at any time. As a result, telework, which started in the 1950s and elevated in the 1970s, steeply raised to a new level in 21ˢᵗ century. Telework consists of various forms of work done from outside the traditional workplace by using information technologies. The social distancing and lockdown measures that have been taken to reduce the spread of the virus in many countries worldwide resulted in an increasing number of teleworkers and made “working from home’’ synonymous with telework. Post-COVID-19, the number of teleworkers is still higher than before the pandemic period, and the interest in expanding teleworking has been growing too. Notwithstanding the advantages ushered by telework, it also has a number of drawbacks that negatively affect organizations and employees. The intention of this piece of work is not to indicate a causational relationship between telework and discrimination. Our aim is to indicate some unintended and/or unnoticed deleterious effects of telework in reinforcing discrimination and to instigate discussion on how to mitigate the effects. To do so, this insight indicates how telework reinforces traditional gender roles and how organizational culture towards telework and its access to employees at different levels of the organizational hierarchy opens the room for discrimination.

Keywords: mobile work, discrimination, gender roles, organizational culture

Procedia PDF Downloads 68
1740 Data Protection and Regulation Compliance on Handling Physical Child Abuse Scenarios- A Scoping Review

Authors: Ana Mafalda Silva, Rebeca Fontes, Ana Paula Vaz, Carla Carreira, Ana Corte-Real

Abstract:

Decades of research on the topic of interpersonal violence against minors highlight five main conclusions: 1) it causes harmful effects on children's development and health; 2) it is prevalent; 3) it violates children's rights; 4) it can be prevented and 5) parents are the main aggressors. The child abuse scenario is identified through clinical observation, administrative data and self-reports. The most used instruments are self-reports; however, there are no valid and reliable self-report instruments for minors, which consist of a retrospective interpretation of the situation by the victim already in her adult phase and/or by her parents. Clinical observation and collection of information, namely from the orofacial region, are essential in the early identification of these situations. The management of medical data, such as personal data, must comply with the General Data Protection Regulation (GDPR), in Europe, and with the General Law of Data Protection (LGPD), in Brazil. This review aims to answer the question: In a situation of medical assistance to minors, in the suspicion of interpersonal violence, due to mistreatment, is it necessary for the guardians to provide consent in the registration and sharing of personal data, namely medical ones. A scoping review was carried out based on a search by the Web of Science and Pubmed search engines. Four papers and two documents from the grey literature were selected. As found, the process of identifying and signaling child abuse by the health professional, and the necessary early intervention in defense of the minor as a victim of abuse, comply with the guidelines expressed in the GDPR and LGPD. This way, the notification in maltreatment scenarios by health professionals should be a priority and there shouldn’t be the fear or anxiety of legal repercussions that stands in the way of collecting and treating the data necessary for the signaling procedure that safeguards and promotes the welfare of children living with abuse.

Keywords: child abuse, disease notifications, ethics, healthcare assistance

Procedia PDF Downloads 97
1739 An Artificial Intelligence Framework to Forecast Air Quality

Authors: Richard Ren

Abstract:

Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.

Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms

Procedia PDF Downloads 130
1738 Effects of Self-Management Programs on Blood Pressure Control, Self-Efficacy, Medication Adherence, and Body Mass Index among Older Adult Patients with Hypertension: Meta-Analysis of Randomized Controlled Trials

Authors: Van Truong Pham

Abstract:

Background: Self-management was described as a potential strategy for blood pressure control in patients with hypertension. However, the effects of self-management interventions on blood pressure, self-efficacy, medication adherence, and body mass index (BMI) in older adults with hypertension have not been systematically evaluated. We evaluated the effects of self-management interventions on systolic blood pressure (SBP) and diastolic blood pressure (DBP), self-efficacy, medication adherence, and BMI in hypertensive older adults. Methods: We followed the recommended guidelines of preferred reporting items for systematic reviews and meta-analyses. Searches in electronic databases including CINAHL, Cochrane Library, Embase, Ovid-Medline, PubMed, Scopus, Web of Science, and other sources were performed to include all relevant studies up to April 2019. Studies selection, data extraction, and quality assessment were performed by two reviewers independently. We summarized intervention effects as Hedges' g values and 95% confidence intervals (CI) using a random-effects model. Data were analyzed using Comprehensive Meta-Analysis software 2.0. Results: Twelve randomized controlled trials met our inclusion criteria. The results revealed that self-management interventions significantly improved blood pressure control, self-efficacy, medication adherence, whereas the effect of self-management on BMI was not significant in older adult patients with hypertension. The following Hedges' g (effect size) values were obtained: SBP, -0.34 (95% CI, -0.51 to -0.17, p < 0.001); DBP, -0.18 (95% CI, -0.30 to -0.05, p < 0.001); self-efficacy, 0.93 (95%CI, 0.50 to 1.36, p < 0.001); medication adherence, 1.72 (95%CI, 0.44 to 3.00, p=0.008); and BMI, -0.57 (95%CI, -1.62 to 0.48, p = 0.286). Conclusions: Self-management interventions significantly improved blood pressure control, self-efficacy, and medication adherence. However, the effects of self-management on obesity control were not supported by the evidence. Healthcare providers should implement self-management interventions to strengthen patients' role in managing their health care.

Keywords: self-management, meta-analysis, blood pressure control, self-efficacy, medication adherence, body mass index

Procedia PDF Downloads 129
1737 The Internet of Things: A Survey of Authentication Mechanisms, and Protocols, for the Shifting Paradigm of Communicating, Entities

Authors: Nazli Hardy

Abstract:

Multidisciplinary application of computer science, interactive database-driven web application, the Internet of Things (IoT) represents a digital ecosystem that has pervasive technological, social, and economic, impact on the human population. It is a long-term technology, and its development is built around the connection of everyday objects, to the Internet. It is estimated that by 2020, with billions of people connected to the Internet, the number of connected devices will exceed 50 billion, and thus IoT represents a paradigm shift in in our current interconnected ecosystem, a communication shift that will unavoidably affect people, businesses, consumers, clients, employees. By nature, in order to provide a cohesive and integrated service, connected devices need to collect, aggregate, store, mine, process personal and personalized data on individuals and corporations in a variety of contexts and environments. A significant factor in this paradigm shift is the necessity for secure and appropriate transmission, processing and storage of the data. Thus, while benefits of the applications appear to be boundless, these same opportunities are bounded by concerns such as trust, privacy, security, loss of control, and related issues. This poster and presentation look at a multi-factor authentication (MFA) mechanisms that need to change from the login-password tuple to an Identity and Access Management (IAM) model, to the more cohesive to Identity Relationship Management (IRM) standard. It also compares and contrasts messaging protocols that are appropriate for the IoT ecosystem.

Keywords: Internet of Things (IoT), authentication, protocols, survey

Procedia PDF Downloads 300
1736 Governance of Energy Transitions in Developing States

Authors: Robert Lindner

Abstract:

In recent years a multitude of international efforts, including the United Nations’ aspirational 2030 Agenda for Sustainable Development, provided a new momentum to facilitate energy access and rural electrification projects to combat energy poverty in developing states in Asia. Rural electrification projects promise to facilitate other sustainable development aims, such as the empowerment of local communities through the creation of economic opportunities or increased disaster resilience. This study applies a multi-governance research framework to study the cases of the ongoing energy system transition in Myanmar and Cambodia. It explores what impact the international aid community, especially multilateral development banks and international development agencies, has on the governance of the transitions and how diverging aid donor interest shape policy making and project planning. The study is based on policy analysis and expert interviews, as well as extensive field research. It critically examines the current development trajectories and the strategies of the stakeholders involved. It concludes that institutional and technological competition between donors, as well as a lack of transparency and inclusion in the project planning and implementation phases, contributes to insufficient coordination in national energy policy making and project implementation at the local level. The study further discusses possible alternative approaches that might help to promote the spread of sustainable energy technologies.

Keywords: energy governance, developing countries, multi-level governance, energy transitions

Procedia PDF Downloads 113
1735 Spatial Data Science for Data Driven Urban Planning: The Youth Economic Discomfort Index for Rome

Authors: Iacopo Testi, Diego Pajarito, Nicoletta Roberto, Carmen Greco

Abstract:

Today, a consistent segment of the world’s population lives in urban areas, and this proportion will vastly increase in the next decades. Therefore, understanding the key trends in urbanization, likely to unfold over the coming years, is crucial to the implementation of sustainable urban strategies. In parallel, the daily amount of digital data produced will be expanding at an exponential rate during the following years. The analysis of various types of data sets and its derived applications have incredible potential across different crucial sectors such as healthcare, housing, transportation, energy, and education. Nevertheless, in city development, architects and urban planners appear to rely mostly on traditional and analogical techniques of data collection. This paper investigates the prospective of the data science field, appearing to be a formidable resource to assist city managers in identifying strategies to enhance the social, economic, and environmental sustainability of our urban areas. The collection of different new layers of information would definitely enhance planners' capabilities to comprehend more in-depth urban phenomena such as gentrification, land use definition, mobility, or critical infrastructural issues. Specifically, the research results correlate economic, commercial, demographic, and housing data with the purpose of defining the youth economic discomfort index. The statistical composite index provides insights regarding the economic disadvantage of citizens aged between 18 years and 29 years, and results clearly display that central urban zones and more disadvantaged than peripheral ones. The experimental set up selected the city of Rome as the testing ground of the whole investigation. The methodology aims at applying statistical and spatial analysis to construct a composite index supporting informed data-driven decisions for urban planning.

Keywords: data science, spatial analysis, composite index, Rome, urban planning, youth economic discomfort index

Procedia PDF Downloads 136
1734 Evaluation and New Modeling Improvement of Water Quality

Authors: Sebahat Seker

Abstract:

Since there is a parallel connection between drinking water quality and public health, studies on drinking and domestic water are of vital importance. Ardahan Province is one of the provinces located in the Northeast Anatolian Region, where animal husbandry and agriculture are carried out economically. City mains water uses underground spring water as a source and is chlorinated and given to the city center by gravity. However, mains water cannot be used outside the central district of the city, and the majority of the people meet their drinking and utility water needs from the wells they have opened individually. The water element, which is vital for all living things, is the most important substance that sustains life for humans. Under normal conditions, a healthy person consumes approximately 1.8-2 liters of water. The quality and use of potable water is one of the most important issues in terms of health. The quality parameters of drinking and utility water have been revealed by the scientific world. Scientific studies on drinking water quality in the world and its impact on public health are among the most popular topics. Although our country is surrounded by water on three sides, potable water resources are very few. In the Eastern Anatolia Region, it is difficult for the public to access drinking and utility water due to the difficult conditions both climatically and geographically. In this study, samples taken from drinking and utility water at certain intervals from the stations determined, and water quality parameters will be determined. The fact that such a study has not been carried out in the region before and the knowledge of the local people about water quality is very important in terms of its original and widespread effect.

Keywords: water quality, modelling, evaluation, northeastern anatolia

Procedia PDF Downloads 206
1733 Clinical Advice Services: Using Lean Chassis to Optimize Nurse-Driven Telephonic Triage of After-Hour Calls from Patients

Authors: Eric Lee G. Escobedo-Wu, Nidhi Rohatgi, Fouzel Dhebar

Abstract:

It is challenging for patients to navigate through healthcare systems after-hours. This leads to delays in care, patient/provider dissatisfaction, inappropriate resource utilization, readmissions, and higher costs. It is important to provide patients and providers with effective clinical decision-making tools to allow seamless connectivity and coordinated care. In August 2015, patient-centric Stanford Health Care established Clinical Advice Services (CAS) to provide clinical decision support after-hours. CAS is founded on key Lean principles: Value stream mapping, empathy mapping, waste walk, takt time calculations, standard work, plan-do-check-act cycles, and active daily management. At CAS, Clinical Assistants take the initial call and manage all non-clinical calls (e.g., appointments, directions, general information). If the patient has a clinical symptom, the CAS nurses take the call and utilize standardized clinical algorithms to triage the patient to home, clinic, urgent care, emergency department, or 911. Nurses may also contact the on-call physician based on the clinical algorithm for further direction and consultation. Since August 2015, CAS has managed 228,990 calls from 26 clinical specialties. Reporting is built into the electronic health record for analysis and data collection. 65.3% of the after-hours calls are clinically related. Average clinical algorithm adherence rate has been 92%. An average of 9% of calls was escalated by CAS nurses to the physician on call. An average of 5% of patients was triaged to the Emergency Department by CAS. Key learnings indicate that a seamless connectivity vision, cascading, multidisciplinary ownership of the problem, and synergistic enterprise improvements have contributed to this success while striving for continuous improvement.

Keywords: after hours phone calls, clinical advice services, nurse triage, Stanford Health Care

Procedia PDF Downloads 177
1732 Household Water Source Substitution and Demand for Water Connections

Authors: Elizabeth Spink

Abstract:

The United Nations' Sustainable Development Goal 6 sets a target for safe and affordable drinking water for all. Developing country governments aiming to achieve this goal often face significant challenges when trying to service last mile customers, particularly those in peri-urban and rural areas. Expansion of water networks often requires high connection fees from households, and demand for connections may be low if there are cheaper substitute sources of water available. This research studies the effect of the availability of substitute sources of water on demand for individual water connections in Livingstone, Zambia, using an event study analysis of metering campaigns. Metering campaigns reduce the share of a household's neighbors that can provide free water to the household if their water connection becomes disconnected due to nonpayment. The results show that household payments in newly metered regions increase by 10 percentage points in the months following metering events, with a decrease in disconnections of 6 percentage points for low-income households. To isolate the effect of changes in a household's substitution possibilities, a similar analysis is conducted among households that neighbor the metered region. These results show mixed evidence of the impact of substitutes on payment behavior and disconnections. The results suggest that metering may be effective in increasing household demand for individual water connections primarily through a lower monthly cost burden for newly metered households.

Keywords: piped-water access, water demand, water utilities, water sharing

Procedia PDF Downloads 199
1731 Non-Family Members as Successors of Choice in South African Family Businesses

Authors: Jonathan Marks, Lauren Katz

Abstract:

Family firms are a vital component of a country’s stability, prosperity and development. Their sustainability, longevity and continuity are critical. Given the premise that family firms wish to continue the business for the benefit of the family, the family founder / owner is faced with an emotionally charged transition option; either to transfer the family business to a family member or to transfer the firm to a non-family member. The rationale employed by family founders to select non-family members as successors/ executives of choice and the concomitant rationale employed by non-family members to select family firms as employers of choice, has been under-researched in the literature of family business succession planning. This qualitative study used semi-structured interviews to gain access to family firm founders/ owners, non-family successors/ executives and industry experts on family business. The findings indicated that the rationale for family members to select non-family successors/ executives was underpinned by the objective to grow the family firm for the benefit of the family. If non-family members were the most suitable candidates to ensure this outcome, family members were comfortable to employ non-family members. Non- family members, despite the knowledge that benefit lay primarily with family members, chose to work for family firms for personal benefits in terms of wealth, security and close connections. A commonly shared value system was a pre-requisite for all respondents. The research study provides insights from family founders/ owners, non-family successors/ executives, and industry experts on the subject of succession planning outside the family structure.

Keywords: agency theory, family business, institutional logics, non-family successors, Stewardship Theory

Procedia PDF Downloads 370
1730 Dimensional Investigation of Food Addiction in Individuals Who Have Undergone Bariatric Surgery

Authors: Ligia Florio, João Mauricio Castaldelli-Maia

Abstract:

Background: Food addiction (FA) emerged in the 1990s as a possible contributor to the increasing prevalence of obesity and overweight, in conjunction with changing food environments and mental health conditions. However, FA is not yet listed as one of the disorders in the DSM-5 and/or the ICD-11. Although there are controversies and debates in the literature about the classification and construct of FA, the most common approach to access it is the use of a research tool - the Yale Food Addiction Scale (YFAS) - which approximates the concept of FA to the concept diagnosis of dependence on psychoactive substances. There is a need to explore the dimensional phenotypes accessed by YFAS in different population groups for a better understanding and scientific support of FA diagnoses. Methods: The primary objective of this project was to investigate the construct validity of the FA concept by mYFAS 2.0 in individuals who underwent bariatric surgery (n = 100) at the Hospital Estadual Mário Covas since 2011. Statistical analyzes were conducted using the STATA software. In this sense, structural or factor validity was the type of construct validity investigated using exploratory factor analysis (EFA) and item response theory (IRT) techniques. Results: EFA showed that the one-dimensional model was the most parsimonious. The IRT showed that all criteria contributed to the latent structure, presenting discrimination values greater than 0.5, with most presenting values greater than 2. Conclusion: This study reinforces a FA dimension in patients who underwent bariatric surgery. Within this dimension, we identified the most severe and discriminating criteria for the diagnosis of FA.

Keywords: obesity, food addiction, bariatric surgery, regain

Procedia PDF Downloads 78
1729 Comparison of Regional and Local Indwelling Catheter Techniques to Prolong Analgesia in Total Knee Arthroplasty Procedures: Continuous Peripheral Nerve Block and Continuous Periarticular Infiltration

Authors: Jared Cheves, Amanda DeChent, Joyce Pan

Abstract:

Total knee replacements (TKAs) are one of the most common but painful surgical procedures performed in the United States. Currently, the gold standard for postoperative pain management is the utilization of opioids. However, in the wake of the opioid epidemic, the healthcare system is attempting to reduce opioid consumption by trialing innovative opioid sparing analgesic techniques such as continuous peripheral nerve blocks (CPNB) and continuous periarticular infiltration (CPAI). The alleviation of pain, particularly during the first 72 hours postoperatively, is of utmost importance due to its association with delayed recovery, impaired rehabilitation, immunosuppression, the development of chronic pain, the development of rebound pain, and decreased patient satisfaction. While both CPNB and CPAI are being used today, there is limited evidence comparing the two to the current standard of care or to each other. An extensive literature review was performed to explore the safety profiles and effectiveness of CPNB and CPAI in reducing reported pain scores and decreasing opioid consumption. The literature revealed the usage of CPNB contributed to lower pain scores and decreased opioid use when compared to opioid-only control groups. Additionally, CPAI did not improve pain scores or decrease opioid consumption when combined with a multimodal analgesic (MMA) regimen. When comparing CPNB and CPAI to each other, neither unanimously lowered pain scores to a greater degree, but the literature indicates that CPNB decreased opioid consumption more than CPAI. More research is needed to further cement the efficacy of CPNB and CPAI as standard components of MMA in TKA procedures. In addition, future research can also focus on novel catheter-free applications to reduce the complications of continuous catheter analgesics.

Keywords: total knee arthroplasty, continuous peripheral nerve blocks, continuous periarticular infiltration, opioid, multimodal analgesia

Procedia PDF Downloads 98
1728 Canada's "Flattened Curve": A Geospatial Temporal Analysis of Canada's Amelioration of the Sars-COV-2 Pandemic Through Coordinated Government Intervention

Authors: John Ahluwalia

Abstract:

As an affluent first-world nation, Canada took swift and comprehensive action during the outbreak of the SARS-CoV-2 (COVID-19) pandemic compared to other countries in the same socio-economic cohort. The United States has stumbled to overcome obstacles most developed nations have faced, which has led to significantly more per capita cases and deaths. The initial outbreaks of COVID-19 occurred in the US and Canada within days of each other and posed similar potentially catastrophic threats to public health, the economy, and governmental stability. On a macro level, events that take place in the US have a direct impact on Canada. For example, both countries tend to enter and exit economic recessions at approximately the same time, they are each other’s largest trading partners, and their currencies are inexorably linked. Why is it that Canada has not shared the same fate as the US (and many other nations) that have realized much worse outcomes relative to the COVID-19 pandemic? Variables intrinsic to Canada’s national infrastructure have been instrumental in the country’s efforts to flatten the curve of COVID-19 cases and deaths. Canada’s coordinated multi-level governmental effort has allowed it to create and enforce policies related to COVID-19 at both the national and provincial levels. Canada’s policy of universal healthcare is another variable. Health care and public health measures are enforced on a provincial level, and it is within each province’s jurisdiction to dictate standards for public safety based on scientific evidence. Rather than introducing confusion and the possibility of competition for resources such as PPE and vaccines, Canada’s multi-level chain of government authority has provided consistent policies supporting national public health and local delivery of medical care. This paper will demonstrate that the coordinated efforts on provincial and federal levels have been the linchpin in Canada’s relative success in containing the deadly spread of the COVID-19 virus.

Keywords: COVID-19, Canada, GIS, temporal analysis, ESRI

Procedia PDF Downloads 149
1727 Research and Development of Methodology, Tools, Techniques and Methods to Analyze and Design Interface, Media, Pedagogy for Educational Topics to be Delivered via Mobile Technology

Authors: Shimaa Nagro, Russell Campion

Abstract:

Mobile devices are becoming ever more widely available, with growing functionality, and they are increasingly used as enabling technology to give students access to educational material anytime and anywhere. However, the design of educational material's user interfaces for mobile devices is beset by many unresolved research problems such as those arising from constraints associated with mobile devices or from issues linked to effective learning. The proposed research aims to produce: (i) a method framework for the design and evaluation of educational material’s interfaces to be delivered on mobile devices, in multimedia form based on Human Computer Interaction strategies; and (ii) a software tool implemented as a fast-track alternative to use the method framework in full. The investigation will combine qualitative and quantitative methods, including interviews and questionnaires for data collection and three case studies for validating the method framework. The method framework is a framework to enable an educational designer to effectively and efficiently create educational multimedia interfaces to be used on mobile devices by following a particular methodology that contains practical and usable tools and techniques. It is a method framework that accepts any educational material in its final lesson plan and deals with this plan as a static element, it will not suggest any changes in any information given in the lesson plan but it will help the instructor to design his final lesson plan in a multimedia format to be presented in mobile devices.

Keywords: mobile learning, M-Learn, HCI, educational multimedia, interface design

Procedia PDF Downloads 375