Search results for: strength prediction
2944 Root Cause Analysis of a Catastrophically Failed Output Pin Bush Coupling of a Raw Material Conveyor Belt
Authors: Kaushal Kishore, Suman Mukhopadhyay, Susovan Das, Manashi Adhikary, Sandip Bhattacharyya
Abstract:
In integrated steel plants, conveyor belts are widely used for transferring raw materials from one location to another. An output pin bush coupling attached with a conveyor transferring iron ore fines and fluxes failed after two years of service life. This led to an operational delay of approximately 15 hours. This study is focused on failure analysis of the coupling and recommending counter-measures to prevent any such failures in the future. Investigation consisted of careful visual observation, checking of operating parameters, stress calculation and analysis, macro and micro-fractography, material characterizations like chemical and metallurgical analysis and tensile and impact testings. The fracture occurred from an unusually sharp double step. There were multiple corrosion pits near the step that aggravated the situation. Inner contact surface of the coupling revealed differential abrasion that created a macroscopic difference in the height of the component. This pointed towards misalignment of the coupling beyond a threshold limit. In addition to these design and installation issues, material of the coupling did not meet the quality standards. These were made up of grey cast iron having graphite morphology intermediate between random distribution (Type A) and rosette pattern (Type B). This manifested as a marked reduction in impact toughness and tensile strength of the component. These findings corroborated well with the brittle mode of fracture that might have occurred during minor impact loading while loading of conveyor belt with raw materials from height. Simulated study was conducted to examine the effect of corrosion pits on tensile and impact toughness of grey cast iron. It was observed that pitting marginally reduced tensile strength and ductility. However, there was marked (up to 45%) reduction in impact toughness due to pitting. Thus, it became evident that failure of the coupling occurred due to combination of factors like inferior material, misalignment, poor step design and corrosion pitting. Recommendation for life enhancement of coupling included the use of tougher SG 500/7 grade, incorporation of proper fillet radius for the step, correction of alignment and application of corrosion resistant organic coating to prevent pitting.Keywords: brittle fracture, cast iron, coupling, double step, pitting, simulated impact tests
Procedia PDF Downloads 1332943 Press Hardening of Tubes with Additional Interior Spray Cooling
Authors: B. A. Behrens, H. J. Maier, A. Neumann, J. Moritz, S. Hübner, T. Gretzki, F. Nürnberger, A. Spiekermeier
Abstract:
Press-hardened profiles are used e.g. for automotive applications in order to improve light weight construction due to the high reachable strength. The application of interior water-air spray cooling contributes to significantly reducing the cycle time in the production of heat-treated tubes. This paper describes a new manufacturing method for producing press-hardened hollow profiles by means of an additional interior cooling based on a water-air spray. Furthermore, this paper provides the results of thorough investigations on the properties of press-hardened tubes in dependence of varying spray parameters.Keywords: 22MnB5, press hardening, water-air spray cooling, hollow profiles, tubes
Procedia PDF Downloads 2732942 Performance Evaluation of an Inventive Co2 Gas Separation Inorganic Ceramic Membrane System
Authors: Ngozi Claribelle Nwogu, Mohammed Nasir Kajama, Oyoh Kechinyere, Edward Gobina
Abstract:
Atmospheric carbon dioxide emissions are considered as the greatest environmental challenge the world is facing today. The challenges to control the emissions include the recovery of CO2 from flue gas. This concern has been improved due to recent advances in materials process engineering resulting in the development of inorganic gas separation membranes with excellent thermal and mechanical stability required for most gas separations. This paper therefore evaluates the performance of a highly selective inorganic membrane for CO2 recovery applications. Analysis of results obtained is in agreement with experimental literature data. Further results show the prediction performance of the membranes for gas separation and the future direction of research. The materials selection and the membrane preparation techniques are discussed. Method of improving the interface defects in the membrane and its effect on the separation performance has also been reviewed and in addition advances to totally exploit the potential usage of this innovative membrane.Keywords: carbon dioxide, gas separation, inorganic ceramic membrane, permselectivity
Procedia PDF Downloads 3442941 Circular Bio-economy of Copper and Gold from Electronic Wastes
Authors: Sadia Ilyas, Hyunjung Kim, Rajiv R. Srivastava
Abstract:
Current work has attempted to establish the linkages between circular bio-economy and recycling of copper and gold from urban mine by applying microbial activities instead of the smelter and chemical technologies. Thereafter, based on the potential of microbial approaches and research hypothesis, the structural model has been tested for a significance level of 99%, which is supported by the corresponding standardization co-efficient values. A prediction model applied to determine the recycling impact on circular bio-economy indicates to re-circulate 51,833 tons of copper and 58 tons of gold by 2030 for the production of virgin metals/raw-materials, while recycling rate of the accumulated e-waste remains to be 20%. This restoration volume of copper and gold through the microbial activities corresponds to mitigate 174 million kg CO₂ emissions and 24 million m³ water consumption if compared with the primary production activities. The study potentially opens a new window for environmentally-friendly biotechnological recycling of e-waste urban mine under the umbrella concept of circular bio-economy.Keywords: urban mining, biobleaching, circular bio-economy, environmental impact
Procedia PDF Downloads 1572940 A Proposal of Local Indentation Techniques for Mechanical Property Evaluation
Authors: G. B. Lim, C. H. Jeon, K. H. Jung
Abstract:
General light metal alloys are often developed in the material of transportation equipment such as automobiles and aircraft. Among the light metal alloys, magnesium is the lightest structural material with superior specific strength and many attractive physical and mechanical properties. However, magnesium alloys were difficult to obtain the mechanical properties at warm temperature. The aims of present work were to establish an analytical relation between mechanical properties and plastic flow induced by local indentation. An experimental investigation of the local strain distribution was carried out using a specially designed local indentation equipment in conjunction with ARAMIS based on digital image correlation method.Keywords: indentation, magnesium, mechanical property, lightweight material, ARAMIS
Procedia PDF Downloads 4922939 Efficient Recommendation System for Frequent and High Utility Itemsets over Incremental Datasets
Authors: J. K. Kavitha, D. Manjula, U. Kanimozhi
Abstract:
Mining frequent and high utility item sets have gained much significance in the recent years. When the data arrives sporadically, incremental and interactive rule mining and utility mining approaches can be adopted to handle user’s dynamic environmental needs and avoid redundancies, using previous data structures, and mining results. The dependence on recommendation systems has exponentially risen since the advent of search engines. This paper proposes a model for building a recommendation system that suggests frequent and high utility item sets over dynamic datasets for a cluster based location prediction strategy to predict user’s trajectories using the Efficient Incremental Rule Mining (EIRM) algorithm and the Fast Update Utility Pattern Tree (FUUP) algorithm. Through comprehensive evaluations by experiments, this scheme has shown to deliver excellent performance.Keywords: data sets, recommendation system, utility item sets, frequent item sets mining
Procedia PDF Downloads 2932938 Multi-Scale Modeling of Ti-6Al-4V Mechanical Behavior: Size, Dispersion and Crystallographic Texture of Grains Effects
Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vidal, Farhad Rezai-Aria, Christine Boher
Abstract:
Ti-6Al-4V titanium alloy is one of the most widely used materials in aeronautical and aerospace industries. Because of its high specific strength, good fatigue, and corrosion resistance, this alloy is very suitable for moderate temperature applications. At room temperature, Ti-6Al-4V mechanical behavior is generally controlled by the behavior of alpha phase (beta phase percent is less than 8%). The plastic strain of this phase notably based on crystallographic slip can be hindered by various obstacles and mechanisms (crystal lattice friction, sessile dislocations, strengthening by solute atoms and grain boundaries…). The grains aspect of alpha phase (its morphology and texture) and the nature of its crystallographic lattice (which is hexagonal compact) give to plastic strain heterogeneous, discontinuous and anisotropic characteristics at the local scale. The aim of this work is to develop a multi-scale model for Ti-6Al-4V mechanical behavior using crystal plasticity approach; this multi-scale model is used then to investigate grains size, dispersion of grains size, crystallographic texture and slip systems activation effects on Ti-6Al-4V mechanical behavior under monotone quasi-static loading. Nine representative elementary volume (REV) are built for taking into account the physical elements (grains size, dispersion and crystallographic) mentioned above, then boundary conditions of tension test are applied. Finally, simulation of the mechanical behavior of Ti-6Al-4V and study of slip systems activation in alpha phase is reported. The results show that the macroscopic mechanical behavior of Ti-6Al-4V is strongly linked to the active slip systems family (prismatic, basal or pyramidal). The crystallographic texture determines which family of slip systems can be activated; therefore it gives to the plastic strain a heterogeneous character thus an anisotropic macroscopic mechanical behavior of Ti-6Al-4V alloy modeled. The grains size influences also on mechanical proprieties of Ti-6Al-4V, especially on the yield stress; by decreasing of the grain size, the yield strength increases. Finally, the grains' distribution which characterizes the morphology aspect (homogeneous or heterogeneous) gives to the deformation fields distribution enough heterogeneity because the crystallographic slip is easier in large grains compared to small grains, which generates a localization of plastic deformation in certain areas and a concentration of stresses in others.Keywords: multi-scale modeling, Ti-6Al-4V alloy, crystal plasticity, grains size, crystallographic texture
Procedia PDF Downloads 1572937 Computerized Scoring System: A Stethoscope to Understand Consumer's Emotion through His or Her Feedback
Authors: Chen Yang, Jun Hu, Ping Li, Lili Xue
Abstract:
Most companies pay careful attention to consumer feedback collection, so it is popular to find the ‘feedback’ button of all kinds of mobile apps. Yet it is much more changeling to analyze these feedback texts and to catch the true feelings of a consumer regarding either a problem or a complimentary of consumers who hands out the feedback. Especially to the Chinese content, it is possible that; in one context the Chinese feedback expresses positive feedback, but in the other context, the same Chinese feedback may be a negative one. For example, in Chinese, the feedback 'operating with loudness' works well with both refrigerator and stereo system. Apparently, this feedback towards a refrigerator shows negative feedback; however, the same feedback is positive towards a stereo system. By introducing Bradley, M. and Lang, P.'s Affective Norms for English Text (ANET) theory and Bucci W.’s Referential Activity (RA) theory, we, usability researchers at Pingan, are able to decipher the feedback and to find the hidden feelings behind the content. We subtract 2 disciplines ‘valence’ and ‘dominance’ out of 3 of ANET and 2 disciplines ‘concreteness’ and ‘specificity’ out of 4 of RA to organize our own rating system with a scale of 1 to 5 points. This rating system enables us to judge the feelings/emotion behind each feedback, and it works well with both single word/phrase and a whole paragraph. The result of the rating reflects the strength of the feeling/emotion of the consumer when he/she is typing the feedback. In our daily work, we first require a consumer to answer the net promoter score (NPS) before writing the feedback, so we can determine the feedback is positive or negative. Secondly, we code the feedback content according to company problematic list, which contains 200 problematic items. In this way, we are able to collect the data that how many feedbacks left by the consumer belong to one typical problem. Thirdly, we rate each feedback based on the rating system mentioned above to illustrate the strength of the feeling/emotion when our consumer writes the feedback. In this way, we actually obtain two kinds of data 1) the portion, which means how many feedbacks are ascribed into one problematic item and 2) the severity, how strong the negative feeling/emotion is when the consumer is writing this feedback. By crossing these two, and introducing the portion into X-axis and severity into Y-axis, we are able to find which typical problem gets the high score in both portion and severity. The higher the score of a problem has, the more urgent a problem is supposed to be solved as it means more people write stronger negative feelings in feedbacks regarding this problem. Moreover, by introducing hidden Markov model to program our rating system, we are able to computerize the scoring system and are able to process thousands of feedback in a short period of time, which is efficient and accurate enough for the industrial purpose.Keywords: computerized scoring system, feeling/emotion of consumer feedback, referential activity, text mining
Procedia PDF Downloads 1762936 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: instance selection, data reduction, MapReduce, kNN
Procedia PDF Downloads 2532935 Fuzzy Logic Based Fault Tolerant Model Predictive MLI Topology
Authors: Abhimanyu Kumar, Chirag Gupta
Abstract:
This work presents a comprehensive study on the employment of Model Predictive Control (MPC) for a three-phase voltage-source inverter to regulate the output voltage efficiently. The inverter is modeled via the Clarke Transformation, considering a scenario where the load is unknown. An LC filter model is developed, demonstrating its efficacy in Total Harmonic Distortion (THD) reduction. The system, when implemented with fault-tolerant multilevel inverter topologies, ensures reliable operation even under fault conditions, a requirement that is paramount with the increasing dependence on renewable energy sources. The research also integrates a Fuzzy Logic based fault tolerance system which identifies and manages faults, ensuring consistent inverter performance. The efficacy of the proposed methodology is substantiated through rigorous simulations and comparative results, shedding light on the voltage prediction efficiency and the robustness of the model even under fault conditions.Keywords: total harmonic distortion, fuzzy logic, renewable energy sources, MLI
Procedia PDF Downloads 1312934 Using Machine Learning to Predict Answers to Big-Five Personality Questions
Authors: Aadityaa Singla
Abstract:
The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.Keywords: machine learning, personally, big five personality traits, cognitive science
Procedia PDF Downloads 1452933 Effect of Water Hyacinth on Behaviour of Reinforced Concrete Beams
Authors: Ahmed Shaban Abdel Hay Gabr
Abstract:
Water hyacinth (W-H) has an adverse effect on Nile river in Egypt, it absorbs high quantities of water, it needs to serve these quantities especially at this time, so by burning W-H, it can be used in concrete mix to reduce the permeability of concrete and increase both the compressive and splitting strength. The effect of W-H on non-structural concrete properties was studied, but there is a lack of studies about the behavior of structural concrete containing W-H. Therefore, in the present study, the behavior of 15 RC beams with 100 x 150 mm cross section, 1250 mm span, different reinforcement ratios and different W-H ratios were studied by testing the beams under two-point bending test. The test results showed that Water Hyacinth is compatible with RC which yields promising results.Keywords: beams, reinforcement ratio, reinforced concrete, water hyacinth
Procedia PDF Downloads 4472932 Hormones and Mineral Elements Associated with Osteoporosis in Postmenopausal Women in Eastern Slovakia
Authors: M. Mydlárová Blaščáková, J. Poráčová, Z. Tomková, Ľ. Blaščáková, M. Nagy, M. Konečná, E. Petrejčíková, Z. Gogaľová, V. Sedlák, J. Mydlár, M. Zahatňanská, K. Hricová
Abstract:
Osteoporosis is a multifactorial disease that results in reduced quality of life, causes decreased bone strength, and changes in their microarchitecture. Mostly postmenopausal women are at risk. In our study, we measured anthropometric parameters of postmenopausal women (104 women of control group – CG and 105 women of osteoporotic group - OG) and determined TSH hormone levels and PTH as well as mineral elements - Ca, P, Mg and enzyme alkaline phosphatase. Through the correlation analysis in CG, we have found association based on age and BMI, P and Ca, as well as Mg and Ca; in OG we determined interdependence based on an association of age and BMI, age and Ca. Using the Student's t test, we found significantly important differences in biochemical parameters of Mg (p ˂ 0,001) and TSH (p ˂ 0,05) between CG and OG.Keywords: factors, bone mass density, Central Europe, biomarkers
Procedia PDF Downloads 1962931 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.Keywords: decision tree, water quality, water pollution, machine learning
Procedia PDF Downloads 832930 Examining the Mediating and Moderating Role of Relationships in the Association between Poverty and Children’s Subjective Well-Being
Authors: Esther Yin-Nei Cho
Abstract:
There is inconsistency among studies about whether there is an association between poverty and the subjective wellbeing of children. Some have found a positive association, though its magnitude could be limited, others have shown no association. One possible explanation for this inconsistency is that household income, an often-adopted measure of child poverty, may not accurately and stably reflect the actual life experience of children. Some studies have suggested, however, that material deprivation covering various dimensions of children’s lives could be a better measure of child poverty. Another possible explanation for the inconsistency is that the link between poverty and subjective wellbeing of children may not be that straightforward, as there could be underlying mechanisms, such as mediation and moderation, influencing its direction or strength. While a mediator refers to the mechanism through which an independent variable affects a dependent variable, a moderator changes the direction or strength of the relationship between an independent variable and a dependent variable. As suggested by empirical evidence, family relationships and friendships could be potential mediators or moderators of the link between poverty and subjective well-being: poverty affects relationships; relationships are an important element in children’s subjective well-being; and economic status affects child outcomes, though not necessarily subjective wellbeing, through relationships. Since the potential links have not been adequately understood, this study fills this gap by examining the possible role of family relationships and friendships as mediators or moderators between poverty (using child-derived material deprivation as measure) and the subjective wellbeing of children. Improving subjective wellbeing is increasingly considered as a policy goal. The finding of no or a limited association between poverty and subjective wellbeing of children could be a justification for less effort to improve poverty in this regard. But if the observed magnitude of that association is due to some underlying mechanisms at work, the effect of poverty may be underestimated and the potentially useful strategies that take into account both poverty and other mediators or moderators for improving children’s subjective well-being may be overlooked. Multiple mediation, and multiple moderation models, based on regression analyses, are performed to a sample of approximately 1,600 children, who are aged 10 to 15, from the wellbeing survey conducted by The Children’s Society in England from 2010 to 2011. Results show that the effect of children’s material deprivation on their subjective well-being is mediated by their family relationships and friendships. Moreover, family relationships are a significant moderator. It is found that the negative impact of child deprivation on subjective wellbeing could be exacerbated if family relationships are not going well, while good family relationships may prevent the further decline in subjective well-being. Policy implications of the findings are discussed. In particular, policy measures that focus on strengthening the family relationships or nurturing home environment through supporting household’s economic security and parental time with children could promote the subjective wellbeing of children.Keywords: child poverty, mediation, moderation, subjective well-being of children
Procedia PDF Downloads 3272929 Undrained Bearing Capacity of Circular Foundations on two Layered Clays
Authors: S. Benmebarek, S. Benmoussa, N. Benmebarek
Abstract:
Natural soils are often deposited in layers. The estimation of the bearing capacity of the soil using conventional bearing capacity theory based on the properties of the upper layer introduces significant inaccuracies if the thickness of the top layer is comparable to the width of the foundation placed on the soil surface. In this paper, numerical computations using the FLAC code are reported to evaluate the two clay layers effect on the bearing capacity beneath rigid circular rough footing subject to axial static load. The computation results of the parametric study are used to illustrate the sensibility of the bearing capacity, the shape factor and the failure mechanisms to the layered strength and layered thickness.Keywords: numerical modeling, circular footings, layered clays, bearing capacity, failure
Procedia PDF Downloads 4962928 An Improved Amplified Sway Method for Semi-Rigidly Jointed Sway Frames
Authors: Abdul Hakim Chikho
Abstract:
A simple method of calculating satisfactory of the effect of instability on the distribution of in-plane bending moments in unbraced semi-rigidly multistory steel framed structures is presented in this paper. This method, which is a modified form of the current amplified sway method of BS5950: part1:2000, uses an approximate load factor at elastic instability in each storey of a frame which in turn dependent up on the axial loads acting in the columns. The calculated factors are then used to represent the geometrical deformations due to the presence of axial loads, acting in that storey. Only a first order elastic analysis is required to accomplish the calculation. Comparison of the prediction of the proposed method and the current BS5950 amplified sway method with an accurate second order elastic computation shows that the proposed method leads to predictions which are markedly more accurate than the current approach of BS5950.Keywords: improved amplified sway method, steel frames, semi-rigid connections, secondary effects
Procedia PDF Downloads 872927 Prediction of Permeability of Frozen Unsaturated Soil Using Van Genuchten Model and Fredlund-Xing Model in Soil Vision
Authors: Bhavita S. Dave, Jaimin Vaidya, Chandresh H. Solanki, Atul K.
Abstract:
To measure the permeability of a soil specimen, one of the basic assumptions of Darcy's law is that the soil sample should be saturated. Unlike saturated soils, the permeability of unsaturated soils cannot be found using conventional methods as it does not follow Darcy's law. Many empirical models, such as the Van Genuchten Model and Fredlund-Xing Model were suggested to predict permeability value for unsaturated soil. Such models use data from the soil-freezing characteristic curve to find fitting parameters for frozen unsaturated soils. In this study, soil specimens were subjected to 0, 1, 3, and 5 freezing-thawing (F-T) cycles for different degrees of saturation to have a wide range of suction, and its soil freezing characteristic curves were formulated for all F-T cycles. Changes in fitting parameters and relative permeability with subsequent F-T cycles are presented in this paper for both models.Keywords: frozen unsaturated soil, Fredlund Xing model, soil-freezing characteristic curve, Van Genuchten model
Procedia PDF Downloads 1892926 Systematic Review of Quantitative Risk Assessment Tools and Their Effect on Racial Disproportionality in Child Welfare Systems
Authors: Bronwen Wade
Abstract:
Over the last half-century, child welfare systems have increasingly relied on quantitative risk assessment tools, such as actuarial or predictive risk tools. These tools are developed by performing statistical analysis of how attributes captured in administrative data are related to future child maltreatment. Some scholars argue that attributes in administrative data can serve as proxies for race and that quantitative risk assessment tools reify racial bias in decision-making. Others argue that these tools provide more “objective” and “scientific” guides for decision-making instead of subjective social worker judgment. This study performs a systematic review of the literature on the impact of quantitative risk assessment tools on racial disproportionality; it examines methodological biases in work on this topic, summarizes key findings, and provides suggestions for further work. A search of CINAHL, PsychInfo, Proquest Social Science Premium Collection, and the ProQuest Dissertations and Theses Collection was performed. Academic and grey literature were included. The review includes studies that use quasi-experimental methods and development, validation, or re-validation studies of quantitative risk assessment tools. PROBAST (Prediction model Risk of Bias Assessment Tool) and CHARMS (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) were used to assess the risk of bias and guide data extraction for risk development, validation, or re-validation studies. ROBINS-I (Risk of Bias in Non-Randomized Studies of Interventions) was used to assess for bias and guide data extraction for the quasi-experimental studies identified. Due to heterogeneity among papers, a meta-analysis was not feasible, and a narrative synthesis was conducted. 11 papers met the eligibility criteria, and each has an overall high risk of bias based on the PROBAST and ROBINS-I assessments. This is deeply concerning, as major policy decisions have been made based on a limited number of studies with a high risk of bias. The findings on racial disproportionality have been mixed and depend on the tool and approach used. Authors use various definitions for racial equity, fairness, or disproportionality. These concepts of statistical fairness are connected to theories about the reason for racial disproportionality in child welfare or social definitions of fairness that are usually not stated explicitly. Most findings from these studies are unreliable, given the high degree of bias. However, some of the less biased measures within studies suggest that quantitative risk assessment tools may worsen racial disproportionality, depending on how disproportionality is mathematically defined. Authors vary widely in their approach to defining and addressing racial disproportionality within studies, making it difficult to generalize findings or approaches across studies. This review demonstrates the power of authors to shape policy or discourse around racial justice based on their choice of statistical methods; it also demonstrates the need for improved rigor and transparency in studies of quantitative risk assessment tools. Finally, this review raises concerns about the impact that these tools have on child welfare systems and racial disproportionality.Keywords: actuarial risk, child welfare, predictive risk, racial disproportionality
Procedia PDF Downloads 542925 Comparison of Solar Radiation Models
Authors: O. Behar, A. Khellaf, K. Mohammedi, S. Ait Kaci
Abstract:
Up to now, most validation studies have been based on the MBE and RMSE, and therefore, focused only on long and short terms performance to test and classify solar radiation models. This traditional analysis does not take into account the quality of modeling and linearity. In our analysis we have tested 22 solar radiation models that are capable to provide instantaneous direct and global radiation at any given location Worldwide. We introduce a new indicator, which we named Global Accuracy Indicator (GAI) to examine the linear relationship between the measured and predicted values and the quality of modeling in addition to long and short terms performance. Note that the quality of model has been represented by the T-Statistical test, the model linearity has been given by the correlation coefficient and the long and short term performance have been respectively known by the MBE and RMSE. An important founding of this research is that the use GAI allows avoiding default validation when using traditional methodology that might results in erroneous prediction of solar power conversion systems performances.Keywords: solar radiation model, parametric model, performance analysis, Global Accuracy Indicator (GAI)
Procedia PDF Downloads 3512924 Formulation and Characterization of Active Edible Films from Cassava Starch for Snacks and Savories
Authors: P. Raajeswari, S. M. Devatha, S. Yuvajanani, U. Rashika
Abstract:
Edible food packaging are the need of the hour to save life on land and under water by eliminating waste cycle and replacing Single Use Plastics at grass root level as it can be eaten or composted as such. Cassava (Manihot esculenta) selected for making edible films are rich source of starch, and also it exhibit good sheeting propertiesdue to the high amylose: amylopectin content. Cassava starch was extracted by manual method at a laboratory scale and yielded 65 per cent. Edible films were developed by adding food grade plasticizers and water. Glycerol showed good plasticizing property as compared to sorbitol and polylactic acid in both manual (petri dish) and machine (film making machine) production. The thickness of the film is 0.25±0.03 mm. Essential oil and components from peels like pomegranate, orange, pumpkin, onion, and banana brat, and herbs like tulsi and country borage was extracted through the standardized aqueous and alkaline method. In the standardized film, the essential oil and components from selected peel and herbs were added to the casting solution separately and casted the film. It was added to improve the anti-oxidant, anti-microbial and optical properties. By inclusion of extracts, it reduced the bubble formation while casting. FTIR, Water Vapor and Oxygen Transmission Rate (WVTR and OTR), tensile strength, microbial load, shelf life, and degradability of the films were done to analyse the mechanical property of the standardized films. FTIR showed the presence of essential oil. WVTR and OTR of the film was improved after inclusion of essential oil and extracts from 1.312 to 0.811 cm₃/m₂ and 15.12 to 17.81 g/ m₂.d. Inclusion of essential oil from herbs showed better WVTR and OTR than the inclusion of peel extract and standard. Tensile strength and Elongation at break has not changed by essential oil and extracts at 0.86 ± 0.12 mpa and 14 ± 2 at 85 N force. By inclusion of extracts, an optical property of the film enhanced, and it increases the appearance of the packaging material. The films were completely degraded on 84thdays and partially soluble in water. Inclusion of essential oil does not have impact on degradability and solubility. The microbial loads of the active films were decreased from 15 cfu/gm to 7 cfu/gm. The films can be stored at frozen state for 24 days and 48 days at atmospheric temperature when packed with South Indian snacks and savories.Keywords: active films, cassava starch, plasticizer, characterization
Procedia PDF Downloads 812923 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer
Authors: Mohamed Hafid, Marcel Lacroix
Abstract:
This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.Keywords: inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness
Procedia PDF Downloads 3342922 Prediction of Vapor Liquid Equilibrium for Dilute Solutions of Components in Ionic Liquid by Neural Networks
Authors: S. Mousavian, A. Abedianpour, A. Khanmohammadi, S. Hematian, Gh. Eidi Veisi
Abstract:
Ionic liquids are finding a wide range of applications from reaction media to separations and materials processing. In these applications, Vapor–Liquid equilibrium (VLE) is the most important one. VLE for six systems at 353 K and activity coefficients at infinite dilution 〖(γ〗_i^∞) for various solutes (alkanes, alkenes, cycloalkanes, cycloalkenes, aromatics, alcohols, ketones, esters, ethers, and water) in the ionic liquids (1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide [EMIM][BTI], 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide [HMIM][BTI], 1-octyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide [OMIM][BTI], and 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide [BMPYR][BTI]) have been used to train neural networks in the temperature range from (303 to 333) K. Densities of the ionic liquids, Hildebrant constant of substances, and temperature were selected as input of neural networks. The networks with different hidden layers were examined. Networks with seven neurons in one hidden layer have minimum error and good agreement with experimental data.Keywords: ionic liquid, neural networks, VLE, dilute solution
Procedia PDF Downloads 3002921 Optimization of Human Hair Concentration for a Natural Rubber Based Composite
Authors: Richu J. Babu, Sony Mathew, Sharon Rony Jacob, Soney C. George, Jibin C. Jacob
Abstract:
Human hair is a non-biodegradable waste available in plenty throughout the world but is rarely explored for applications in engineering fields. Tensile strength of human hair ranges from 170 to 220 MPa. This property of human hair can be made use in the field of making bio-composites[1]. The composite is prepared by commixing the human hair and natural rubber in a two roll mill along with additives followed by vulcanization. Here the concentration of the human hair is varied by fine-tuning the fiber length as 20 mm and sundry tests like tensile, abrasion, tear and hardness were conducted. While incrementing the fiber length up to a certain range the mechanical properties shows superior amendments.Keywords: human hair, natural rubber, composite, vulcanization, fiber loading
Procedia PDF Downloads 3822920 Development of Long and Short Range Ordered Domains in a High Specific Strength Steel
Authors: Nikhil Kumar, Aparna Singh
Abstract:
Microstructural development when annealed at different temperatures in a high aluminum and manganese light weight steel has been examined. The FCC matrix of the manganese (Mn)-rich and nickel (Ni)-rich areas in the studied Fe-Mn-Al-Ni-C-light weight steel have been found to contain anti phase domains. In the Mn-rich region short order range of domains manifested by the diffuse scattering in the electron diffraction patterns was observed. Domains in the Ni-rich region were found to be arranged periodically validated through lattice imaging. The nature of these domains can be tuned with annealing temperature resulting in profound influence in the mechanical properties.Keywords: Anti-phase domain boundaries, BCC, FCC, Light Weight Steel
Procedia PDF Downloads 1412919 Estimation of the Drought Index Based on the Climatic Projections of Precipitation of the Uruguay River Basin
Authors: José Leandro Melgar Néris, Claudinéia Brazil, Luciane Teresa Salvi, Isabel Cristina Damin
Abstract:
The impact the climate change is not recent, the main variable in the hydrological cycle is the sequence and shortage of a drought, which has a significant impact on the socioeconomic, agricultural and environmental spheres. This study aims to characterize and quantify, based on precipitation climatic projections, the rainy and dry events in the region of the Uruguay River Basin, through the Standardized Precipitation Index (SPI). The database is the image that is part of the Intercomparison of Model Models, Phase 5 (CMIP5), which provides condition prediction models, organized according to the Representative Routes of Concentration (CPR). Compared to the normal set of climates in the Uruguay River Watershed through precipitation projections, seasonal precipitation increases for all proposed scenarios, with a low climate trend. From the data of this research, the idea is that this article can be used to support research and the responsible bodies can use it as a subsidy for mitigation measures in other hydrographic basins.Keywords: climate change, climatic model, dry events, precipitation projections
Procedia PDF Downloads 1442918 User Intention Generation with Large Language Models Using Chain-of-Thought Prompting Title
Authors: Gangmin Li, Fan Yang
Abstract:
Personalized recommendation is crucial for any recommendation system. One of the techniques for personalized recommendation is to identify the intention. Traditional user intention identification uses the user’s selection when facing multiple items. This modeling relies primarily on historical behaviour data resulting in challenges such as the cold start, unintended choice, and failure to capture intention when items are new. Motivated by recent advancements in Large Language Models (LLMs) like ChatGPT, we present an approach for user intention identification by embracing LLMs with Chain-of-Thought (CoT) prompting. We use the initial user profile as input to LLMs and design a collection of prompts to align the LLM's response through various recommendation tasks encompassing rating prediction, search and browse history, user clarification, etc. Our tests on real-world datasets demonstrate the improvements in recommendation by explicit user intention identification and, with that intention, merged into a user model.Keywords: personalized recommendation, generative user modelling, user intention identification, large language models, chain-of-thought prompting
Procedia PDF Downloads 542917 Quality Assurance in Software Design Patterns
Authors: Rabbia Tariq, Hannan Sajjad, Mehreen Sirshar
Abstract:
Design patterns are widely used to make the process of development easier as they greatly help the developers to develop the software. Different design patterns have been introduced till now but the behavior of same design pattern may differ in different domains that can lead to the wrong selection of the design pattern. The paper aims to discover the design patterns that suits best with respect to their domain thereby helping the developers to choose an effective design pattern. It presents the comprehensive analysis of design patterns based on different methodologies that include simulation, case study and comparison of various algorithms. Due to the difference of the domain the methodology used in one domain may be inapplicable to the other domain. The paper draws a conclusion based on strength and limitation of each design pattern in their respective domain.Keywords: design patterns, evaluation, quality assurance, software domains
Procedia PDF Downloads 5212916 Inferential Reasoning for Heterogeneous Multi-Agent Mission
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.Keywords: distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 1542915 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 119