Search results for: nonprofit organizations-national data maturity index (NDI)
24680 Analysis of an Alternative Data Base for the Estimation of Solar Radiation
Authors: Graciela Soares Marcelli, Elison Eduardo Jardim Bierhals, Luciane Teresa Salvi, Claudineia Brazil, Rafael Haag
Abstract:
The sun is a source of renewable energy, and its use as both a source of heat and light is one of the most promising energy alternatives for the future. To measure the thermal or photovoltaic systems a solar irradiation database is necessary. Brazil still has a reduced number of meteorological stations that provide frequency tests, as an alternative to the radio data platform, with reanalysis systems, quite significant. ERA-Interim is a global fire reanalysis by the European Center for Medium-Range Weather Forecasts (ECMWF). The data assimilation system used for the production of ERA-Interim is based on a 2006 version of the IFS (Cy31r2). The system includes a 4-dimensional variable analysis (4D-Var) with a 12-hour analysis window. The spatial resolution of the dataset is approximately 80 km at 60 vertical levels from the surface to 0.1 hPa. This work aims to make a comparative analysis between the ERA-Interim data and the data observed in the Solarimmetric Atlas of the State of Rio Grande do Sul, to verify its applicability in the absence of an observed data network. The analysis of the results obtained for a study region as an alternative to the energy potential of a given region.Keywords: energy potential, reanalyses, renewable energy, solar radiation
Procedia PDF Downloads 16424679 Homosexuality and Culture: A Case Study Depicting the Struggles of a Married Lady
Authors: Athulya Jayakumar, M. Manjula
Abstract:
Though there has been a shift in the understanding of homosexuality from being a sin, crime or pathology in the medical and legal perspectives, the acceptance of homosexuality still remains very scanty in the Indian subcontinent. The present case study is a 24-year-old female who has completed a diploma in polytechnic engineering and residing in the state of Kerala. She initially presented with her husband with complaints of lack of sexual desire and non-cooperation from the index client. After an initial few sessions, the client revealed, in an individual session, about her homosexual orientation which was unknown to her family. She has had multiple short-term relations with females and never had any heterosexual orientation/interest. During her adolescence, she was wondering if she could change herself into a male. However, currently, she accepts her gender. She never wanted a heterosexual marriage; but, had to succumb to the pressure of mother, as a result of a series of unexpected incidents at home and had to agree for the marriage, also with a hope that she may change herself into a bi-sexual. The client was able to bond with the husband emotionally but the multiple attempts at sexual intercourse, at the insistence of the husband, had always been non-pleasurable and induced a sense of disgust. Currently, for several months, there has not been any sexual activity. Also, she actively avoids any chance to have a warm communication with him so that she can avoid chances of him approaching her in a sexual manner. The case study is an attempt to highlight the culture and the struggles of a homosexual individual who comes to therapy for wanting to be a ‘normal wife’ despite having knowledge of legal rights and scenario. There is a scarcity of Indian literature that has systematically investigated issues related to homosexuality. Data on prevalence, emotional problems faced and clinical services available are sparse though it is crucial for increasing understanding of sexual behaviour, orientation and difficulties faced in India.Keywords: case study, culture, cognitive behavior therapy, female homosexuality
Procedia PDF Downloads 34524678 Big Data Analytics and Public Policy: A Study in Rural India
Authors: Vasantha Gouri Prathapagiri
Abstract:
Innovations in ICT sector facilitate qualitative life style for citizens across the globe. Countries that facilitate usage of new techniques in ICT, i.e., big data analytics find it easier to fulfil the needs of their citizens. Big data is characterised by its volume, variety, and speed. Analytics involves its processing in a cost effective way in order to draw conclusion for their useful application. Big data also involves into the field of machine learning, artificial intelligence all leading to accuracy in data presentation useful for public policy making. Hence using data analytics in public policy making is a proper way to march towards all round development of any country. The data driven insights can help the government to take important strategic decisions with regard to socio-economic development of her country. Developed nations like UK and USA are already far ahead on the path of digitization with the support of Big Data analytics. India is a huge country and is currently on the path of massive digitization being realised through Digital India Mission. Internet connection per household is on the rise every year. This transforms into a massive data set that has the potential to improvise the public services delivery system into an effective service mechanism for Indian citizens. In fact, when compared to developed nations, this capacity is being underutilized in India. This is particularly true for administrative system in rural areas. The present paper focuses on the need for big data analytics adaptation in Indian rural administration and its contribution towards development of the country on a faster pace. Results of the research focussed on the need for increasing awareness and serious capacity building of the government personnel working for rural development with regard to big data analytics and its utility for development of the country. Multiple public policies are framed and implemented for rural development yet the results are not as effective as they should be. Big data has a major role to play in this context as can assist in improving both policy making and implementation aiming at all round development of the country.Keywords: Digital India Mission, public service delivery system, public policy, Indian administration
Procedia PDF Downloads 15924677 Socioeconomic Disparities in the Prevalence of Obesity in Adults with Diabetes in Israel
Authors: Yael Wolff Sagy, Yiska Loewenberg Weisband, Vered Kaufman Shriqui, Michal Krieger, Arie Ben Yehuda, Ronit Calderon Margalit
Abstract:
Background: Obesity is both a risk factor and common comorbidity of diabetes. Obesity impedes the achievement of glycemic control, and enhances damage caused by hyperglycemia to blood vessels; thus it increases diabetes-related complications. This study assessed the prevalence of obesity and morbid obesity among Israeli adults with diabetes, and estimated disparities associated with sex and socioeconomic position (SEP). Methods: A cross-sectional study was conducted in the setting of the Israeli National Program for Quality Indicators in Community Healthcare. Data on all the Israeli population is retrieved from electronic medical records of the four health maintenance organizations (HMOs). The study population included all Israeli patients with diabetes aged 20-64 with documented body mass index (BMI) in 2016 (N=180,451). Diabetes was defined as the existence of one or more of the following criteria: (a) Plasma glucose level >200 mg% in at least two tests conducted at least one month apart in the previous year; (b) HbA1c>6.5% at least once in the previous year (c) at least three prescriptions of diabetes medications were dispensed during the previous year. Two measures were included: the prevalence of obesity (defined as last BMI≥ 30 kg/m2 and <35 kg/m2) and the prevalence of morbid obesity (defined as last BMI≥ 35 kg/m2) in individuals aged 20-64 with diabetes. The cut-off value for morbid obesity was set in accordance with the eligibility criteria for bariatric surgery in diabetics. Data were collected by the HMOs and aggregated by age, sex and SEP. SEP was based on statistical areas ranking by the Israeli Central Bureau of Statistics and divided into 4 categories, ranking from 1 (lowest) to 4 (highest). Results: BMI documentation among adults with diabetes was 84.9% in 2016. The prevalence of obesity in the study population was 30.5%. Although the overall rate was similar in both sexes (30.8% in females, 30.3% in males), SEP disparities were stronger in females (32.7% in SEP level 1 vs. 27.7% in SEP level 4; 18.1% relative difference) compared to males (30.6% in SEP level 1 vs. 29.3% in SEP level 4; 4.4% relative difference). The overall prevalence of morbid obesity in this population was 20.8% in 2016. The rate among females was almost double compared to the rate in males (28.1% and 14.6%, respectively). In both sexes, the prevalence of morbid obesity was strongly associated with lower SEP. However, in females, disparities between SEP levels were much stronger (34.3% in SEP level 1 vs. 18.7% in SEP level 4; 83.4% relative difference) compared to SEP-disparities in males (15.7% in SEP level 1 vs. 12.3% in SEP level 4; 27.6% relative difference). Conclusions: The overall prevalence of BMI≥ 30 kg/m2 among adults with diabetes in Israel exceeds 50%; and the prevalence of morbid obesity suggests that 20% meet the BMI-criteria for bariatric surgery. Prevalence rates show major SEP- and sex-disparities; especially strong SEP disparities in morbid obesity among females. These findings highlight the need for greater consideration of different population groups when implementing interventions.Keywords: diabetes, health disparities, health policy, obesity, socio-economic position
Procedia PDF Downloads 21524676 The Culex Pipiens Niche: Assessment with Climatic and Physiographic Variables via a Geographic Information System
Authors: Maria C. Proença, Maria T. Rebelo, Marília Antunes, Maria J. Alves, Hugo Osório, Sofia Cunha, João Casaca
Abstract:
Using a geographic information system (GIS), the relations between a georeferenced data set of Culex pipiens sl. mosquitoes collected in Portugal mainland during seven years (2006-2012) and meteorological and physiographic parameters such as: air relative humidity, air temperature (minima, maxima and mean daily temperatures), daily total rainfall, altitude, land use/land cover and proximity to water bodies are evaluated. Focus is on the mosquito females; the characterization of its habitat is the key for the planning of chirurgical non-aggressive prophylactic countermeasures to avoid ambient degradation. The GIS allow for the spatial determination of the zones were the mosquito mean captures has been above average; using the meteorological values at these coordinates, the limits of each parameter are identified/computed. The meteorological parameters measured at the net of weather stations all over the country are averaged by month and interpolated to produce raster maps that can be segmented according to the thresholds obtained for each parameter. The intersection of the maps obtained for each month show the evolution of the area favorable to the species through the mosquito season, which is from May to October at these latitudes. In parallel, mean and above average captures were related to the physiographic parameters. Three levels of risk could be identified for each parameter, using above average captures as an index. The results were applied to the suitability meteorological maps of each month. The Culex pipiens critical niche is delimited, reflecting the critical areas and the level of risk for transmission of the pathogens to which they are competent vectors (West Nile virus, iridoviruses, rheoviruses and parvoviruses).Keywords: Culex pipiens, ecological niche, risk assessment, risk management
Procedia PDF Downloads 54424675 Carbon Sequestration in Spatio-Temporal Vegetation Dynamics
Authors: Nothando Gwazani, K. R. Marembo
Abstract:
An increase in the atmospheric concentration of carbon dioxide (CO₂) from fossil fuel and land use change necessitates identification of strategies for mitigating threats associated with global warming. Oceans are insufficient to offset the accelerating rate of carbon emission. However, the challenges of oceans as a source of reducing carbon footprint can be effectively overcome by the storage of carbon in terrestrial carbon sinks. The gases with special optical properties that are responsible for climate warming include carbon dioxide (CO₂), water vapors, methane (CH₄), nitrous oxide (N₂O), nitrogen oxides (NOₓ), stratospheric ozone (O₃), carbon monoxide (CO) and chlorofluorocarbons (CFC’s). Amongst these, CO₂ plays a crucial role as it contributes to 50% of the total greenhouse effect and has been linked to climate change. Because plants act as carbon sinks, interest in terrestrial carbon sequestration has increased in an effort to explore opportunities for climate change mitigation. Removal of carbon from the atmosphere is a topical issue that addresses one important aspect of an overall strategy for carbon management namely to help mitigate the increasing emissions of CO₂. Thus, terrestrial ecosystems have gained importance for their potential to sequester carbon and reduce carbon sink in oceans, which have a substantial impact on the ocean species. Field data and electromagnetic spectrum bands were analyzed using ArcGIS 10.2, QGIS 2.8 and ERDAS IMAGINE 2015 to examine the vegetation distribution. Satellite remote sensing data coupled with Normalized Difference Vegetation Index (NDVI) was employed to assess future potential changes in vegetation distributions in Eastern Cape Province of South Africa. The observed 5-year interval analysis examines the amount of carbon absorbed using vegetation distribution. In 2015, the numerical results showed low vegetation distribution, therefore increased the acidity of the oceans and gravely affected fish species and corals. The outcomes suggest that the study area could be effectively utilized for carbon sequestration so as to mitigate ocean acidification. The vegetation changes measured through this investigation suggest an environmental shift and reduced vegetation carbon sink, and that threatens biodiversity and ecosystem. In order to sustain the amount of carbon in the terrestrial ecosystems, the identified ecological factors should be enhanced through the application of good land and forest management practices. This will increase the carbon stock of terrestrial ecosystems thereby reducing direct loss to the atmosphere.Keywords: remote sensing, vegetation dynamics, carbon sequestration, terrestrial carbon sink
Procedia PDF Downloads 15124674 4G LTE Dynamic Pricing: The Drivers, Benefits, and Challenges
Authors: Ahmed Rashad Harb Riad Ismail
Abstract:
The purpose of this research is to study the potential of Dynamic Pricing if deployed by mobile operators and analyse its effects from both operators and consumers side. Furthermore, to conclude, throughout the research study, the recommended conditions for successful Dynamic Pricing deployment, recommended factors identifying the type of markets where Dynamic Pricing can be effective, and proposal for a Dynamic Pricing stakeholders’ framework were presented. Currently, the mobile telecommunications industry is witnessing a dramatic growth rate in the data consumption, being fostered mainly by higher data speed technology as the 4G LTE and by the smart devices penetration rates. However, operators’ revenue from data services lags behind and is decupled from this data consumption growth. Pricing strategy is a key factor affecting this ecosystem. Since the introduction of the 4G LTE technology will increase the pace of data growth in multiples, consequently, if pricing strategies remain constant, then the revenue and usage gap will grow wider, risking the sustainability of the ecosystem. Therefore, this research study is focused on Dynamic Pricing for 4G LTE data services, researching the drivers, benefits and challenges of 4G LTE Dynamic Pricing and the feasibility of its deployment in practice from different perspectives including operators, regulators, consumers, and telecommunications equipment manufacturers point of views.Keywords: LTE, dynamic pricing, EPC, research
Procedia PDF Downloads 33324673 Prediction of Wind Speed by Artificial Neural Networks for Energy Application
Authors: S. Adjiri-Bailiche, S. M. Boudia, H. Daaou, S. Hadouche, A. Benzaoui
Abstract:
In this work the study of changes in the wind speed depending on the altitude is calculated and described by the model of the neural networks, the use of measured data, the speed and direction of wind, temperature and the humidity at 10 m are used as input data and as data targets at 50m above sea level. Comparing predict wind speeds and extrapolated at 50 m above sea level is performed. The results show that the prediction by the method of artificial neural networks is very accurate.Keywords: MATLAB, neural network, power low, vertical extrapolation, wind energy, wind speed
Procedia PDF Downloads 69324672 A Case Study at PT Bank XYZ on The Role of Compensation, Career Development, and Employee Engagement towards Employee Performance
Authors: Ahmad Badawi Saluy, Novawiguna Kemalasari
Abstract:
This study aims to examine, analyze and explain the impacts of compensation, career development and employee engagement to employee’s performance partially and simultaneously (Case Study at PT Bank XYZ). The research design used is quantitative descriptive research causality involving 30 respondents. Sources of data are from primary and secondary data, primary data obtained from questionnaires distribution and secondary data obtained from journals and books. Data analysis used model test using smart application PLS 3 that consists of test outer model and inner model. The results showed that compensation, career development and employee engagement partially have a positive impact on employee performance, while they have a positive and significant impact on employee performance simultaneously. The independent variable has the greatest impact is the employee engagement.Keywords: compensation, career development, employee engagement, employee performance
Procedia PDF Downloads 15224671 Spectral Anomaly Detection and Clustering in Radiological Search
Authors: Thomas L. McCullough, John D. Hague, Marylesa M. Howard, Matthew K. Kiser, Michael A. Mazur, Lance K. McLean, Johanna L. Turk
Abstract:
Radiological search and mapping depends on the successful recognition of anomalies in large data sets which contain varied and dynamic backgrounds. We present a new algorithmic approach for real-time anomaly detection which is resistant to common detector imperfections, avoids the limitations of a source template library and provides immediate, and easily interpretable, user feedback. This algorithm is based on a continuous wavelet transform for variance reduction and evaluates the deviation between a foreground measurement and a local background expectation using methods from linear algebra. We also present a technique for recognizing and visualizing spectrally similar clusters of data. This technique uses Laplacian Eigenmap Manifold Learning to perform dimensional reduction which preserves the geometric "closeness" of the data while maintaining sensitivity to outlying data. We illustrate the utility of both techniques on real-world data sets.Keywords: radiological search, radiological mapping, radioactivity, radiation protection
Procedia PDF Downloads 69624670 Revised Risk Priority Number in Failure Mode and Effects Analysis Model from the Perspective of Healthcare System
Authors: Fatemeh Rezaei, Mohammad H. Yarmohammadian, Masoud Ferdosi, Abbas Haghshnas
Abstract:
Background: Failure Modes and Effect Analysis is now having known as the main methods of risk assessment and the accreditation requirements for many organizations. The Risk Priority Number (RPN) approach is generally preferred, especially for its easiness of use. Indeed it does not require statistical data, but it is based on subjective evaluations given by the experts about the Occurrence (O i), the Severity (Si) and the Detectability (D i) of each cause of failure. Methods: This study is a quantitative – qualitative research. In terms of qualitative dimension, method of focus groups with inductive approach is used. To evaluate the results of the qualitative study, quantitative assessment was conducted to calculate RPN score. Results; We have studied patient’s journey process in surgery ward and the most important phase of the process determined Transport of the patient from the holding area to the operating room. Failures of the phase with the highest priority determined by defining inclusion criteria included severity (clinical effect, claim consequence, waste of time and financial loss), occurrence (time- unit occurrence and degree of exposure to risk) and preventability (degree of preventability and defensive barriers) and quantifying risks priority criteria in the context of RPN index. Ability of improved RPN reassess by root cause (RCA) analysis showed some variations. Conclusions: Finally, It could be concluded that understandable criteria should have been developed according to personnel specialized language and communication field. Therefore, participation of both technical and clinical groups is necessary to modify and apply these models.Keywords: failure mode, effects analysis, risk priority number(RPN), health system, risk assessment
Procedia PDF Downloads 31324669 Knowledge Engineering Based Smart Healthcare Solution
Authors: Rhaed Khiati, Muhammad Hanif
Abstract:
In the past decade, smart healthcare systems have been on an ascendant drift, especially with the evolution of hospitals and their increasing reliance on bioinformatics and software specializing in healthcare. Doctors have become reliant on technology more than ever, something that in the past would have been looked down upon, as technology has become imperative in reducing overall costs and improving the quality of patient care. With patient-doctor interactions becoming more necessary and more complicated than ever, systems must be developed while taking into account costs, patient comfort, and patient data, among other things. In this work, we proposed a smart hospital bed, which mixes the complexity and big data usage of traditional healthcare systems with the comfort found in soft beds while taking certain concerns like data confidentiality, security, and maintaining SLA agreements, etc. into account. This research work potentially provides users, namely patients and doctors, with a seamless interaction with to their respective nurses, as well as faster access to up-to-date personal data, including prescriptions and severity of the condition in contrast to the previous research in the area where there is lack of consideration of such provisions.Keywords: big data, smart healthcare, distributed systems, bioinformatics
Procedia PDF Downloads 19824668 Transformation of the Business Model in an Occupational Health Care Company Embedded in an Emerging Personal Data Ecosystem: A Case Study in Finland
Authors: Tero Huhtala, Minna Pikkarainen, Saila Saraniemi
Abstract:
Information technology has long been used as an enabler of exchange for goods and services. Services are evolving from generic to personalized, and the reverse use of customer data has been discussed in both academia and industry for the past few years. This article presents the results of an empirical case study in the area of preventive health care services. The primary data were gathered in workshops, in which future personal data-based services were conceptualized by analyzing future scenarios from a business perspective. The aim of this study is to understand business model transformation in emerging personal data ecosystems. The work was done as a case study in the context of occupational healthcare. The results have implications to theory and practice, indicating that adopting personal data management principles requires transformation of the business model, which, if successfully managed, may provide access to more resources, potential to offer better value, and additional customer channels. These advantages correlate with the broadening of the business ecosystem. Expanding the scope of this study to include more actors would improve the validity of the research. The results draw from existing literature and are based on findings from a case study and the economic properties of the healthcare industry in Finland.Keywords: ecosystem, business model, personal data, preventive healthcare
Procedia PDF Downloads 24924667 Applying Swanson's Theory of Caring to Manage Multiple Trauma Patient
Authors: Hsin-Yi Lo, Chia-Yu Hsu
Abstract:
This article is the nursing experience of a multiple trauma case using Swanson's theory of caring, the nursing period is from May 31 to June 4, 2021, collect data through observation, written talks, interviews, listening, direct care and physical assessment, established cases with health problems such as acute pain, impaired tissue integrity, and anxiety. Nursing process including, evaluate the pain index with the pain assessment scale, assist in acupoint massage, use a corset to fix the wound, and give the patient listening to favorite radio programs to divert attention and relieve pain problems; promote wound healing and avoid infection by assessing wound condition and exudation, changing dressings with aseptic technique, and providing appropriate dressings; encourage patients to express their feelings, provide companionship, and assist in self-care and participation in treatment plans, to enable the case to overcome the anxiety caused by being admitted to the intensive care unit for the first time and not knowing about the disease, and assist the case to overcome the injury caused by the accident and return to normal life. There is no video equipment in the intensive care unit during the nursing period. In response to the problem that family visits cannot be opened during the epidemic, it is a limitation this time. It is recommended that the hospital take this into consideration in the future. In the post-epidemic era, it can reduce the risk of various infections for patients and family members. Traveling between home and hospital, improving the quality of high-quality and technological care.Keywords: swanson's theory of caring, multiple trauma, anxiety, nursing experience
Procedia PDF Downloads 7924666 Seeking Safe Haven: An Analysis of Gold Performance during Periods of High Volatility
Authors: Gerald Abdesaken, Thomas O. Miller
Abstract:
This paper analyzes the performance of gold as a safe-haven investment. Assuming high market volatility as an impetus to seek a safe haven in gold, the return of gold relative to the stock market, as measured by the S&P 500, is tracked. Using the Chicago Board Options Exchange (CBOE) volatility index (VIX) as a measure of stock market volatility, various criteria are established for when an investor would seek a safe haven to avoid high levels of risk. The results show that in a vast majority of cases, the S&P 500 outperforms gold during these periods of high volatility and suggests investors who seek safe haven are underperforming the market.Keywords: gold, portfolio management, safe haven, VIX
Procedia PDF Downloads 16324665 Design of an Instrumentation Setup and Data Acquisition System for a GAS Turbine Engine Using Suitable DAQ Software
Authors: Syed Nauman Bin Asghar Bukhari, Mohtashim Mansoor, Mohammad Nouman
Abstract:
Engine test-Bed system is a fundamental tool to measure dynamic parameters, economic performance, and reliability of an aircraft Engine, and its automation and accuracy directly influences the precision of acquired and analysed data. In this paper, we present the design of digital Data Acquisition (DAQ) system for a vintage aircraft engine test bed that lacks the capability of displaying all the analyzed parameters at one convenient location (one panel-one screen). Recording such measurements in the vintage test bed is not only time consuming but also prone to human errors. Digitizing such measurement system requires a Data Acquisition (DAQ) system capable of recording these parameters and displaying them on one screen-one panel monitor. The challenge in designing upgrade to the vintage systems arises with a need to build and integrate digital measurement system from scratch with a minimal budget and modifications to the existing vintage system. The proposed design not only displays all the key performance / maintenance parameters of the gas turbine engines for operator as well as quality inspector on separate screens but also records the data for further processing / archiving.Keywords: Gas turbine engine, engine test cell, data acquisition, instrumentation
Procedia PDF Downloads 12324664 Moral Hazard under the Effect of Bailout and Bailin Events: A Markov Switching Model
Authors: Amira Kaddour
Abstract:
To curb the problem of liquidity in times of financial crises, two cases arise; the Bailout or Bailin, two opposite choices that elicit the analysis of their effect on moral hazard. This paper attempts to empirically analyze the effect of these two types of events on the behavior of investors. For this end, we use the Emerging Market Bonds Index (EMBI-JP Morgan), and its excess of return, to detect the change in the risk premia through a Markov switching model. The results showed the transition to two types of regime and an effect on moral hazard; Bailout is an incentive of moral hazard, Bailin effectiveness remains subject of credibility.Keywords: Bailout, Bailin, Moral hazard, financial crisis, Markov switching
Procedia PDF Downloads 46624663 Evaluation of NASA POWER and CRU Precipitation and Temperature Datasets over a Desert-prone Yobe River Basin: An Investigation of the Impact of Drought in the North-East Arid Zone of Nigeria
Authors: Yusuf Dawa Sidi, Abdulrahman Bulama Bizi
Abstract:
The most dependable and precise source of climate data is often gauge observation. However, long-term records of gauge observations, on the other hand, are unavailable in many regions around the world. In recent years, a number of gridded climate datasets with high spatial and temporal resolutions have emerged as viable alternatives to gauge-based measurements. However, it is crucial to thoroughly evaluate their performance prior to utilising them in hydroclimatic applications. Therefore, this study aims to assess the effectiveness of NASA Prediction of Worldwide Energy Resources (NASA POWER) and Climate Research Unit (CRU) datasets in accurately estimating precipitation and temperature patterns within the dry region of Nigeria from 1990 to 2020. The study employs widely used statistical metrics and the Standardised Precipitation Index (SPI) to effectively capture the monthly variability of precipitation and temperature and inter-annual anomalies in rainfall. The findings suggest that CRU exhibited superior performance compared to NASA POWER in terms of monthly precipitation and minimum and maximum temperatures, demonstrating a high correlation and much lower error values for both RMSE and MAE. Nevertheless, NASA POWER has exhibited a moderate agreement with gauge observations in accurately replicating monthly precipitation. The analysis of the SPI reveals that the CRU product exhibits superior performance compared to NASA POWER in accurately reflecting inter-annual variations in rainfall anomalies. The findings of this study indicate that the CRU gridded product is often regarded as the most favourable gridded precipitation product.Keywords: CRU, climate change, precipitation, SPI, temperature
Procedia PDF Downloads 8924662 A Comparative Analysis of an All-Optical Switch Using Chalcogenide Glass and Gallium Arsenide Based on Nonlinear Photonic Crystal
Authors: Priyanka Kumari Gupta, Punya Prasanna Paltani, Shrivishal Tripathi
Abstract:
This paper proposes a nonlinear photonic crystal ring resonator-based all-optical 2 × 2 switch. The nonlinear Kerr effect is used to evaluate the essential 2 x 2 components of the photonic crystal-based optical switch, including the bar and cross states. The photonic crystal comprises a two-dimensional square lattice of dielectric rods in an air background. In the background air, two different dielectric materials are used for this comparison study separately. Initially with chalcogenide glass rods, then with GaAs rods. For both materials, the operating wavelength, bandgap diagram, operating power intensities, and performance parameters, such as the extinction ratio, insertion loss, and cross-talk of an optical switch, have also been estimated using the plane wave expansion and the finite-difference time-domain method. The chalcogenide glass material (Ag20As32Se48) has a high refractive index of 3.1 which is highly suitable for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 9.1 x 10-17 m2/W. The resonance wavelength is at 1552 nm, with the operating power intensities at the cross-state and bar state around 60 W/μm2 and 690 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are 17.19 dB, 0.051 dB, and -17.14 dB, and the bar state, the values are 11.32 dB, 0.025 dB, and -11.35 dB respectively. The gallium arsenide (GaAs) dielectric material has a high refractive index of 3.4, a direct bandgap semiconductor material highly preferred nowadays for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 3.1 x 10-16 m2/W. The resonance wavelength is at 1558 nm, with the operating power intensities at the cross-state and bar state around 110 W/μm2 and 200 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are found to be 3.36.19 dB, 2.436 dB, and -5.8 dB, and for the bar state, the values are 15.60 dB, 0.985 dB, and -16.59 dB respectively. This paper proposes an all-optical 2 × 2 switch based on a nonlinear photonic crystal using a ring resonator. The two-dimensional photonic crystal comprises a square lattice of dielectric rods in an air background. The resonance wavelength is in the range of photonic bandgap. Later, another widely used material, GaAs, is also considered, and its performance is compared with the chalcogenide glass. Our presented structure can be potentially applicable in optical integration circuits and information processing.Keywords: photonic crystal, FDTD, ring resonator, optical switch
Procedia PDF Downloads 7824661 Assessment of Heavy Metal Contamination for the Sustainable Management of Vulnerable Mangrove Ecosystem, the Sundarbans
Authors: S. Begum, T. Biswas, M. A. Islam
Abstract:
The present research investigates the distribution and contamination of heavy metals in core sediments collected from three locations of the Sundarbans mangrove forest. In this research, quality of the analysis is evaluated by analyzing certified reference materials IAEA-SL-1 (lake sediment), IAEA-Soil-7, and NIST-1633b (coal fly ash). Total concentrations of 28 heavy metals (Na, Al, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Zn, Ga, As, Sb, Cs, La, Ce, Sm, Eu, Tb, Dy, Ho, Yb, Hf, Ta, Th, and U) have determined in core sediments of the Sundarbans mangrove by neutron activation analysis (NAA) technique. When compared with upper continental crustal (UCC) values, it is observed that mean concentrations of K, Ti, Zn, Cs, La, Ce, Sm, Hf, and Th show elevated values in the research area is high. In this research, the assessments of metal contamination levels using different environmental contamination indices (EF, Igeo, CF) indicate that Ti, Sb, Cs, REEs, and Th have minor enrichment of the sediments of the Sundarbans. The modified degree of contamination (mCd) of studied samples of the Sundarbans ecosystem show low contamination. The pollution load index (PLI) values for the cores suggested that sampling points are moderately polluted. The possible sources of the deterioration of the sediment quality can be attributed to the different chemical carrying cargo accidents, port activities, ship breaking, agricultural and aquaculture run-off of the area. Pearson correlation matrix (PCM) established relationships among elements. The PCM indicates that most of the metal's distributions have been controlled by the same factors such as Fe-oxy-hydroxides and clay minerals, and also they have a similar origin. The poor correlations of Ca with most of the elements in the sediment cores indicate that calcium carbonate has a less significant role in this mangrove sediment. Finally, the data from this research will be used as a benchmark for future research and help to quantify levels of metal pollutions, as well as to manage future ecological risks of the vulnerable mangrove ecosystem, the Sundarbans.Keywords: contamination, core sediment, trace element, sundarbans, vulnerable
Procedia PDF Downloads 12224660 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network
Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang
Abstract:
‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.Keywords: deep learning network, smart metering, water end use, water-energy data
Procedia PDF Downloads 30624659 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 42924658 Sparse Coding Based Classification of Electrocardiography Signals Using Data-Driven Complete Dictionary Learning
Authors: Fuad Noman, Sh-Hussain Salleh, Chee-Ming Ting, Hadri Hussain, Syed Rasul
Abstract:
In this paper, a data-driven dictionary approach is proposed for the automatic detection and classification of cardiovascular abnormalities. Electrocardiography (ECG) signal is represented by the trained complete dictionaries that contain prototypes or atoms to avoid the limitations of pre-defined dictionaries. The data-driven trained dictionaries simply take the ECG signal as input rather than extracting features to study the set of parameters that yield the most descriptive dictionary. The approach inherently learns the complicated morphological changes in ECG waveform, which is then used to improve the classification. The classification performance was evaluated with ECG data under two different preprocessing environments. In the first category, QT-database is baseline drift corrected with notch filter and it filters the 60 Hz power line noise. In the second category, the data are further filtered using fast moving average smoother. The experimental results on QT database confirm that our proposed algorithm shows a classification accuracy of 92%.Keywords: electrocardiogram, dictionary learning, sparse coding, classification
Procedia PDF Downloads 38624657 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning
Authors: Masaki Omata, Shumma Hosokawa
Abstract:
An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.Keywords: e-learning, physiological index, physiological signal, state of learning
Procedia PDF Downloads 37824656 Is Materiality Determination the Key to Integrating Corporate Sustainability and Maximising Value?
Authors: Ruth Hegarty, Noel Connaughton
Abstract:
Sustainability reporting has become a priority for many global multinational companies. This is associated with ever-increasing expectations from key stakeholders for companies to be transparent about their strategies, activities and management with regard to sustainability issues. The Global Reporting Initiative (GRI) encourages reporters to only provide information on the issues that are really critical in order to achieve the organisation’s goals for sustainability and manage its impact on environment and society. A key challenge for most reporting organisations is how to identify relevant issues for sustainability reporting and prioritise those material issues in accordance with company and stakeholder needs. A recent study indicates that most of the largest companies listed on the world’s stock exchanges are failing to provide data on key sustainability indicators such as employee turnover, energy, greenhouse gas emissions (GHGs), injury rate, pay equity, waste and water. This paper takes an indepth look at the approaches used by a select number of international sustainability leader corporates to identify key sustainability issues. The research methodology involves performing a detailed analysis of the sustainability report content of up to 50 companies listed on the 2014 Dow Jones Sustainability Indices (DJSI). The most recent sustainability report content found on the GRI Sustainability Disclosure Database is then compared with 91 GRI Specific Standard Disclosures and a small number of GRI Standard Disclosures. Preliminary research indicates significant gaps in the information disclosed in corporate sustainability reports versus the indicator content specified in the GRI Content Index. The following outlines some of the key findings to date: Most companies made a partial disclosure with regard to the Economic indicators of climate change risks and infrastructure investments, but did not focus on the associated negative impacts. The top Environmental indicators disclosed were energy consumption and reductions, GHG emissions, water withdrawals, waste and compliance. The lowest rates of indicator disclosure included biodiversity, water discharge, mitigation of environmental impacts of products and services, transport, environmental investments, screening of new suppliers and supply chain impacts. The top Social indicators disclosed were new employee hires, rates of injury, freedom of association in operations, child labour and forced labour. Lesser disclosure rates were reported for employee training, composition of governance bodies and employees, political contributions, corruption and fines for non-compliance. The reporting on most other Social indicators was found to be poor. In addition, most companies give only a brief explanation on how material issues are defined, identified and ranked. Data on the identification of key stakeholders and the degree and nature of engagement for determining issues and their weightings is also lacking. Generally, little to no data is provided on the algorithms used to score an issue. Research indicates that most companies lack a rigorous and thorough methodology to systematically determine the material issues of sustainability reporting in accordance with company and stakeholder needs.Keywords: identification of key stakeholders, material issues, sustainability reporting, transparency
Procedia PDF Downloads 30724655 A Deletion-Cost Based Fast Compression Algorithm for Linear Vector Data
Authors: Qiuxiao Chen, Yan Hou, Ning Wu
Abstract:
As there are deficiencies of the classic Douglas-Peucker Algorithm (DPA), such as high risks of deleting key nodes by mistake, high complexity, time consumption and relatively slow execution speed, a new Deletion-Cost Based Compression Algorithm (DCA) for linear vector data was proposed. For each curve — the basic element of linear vector data, all the deletion costs of its middle nodes were calculated, and the minimum deletion cost was compared with the pre-defined threshold. If the former was greater than or equal to the latter, all remaining nodes were reserved and the curve’s compression process was finished. Otherwise, the node with the minimal deletion cost was deleted, its two neighbors' deletion costs were updated, and the same loop on the compressed curve was repeated till the termination. By several comparative experiments using different types of linear vector data, the comparison between DPA and DCA was performed from the aspects of compression quality and computing efficiency. Experiment results showed that DCA outperformed DPA in compression accuracy and execution efficiency as well.Keywords: Douglas-Peucker algorithm, linear vector data, compression, deletion cost
Procedia PDF Downloads 25124654 Multimedia Container for Autonomous Car
Authors: Janusz Bobulski, Mariusz Kubanek
Abstract:
The main goal of the research is to develop a multimedia container structure containing three types of images: RGB, lidar and infrared, properly calibrated to each other. An additional goal is to develop program libraries for creating and saving this type of file and for restoring it. It will also be necessary to develop a method of data synchronization from lidar and RGB cameras as well as infrared. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. Autonomous cars are increasingly breaking into our consciousness. No one seems to have any doubts that self-driving cars are the future of motoring. Manufacturers promise that moving the first of them to showrooms is the prospect of the next few years. Many experts believe that creating a network of communicating autonomous cars will be able to completely eliminate accidents. However, to make this possible, it is necessary to develop effective methods of detection of objects around the moving vehicle. In bad weather conditions, this task is difficult on the basis of the RGB(red, green, blue) image. Therefore, in such situations, you should be supported by information from other sources, such as lidar or infrared cameras. The problem is the different data formats that individual types of devices return. In addition to these differences, there is a problem with the synchronization of these data and the formatting of this data. The goal of the project is to develop a file structure that could be containing a different type of data. This type of file is calling a multimedia container. A multimedia container is a container that contains many data streams, which allows you to store complete multimedia material in one file. Among the data streams located in such a container should be indicated streams of images, films, sounds, subtitles, as well as additional information, i.e., metadata. This type of file could be used in autonomous vehicles, which would certainly facilitate data processing by the intelligent autonomous vehicle management system. As shown by preliminary studies, the use of combining RGB and InfraRed images with Lidar data allows for easier data analysis. Thanks to this application, it will be possible to display the distance to the object in a color photo. Such information can be very useful for drivers and for systems in autonomous cars.Keywords: an autonomous car, image processing, lidar, obstacle detection
Procedia PDF Downloads 22624653 Glycosaminoglycan, a Cartilage Erosion Marker in Synovial Fluid of Osteoarthritis Patients Strongly Correlates with WOMAC Function Subscale
Authors: Priya Kulkarni, Soumya Koppikar, Narendrakumar Wagh, Dhanshri Ingle, Onkar Lande, Abhay Harsulkar
Abstract:
Cartilage is an extracellular matrix composed of aggrecan, which imparts it with a great tensile strength, stiffness and resilience. Disruption in cartilage metabolism leading to progressive degeneration is a characteristic feature of Osteoarthritis (OA). The process involves enzymatic depolymerisation of cartilage specific proteoglycan, releasing free glycosaminoglycan (GAG). This released GAG in synovial fluid (SF) of knee joint serves as a direct measure of cartilage loss, however, limited due to its invasive nature. Western Ontario and McMaster Universities Arthritis Index (WOMAC) is widely used for assessing pain, stiffness and physical-functions in OA patients. The scale is comprised of three subscales namely, pain, stiffness and physical-function, intends to measure patient’s perspective of disease severity as well as efficacy of prescribed treatment. Twenty SF samples obtained from OA patients were analysed for their GAG values in SF using DMMB based assay. LK 1.0 vernacular version was used to attain WOMAC scale. The results were evaluated using SAS University software (Edition 1.0) for statistical significance. All OA patients revealed higher GAG values compared to the control value of 78.4±30.1µg/ml (obtained from our non-OA patients). Average WOMAC calculated was 51.3 while pain, stiffness and function estimated were 9.7, 3.9 and 37.7, respectively. Interestingly, a strong statistical correlation was established between WOMAC function subscale and GAG (p = 0.0102). This subscale is based on day-to-day activities like stair-use, bending, walking, getting in/out of car, rising from bed. However, pain and stiffness subscale did not show correlation with any of the studied markers and endorsed the atypical inflammation in OA pathology. On one side, where knee pain showed poor correlation with GAG, it is often noted that radiography is insensitive to cartilage degenerative changes; thus OA remains undiagnosed for long. Moreover, active cartilage degradation phase remains elusive to both, patient and clinician. Through analysis of large number of OA patients we have established a close association of Kellgren-Lawrence grades and increased cartilage loss. A direct attempt to correlate WOMAC and radiographic progression of OA with various biomarkers has not been attempted so far. We found a good correlation in GAG levels in SF and the function subscale.Keywords: cartilage, Glycosaminoglycan, synovial fluid, western ontario and McMaster Universities Arthritis Index
Procedia PDF Downloads 44824652 Mobile Crowdsensing Scheme by Predicting Vehicle Mobility Using Deep Learning Algorithm
Authors: Monojit Manna, Arpan Adhikary
Abstract:
In Mobile cloud sensing across the globe, an emerging paradigm is selected by the user to compute sensing tasks. In urban cities current days, Mobile vehicles are adapted to perform the task of data sensing and data collection for universality and mobility. In this work, we focused on the optimality and mobile nodes that can be selected in order to collect the maximum amount of data from urban areas and fulfill the required data in the future period within a couple of minutes. We map out the requirement of the vehicle to configure the maximum data optimization problem and budget. The Application implementation is basically set up to generalize a realistic online platform in which real-time vehicles are moving apparently in a continuous manner. The data center has the authority to select a set of vehicles immediately. A deep learning-based scheme with the help of mobile vehicles (DLMV) will be proposed to collect sensing data from the urban environment. From the future time perspective, this work proposed a deep learning-based offline algorithm to predict mobility. Therefore, we proposed a greedy approach applying an online algorithm step into a subset of vehicles for an NP-complete problem with a limited budget. Real dataset experimental extensive evaluations are conducted for the real mobility dataset in Rome. The result of the experiment not only fulfills the efficiency of our proposed solution but also proves the validity of DLMV and improves the quantity of collecting the sensing data compared with other algorithms.Keywords: mobile crowdsensing, deep learning, vehicle recruitment, sensing coverage, data collection
Procedia PDF Downloads 7824651 The Effects of Governmental Regulation on Technological Innovation in Korean Firms
Authors: SeungKu Ahn, Sewon Lee
Abstract:
This study examines the effects of regulatory policies on corporate R&D activities and innovation and suggests regulatory directions for the enhancement of corporate performance. This study employs a regression model with R&D activities as dependent variables and the regulatory index as an independent variable. The results of this study are as follows: The regulation is negatively associated with the input and output of R&D activities. The regulation encourages small and medium-sized firms to invest in R&D. The regulation has a positive effect on patent applications for small and medium-sized firms.Keywords: governmental regulation, research and development performance, small and medium-sized firms, technological innovation
Procedia PDF Downloads 268