Search results for: measurements at point of use
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7480

Search results for: measurements at point of use

4570 The Automated Soil Erosion Monitoring System (ASEMS)

Authors: George N. Zaimes, Valasia Iakovoglou, Paschalis Koutalakis, Konstantinos Ioannou, Ioannis Kosmadakis, Panagiotis Tsardaklis, Theodoros Laopoulos

Abstract:

The advancements in technology allow the development of a new system that can continuously measure surface soil erosion. Continuous soil erosion measurements are required in order to comprehend the erosional processes and propose effective and efficient conservation measures to mitigate surface erosion. Mitigating soil erosion, especially in Mediterranean countries such as Greece, is essential in order to maintain environmental and agricultural sustainability. In this paper, we present the Automated Soil Erosion Monitoring System (ASEMS) that measures surface soil erosion along with other factors that impact erosional process. Specifically, this system measures ground level changes (surface soil erosion), rainfall, air temperature, soil temperature and soil moisture. Another important innovation is that the data will be collected by remote communication. In addition, stakeholder’s awareness is a key factor to help reduce any environmental problem. The different dissemination activities that were utilized are described. The overall outcomes were the development of an innovative system that can measure erosion very accurately. These data from the system help study the process of erosion and find the best possible methods to reduce erosion. The dissemination activities enhance the stakeholder's and public's awareness on surface soil erosion problems and will lead to the adoption of more effective soil erosion conservation practices in Greece.

Keywords: soil management, climate change, new technologies, conservation practices

Procedia PDF Downloads 335
4569 Correlation of Spirometry with Six Minute Walk Test and Grading of Dyspnoea in COPD Patients

Authors: Anand K. Patel

Abstract:

Background: Patients with COPD have decreased pulmonary functions, which in turn reflect on their day-to-day activities. Objectives: To assess the correlation between functional vital capacity (FVC) and forced expiratory volume in one second (FEV1) with 6 minutes walk test (6MWT). To correlate the Borg rating for perceived exertion scale (Borg scale) and Modified medical research council (MMRC) dyspnea scale with the 6MWT, FVC and FEV1. Method: In this prospective study total 72 patients with COPD diagnosed by the GOLD guidelines were enrolled after taking written consent. They were first asked to rate physical exertion on the Borg scale as well as the modified medical research council dyspnea scale and then were subjected to perform pre and post bronchodilator spirometry followed by 6 minute walk test. The findings were correlated by calculating the Pearson coefficient for each set and obtaining the p-values, with a p < 0.05 being clinically significant. Result: There was a significant correlation between spirometry and 6MWT suggesting that patients with lower measurements were unable to walk for longer distances. However, FVC had the stronger correlation than FEV1. MMRC scale had a stronger correlation with 6MWT as compared to the Borg scale. Conclusion: The study suggests that 6MWT is a better test for monitoring the patients of COPD. In spirometry, FVC should be used in monitoring patients with COPD, instead of FEV1. MMRC scale shows a stronger correlation than the Borg scale, and we should use it more often.

Keywords: spirometry, 6 minute walk test, MMRC, Borg scale

Procedia PDF Downloads 192
4568 Experimental Measurement of Equatorial Ring Current Generated by Magnetoplasma Sail in Three-Dimensional Spatial Coordinate

Authors: Masato Koizumi, Yuya Oshio, Ikkoh Funaki

Abstract:

Magnetoplasma Sail (MPS) is a future spacecraft propulsion that generates high levels of thrust by inducing an artificial magnetosphere to capture and deflect solar wind charged particles in order to transfer momentum to the spacecraft. By injecting plasma in the spacecraft’s magnetic field region, the ring current azimuthally drifts on the equatorial plane about the dipole magnetic field generated by the current flowing through the solenoid attached on board the spacecraft. This ring current results in magnetosphere inflation which improves the thrust performance of MPS spacecraft. In this present study, the ring current was experimentally measured using three Rogowski Current Probes positioned in a circular array about the laboratory model of MPS spacecraft. This investigation aims to determine the detailed structure of ring current through physical experimentation performed under two different magnetic field strengths engendered by varying the applied voltage on the solenoid with 300 V and 600 V. The expected outcome was that the three current probes would detect the same current since all three probes were positioned at equal radial distance of 63 mm from the center of the solenoid. Although experimental results were numerically implausible due to probable procedural error, the trends of the results revealed three pieces of perceptive evidence of the ring current behavior. The first aspect is that the drift direction of the ring current depended on the strength of the applied magnetic field. The second aspect is that the diamagnetic current developed at a radial distance not occupied by the three current probes under the presence of solar wind. The third aspect is that the ring current distribution varied along the circumferential path about the spacecraft’s magnetic field. Although this study yielded experimental evidence that differed from the original hypothesis, the three key findings of this study have informed two critical MPS design solutions that will potentially improve thrust performance. The first design solution is the positioning of the plasma injection point. Based on the implication of the first of the three aspects of ring current behavior, the plasma injection point must be located at a distance instead of at close proximity from the MPS Solenoid for the ring current to drift in the direction that will result in magnetosphere inflation. The second design solution, predicated by the third aspect of ring current behavior, is the symmetrical configuration of plasma injection points. In this study, an asymmetrical configuration of plasma injection points using one plasma source resulted in a non-uniform distribution of ring current along the azimuthal path. This distorts the geometry of the inflated magnetosphere which minimizes the deflection area for the solar wind. Therefore, to realize a ring current that best provides the maximum possible inflated magnetosphere, multiple plasma sources must be spaced evenly apart for the plasma to be injected evenly along its azimuthal path.

Keywords: Magnetoplasma Sail, magnetosphere inflation, ring current, spacecraft propulsion

Procedia PDF Downloads 306
4567 The Using of Smart Power Concepts in Military Targeting Process

Authors: Serdal AKYUZ

Abstract:

The smart power is the use of soft and hard power together in consideration of existing circumstances. Soft power can be defined as the capability of changing perception of any target mass by employing policies based on legality. The hard power, generally, uses military and economic instruments which are the concrete indicator of general power comprehension. More than providing a balance between soft and hard power, smart power creates a proactive combination by assessing existing resources. Military targeting process (MTP), as stated in smart power methodology, benefits from a wide scope of lethal and non-lethal weapons to reach intended end state. The Smart powers components can be used in military targeting process similar to using of lethal or non-lethal weapons. This paper investigates the current use of Smart power concept, MTP and presents a new approach to MTP from smart power concept point of view.

Keywords: future security environment, hard power, military targeting process, soft power, smart power

Procedia PDF Downloads 468
4566 How Pandemic Changed the Protective Aids for People in Day to Day Life

Authors: Jinali Chaklasiya

Abstract:

The importance of face masks, gloves, sanitizer, face shield Were only Applied for Doctor Amenities, and because of the outbreak of coronavirus, everybody has to wear Personal Protective Equipment (PPE) for health measures. . The main focus of this research paper is in the area of how doctor amenities changed the importance of gloves, face masks, sanitizer, face shield in day to day life of people. For this research, we have collected data from a quantitative survey. A questionnaire survey was conducted to note down the user point of view in doctor amenities and why is it important. The result of the questionnaire survey has helped to design parameters which were used to ideate new protective products. Thus, it is concluded to keep in mind that these protective devices can be used in day-to-day life by people across the globe. In the coming future, the protective device can make a difference and protect us from other common viruses.

Keywords: equpiment, coronavirus, products, protective, environment

Procedia PDF Downloads 196
4565 Magnetization Studies and Vortex Phase Diagram of Oxygenated YBa₂Cu₃₋ₓAlₓO₆₊δ Single Crystal

Authors: Ashna Babu, Deepshikha Jaiswal Nagar

Abstract:

Cuprate high-temperature superconductors (HTSCs) have been immensely studied during the past few decades because of their structure which is described as a superlattice of superconducting CuO₂ layers. In particular, YBa₂Cu₃O₆₊δ (YBCO), with its critical temperature of 93 K, has received the most attention due to its well-defined metal stoichiometry and variable oxygen content that determines the carrier doping level. Substitution of metal ions at the Cu site is known to increase the critical current density without destroying superconductivity in YBCO. The construction of vortex phase diagrams is very important for such doped YBCO materials both from a fundamental perspective as well as from a technological perspective. By measuring field-dependent magnetization on annealed single crystals of Al-doped YBCO, YBa₂Cu₃₋ₓAlₓO₆₊δ (Al-YBCO), we were able to observe a second magnetization peak anomaly (SMP) in a very large part of the phase diagram. We were also able to observe the SMP anomaly in temperature-dependent magnetization measurements, the first observation to our knowledge. Critical current densities were calculated using Bean’s critical state model, flux jumps associated with symmetry reorientation of vortex lattice were studied, the oxygen cluster distribution was also analysed, and by incorporating all observations, we made a vortex phase diagram for oxygenated Al-YBCO single crystal.

Keywords: oxygen deficient clusters, second magnetization peak anomaly, flux jumps, vortex phase diagram

Procedia PDF Downloads 63
4564 Students’ Awareness of the Use of Poster, Power Point and Animated Video Presentations: A Case Study of Third Year Students of the Department of English of Batna University

Authors: Bahloul Amel

Abstract:

The present study debates students’ perceptions of the use of technology in learning English as a Foreign Language. Its aim is to explore and understand students’ preparation and presentation of Posters, PowerPoint and Animated Videos by drawing attention to visual and oral elements. The data is collected through observations and semi-structured interviews and analyzed through phenomenological data analysis steps. The themes emerged from the data, visual learning satisfaction in using information and communication technology, providing structure to oral presentation, learning from peers’ presentations, draw attention to using Posters, PowerPoint and Animated Videos as each supports visual learning and organization of thoughts in oral presentations.

Keywords: EFL, posters, PowerPoint presentations, Animated Videos, visual learning

Procedia PDF Downloads 441
4563 Comparison of Security Challenges and Issues of Mobile Computing and Internet of Things

Authors: Aabiah Nayeem, Fariha Shafiq, Mustabshra Aftab, Rabia Saman Pirzada, Samia Ghazala

Abstract:

In this modern era of technology, the concept of Internet of Things is very popular in every domain. It is a widely distributed system of things in which the data collected from sensory devices is transmitted, analyzed locally/collectively then broadcasted to network where action can be taken remotely via mobile/web apps. Today’s mobile computing is also gaining importance as the services are provided during mobility. Through mobile computing, data are transmitted via computer without physically connected to a fixed point. The challenge is to provide services with high speed and security. Also, the data gathered from the mobiles must be processed in a secured way. Mobile computing is strongly influenced by internet of things. In this paper, we have discussed security issues and challenges of internet of things and mobile computing and we have compared both of them on the basis of similarities and dissimilarities.

Keywords: embedded computing, internet of things, mobile computing, wireless technologies

Procedia PDF Downloads 310
4562 The Influence of Structural Disorder and Phonon on Metal-To-Insulator Transition of VO₂

Authors: Sang-Wook Han, In-Hui Hwang, Zhenlan Jin, Chang-In Park

Abstract:

We used temperature-dependent X-Ray absorption fine structure (XAFS) measurements to examine the local structural properties around vanadium atoms at the V K edge from VO₂ films. A direct comparison of simultaneously-measured resistance and XAFS from the VO₂ films showed that the thermally-driven structural phase transition (SPT) occurred prior to the metal-insulator transition (MIT) during heating, whereas these changed simultaneously during cooling. XAFS revealed a significant increase in the Debye-Waller factors of the V-O and V-V pairs in the {111} direction of the R-phase VO₂ due to the phonons of the V-V arrays along the direction in a metallic phase. A substantial amount of structural disorder existing on the V-V pairs along the c-axis in both M₁ and R phases indicates the structural instability of V-V arrays in the axis. The anomalous structural disorder observed on all atomic sites at the SPT prevents the migration of the V 3d¹ electrons, resulting in a Mott insulator in the M₂-phase VO₂. The anomalous structural disorder, particularly, at vanadium sites, effectively affects the migration of metallic electrons, resulting in the Mott insulating properties in M₂ phase and a non-congruence of the SPT, MIT, and local density of state. The thermally-induced phonons in the {111} direction assist the delocalization of the V 3d¹ electrons in the R phase VO₂ and the electrons likely migrate via the V-V array in the {111} direction as well as the V-V dimerization along the c-axis. This study clarifies that the tetragonal symmetry is essentially important for the metallic phase in VO₂.

Keywords: metal-insulator transition, XAFS, VO₂, structural-phase transition

Procedia PDF Downloads 268
4561 The Utilization of Rain Water to Ground Water with Tube in the Area of Tourism in Yogyakarta

Authors: Kurniawan Agung Pambudi, Alfian Deo Pradipta

Abstract:

Yogyakarta is the famous tourism city in Indonesia. The Tugu Jogja is a tourism center located in Jetis. To support the tourism activities required facilities such as tourist hotel and guest house. The existence of tourism also has an impact on the environment. The surface of the land is covered by cement and a local company dealing in ceramics, then an infiltration process is not running. The existence of the building in layers resulting in the amount of water resource in Jetis decreases. The purpose of this research is to know the impact of the construction of the building in layers in Jetis. To obtain the data done by observation, measurements and taking the land profile, along with the interview to people in Jetis. The results of the study showed that the number of water sources in Jetis, Yogyakarta start decreases as a result of the construction of the building on stilts as a result, the height of the surface of the groundwater decreases and digging a pit must be in to get the source of the waters. Based on the results of research it can be concluded that the height of the surface of the groundwater decreases. To resolve the issue required a method to rainwater can seep into the ground for maximum. The rain that fell upon the precarious houses or other buildings is channeled toward the ground through the tubes with the depth of 1-2 meters. Rainwater will be absorbed into the land and increase the amount of ground water.

Keywords: rain water, tube, water resource, groundwater

Procedia PDF Downloads 216
4560 An Optimization Model for Maximum Clique Problem Based on Semidefinite Programming

Authors: Derkaoui Orkia, Lehireche Ahmed

Abstract:

The topic of this article is to exploring the potentialities of a powerful optimization technique, namely Semidefinite Programming, for solving NP-hard problems. This approach provides tight relaxations of combinatorial and quadratic problems. In this work, we solve the maximum clique problem using this relaxation. The clique problem is the computational problem of finding cliques in a graph. It is widely acknowledged for its many applications in real-world problems. The numerical results show that it is possible to find a maximum clique in polynomial time, using an algorithm based on semidefinite programming. We implement a primal-dual interior points algorithm to solve this problem based on semidefinite programming. The semidefinite relaxation of this problem can be solved in polynomial time.

Keywords: semidefinite programming, maximum clique problem, primal-dual interior point method, relaxation

Procedia PDF Downloads 216
4559 Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications

Authors: Bryan D. Llenarizas, Maria Carla F. Manzano

Abstract:

The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases.

Keywords: anode, composite material, electropolymerization, fuel cell, galvanostatic, polypyrrole

Procedia PDF Downloads 67
4558 Numerical Simulation of Filtration Gas Combustion: Front Propagation Velocity

Authors: Yuri Laevsky, Tatyana Nosova

Abstract:

The phenomenon of filtration gas combustion (FGC) had been discovered experimentally at the beginning of 80’s of the previous century. It has a number of important applications in such areas as chemical technologies, fire-explosion safety, energy-saving technologies, oil production. From the physical point of view, FGC may be defined as the propagation of region of gaseous exothermic reaction in chemically inert porous medium, as the gaseous reactants seep into the region of chemical transformation. The movement of the combustion front has different modes, and this investigation is focused on the low-velocity regime. The main characteristic of the process is the velocity of the combustion front propagation. Computation of this characteristic encounters substantial difficulties because of the strong heterogeneity of the process. The mathematical model of FGC is formed by the energy conservation laws for the temperature of the porous medium and the temperature of gas and the mass conservation law for the relative concentration of the reacting component of the gas mixture. In this case the homogenization of the model is performed with the use of the two-temperature approach when at each point of the continuous medium we specify the solid and gas phases with a Newtonian heat exchange between them. The construction of a computational scheme is based on the principles of mixed finite element method with the usage of a regular mesh. The approximation in time is performed by an explicit–implicit difference scheme. Special attention was given to determination of the combustion front propagation velocity. Straight computation of the velocity as grid derivative leads to extremely unstable algorithm. It is worth to note that the term ‘front propagation velocity’ makes sense for settled motion when some analytical formulae linking velocity and equilibrium temperature are correct. The numerical implementation of one of such formulae leading to the stable computation of instantaneous front velocity has been proposed. The algorithm obtained has been applied in subsequent numerical investigation of the FGC process. This way the dependence of the main characteristics of the process on various physical parameters has been studied. In particular, the influence of the combustible gas mixture consumption on the front propagation velocity has been investigated. It also has been reaffirmed numerically that there is an interval of critical values of the interfacial heat transfer coefficient at which a sort of a breakdown occurs from a slow combustion front propagation to a rapid one. Approximate boundaries of such an interval have been calculated for some specific parameters. All the results obtained are in full agreement with both experimental and theoretical data, confirming the adequacy of the model and the algorithm constructed. The presence of stable techniques to calculate the instantaneous velocity of the combustion wave allows considering the semi-Lagrangian approach to the solution of the problem.

Keywords: filtration gas combustion, low-velocity regime, mixed finite element method, numerical simulation

Procedia PDF Downloads 296
4557 The Nation in Turmoil: A Post - Colonial Critique of Mqapheli Mngdi's Cartoons

Authors: Sizwe Dlamini

Abstract:

There seems to be little that has been done to investigate cartoons from a literary criticism point of view. Cartoons have been given attention mostly in semiotics as compared to other scholarly perspectives. The aim of this article is to attempt to bridge this gap by observing cartoons through the post-colonial approach as a literary theory. Even though the post-colonial approach has been previously adopted to critique the prose genre and other genres in the African indigenous languages of South Africa, there seems to be no study that has used this approach to analyse the cartoon genre. This study is thus believed to be valuable to scientific knowledge in this sense. The study adopts textual analysis as a qualitative research technique since cartoons are the primary sources of data collection. Through the application of the post-colonial theory, the findings of the study demonstrate that there are depicted socio-cultural, socio-economic, and political issues in Mngadi’s editorial cartoons. These include.

Keywords: editorial cartoons, post-colonial theory, literary criticism, turmoil

Procedia PDF Downloads 10
4556 On the Fatigue Behavior of a Triphasic Composite

Authors: G. Minak, D. Ghelli, A. Zucchelli

Abstract:

This paper presents the results of an experimental characterization of a glass fibre-epoxy composite. The behavior of the traditional two-phase composite has been compared with the one of a new three-phase composite where the epoxy matrix was modified by addition of a 3% weight fraction of montmorillonite nano-particles. Two different types of nano-clays, Cloisite® 30B and RXG7000, produced by Southern Clay Products Inc., have been considered. Three-point bending tests, both monotonic and cyclic, were carried out. A strong reduction of the ultimate flexural strength upon nano-modification has been observed in quasi-static tests. Fatigue tests yielded a smaller strength loss. In both quasi-static and fatigue tests a more pronounced tendency to delamination has been noticed in three-phase composites, especially in the case of 30B nano-clay, with respect to the standard two-phase glass fiber composite.

Keywords: bending fatigue, epoxy resin, glass fiber, montmorillonite

Procedia PDF Downloads 445
4555 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials

Authors: Maryam Kiani

Abstract:

This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.

Keywords: ORR, fuel cells, batteries, electrocatalyst

Procedia PDF Downloads 102
4554 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications

Authors: Khurram Munir, Cuie Wen, Yuncang Li

Abstract:

Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.

Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion

Procedia PDF Downloads 155
4553 Biomarkers, A Reliable Tool for Delineating Spill Trajectory

Authors: Okpor Victor, Selegha Abrakasa

Abstract:

Oil (Petroleum) spill occur frequently and in this era of a higher degree of awareness, it is pertinent that the trajectory of the spill is properly defined, to make certain of the area of impact by the spill. In this study, biomarkers that are known as the custodians of paleo information in oils are suggested to be used as reliable tools for defining the pathway of a spill. Samples were collected as tills alongside the GPS coordinates of the sample points suspected to have been impacted by a spill. Oils in the samples were extracted and analyzed as whole oil using GC–MS. Some biomarker parametric ratios were derived, and the ratio showed consistency of values along the sample trail from sample 1 to sample 20. The consistency of the values indicates that the oils at each sample point are the same hence the same value. This method can be used to validate the trajectory/pathway of a spill and also to define or establish a suspected pathway for a spill. The Oleanane/C30Hopane ratio showed good consistency and was suggested as a reliable parameter for establishing the trajectory of an oil spill.

Keywords: spill, biomarkers, trajectory, pathway

Procedia PDF Downloads 57
4552 Agent-Based Modeling Investigating Self-Organization in Open, Non-equilibrium Thermodynamic Systems

Authors: Georgi Y. Georgiev, Matthew Brouillet

Abstract:

This research applies the power of agent-based modeling to a pivotal question at the intersection of biology, computer science, physics, and complex systems theory about the self-organization processes in open, complex, non-equilibrium thermodynamic systems. Central to this investigation is the principle of Maximum Entropy Production (MEP). This principle suggests that such systems evolve toward states that optimize entropy production, leading to the formation of structured environments. It is hypothesized that guided by the least action principle, open thermodynamic systems identify and follow the shortest paths to transmit energy and matter, resulting in maximal entropy production, internal structure formation, and a decrease in internal entropy. Concurrently, it is predicted that there will be an increase in system information as more information is required to describe the developing structure. To test this, an agent-based model is developed simulating an ant colony's formation of a path between a food source and its nest. Utilizing the Netlogo software for modeling and Python for data analysis and visualization, self-organization is quantified by calculating the decrease in system entropy based on the potential states and distribution of the ants within the simulated environment. External entropy production is also evaluated for information increase and efficiency improvements in the system's action. Simulations demonstrated that the system begins at maximal entropy, which decreases as the ants form paths over time. A range of system behaviors contingent upon the number of ants are observed. Notably, no path formation occurred with fewer than five ants, whereas clear paths were established by 200 ants, and saturation of path formation and entropy state was reached at populations exceeding 1000 ants. This analytical approach identified the inflection point marking the transition from disorder to order and computed the slope at this point. Combined with extrapolation to the final path entropy, these parameters yield important insights into the eventual entropy state of the system and the timeframe for its establishment, enabling the estimation of the self-organization rate. This study provides a novel perspective on the exploration of self-organization in thermodynamic systems, establishing a correlation between internal entropy decrease rate and external entropy production rate. Moreover, it presents a flexible framework for assessing the impact of external factors like changes in world size, path obstacles, and friction. Overall, this research offers a robust, replicable model for studying self-organization processes in any open thermodynamic system. As such, it provides a foundation for further in-depth exploration of the complex behaviors of these systems and contributes to the development of more efficient self-organizing systems across various scientific fields.

Keywords: complexity, self-organization, agent based modelling, efficiency

Procedia PDF Downloads 60
4551 Six Sigma Assessment in the Latvian Commercial Banking Sector

Authors: J. Erina, I. Erins

Abstract:

The goals of the present research are to estimate Six Sigma implementation in Latvian commercial banks and to identify the perceived benefits of its implementation. To achieve the goals, the authors used a sequential explanatory method. To obtain empirical data, the authors have developed the questionnaire and adapted it for the employees of Latvian commercial banks. The questions are related to Six Sigma implementation and its perceived benefits. The questionnaire mainly consists of closed questions, the evaluation of which is based on 5 point Likert scale. The obtained empirical data has shown that of the two hypotheses put forward in the present research Hypothesis 1 has to be rejected, while Hypothesis 2 has been partially confirmed. The authors have also faced some research limitations related to the fact that the participants in the questionnaire belong to different rank of the organization hierarchy.

Keywords: six sigma, quality, commercial banking sector, latvian

Procedia PDF Downloads 352
4550 Definition of Service Angle of Android’S Robot Hand by Method of Small Movements of Gripper’S Axis Synthesis by Speed Vector

Authors: Valeriy Nebritov

Abstract:

The paper presents a generalized method for determining the service solid angle based on the assigned gripper axis orientation with a stationary grip center. Motion synthesis in this work is carried out in the vector of velocities. As an example, a solid angle of the android robot arm is determined, this angle being formed by the longitudinal axis of a gripper. The nature of the method is based on the study of sets of configuration positions, defining the end point positions of the unit radius sphere sweep, which specifies the service solid angle. From this the spherical curve specifying the shape of the desired solid angle was determined. The results of the research can be used in the development of control systems of autonomous android robots.

Keywords: android robot, control systems, motion synthesis, service angle

Procedia PDF Downloads 191
4549 CoFe₂O₄ as Anode for Enhanced Energy Recovery in Microbial Fuel Cell

Authors: Mehak Munjal, Raj Kishore Sharma, Gurmeet Singh

Abstract:

Microbial Fuel Cells (MFCs) are an alternative sustainable approach that utilize bacteria present in waste water as a bio-catalyst for the production of energy. It is a promising growing technology with minimal requirement for chemical supplements. Here electrode material plays a vital role in its performance. The present study represents CoFe2O4 spinel as a novel anode material in the MFC. It not only improve the bacterial metabolics but also enhance the power output. Generally, biocompatible conductive carbon paper/cloth, graphite and stainless steel are utilised as anode in MFCs. However, these materials lack electrochemical activity for anodic microbial reaction. Therefore, we developed CoFe2O4 on graphite sheet which enhanced the anodic charge transfer process. Redox pair in CoFe2O4 helped in improvement of extracellular electron transfer, thereby enhancing the performance. The physical characterizations (FT-IR, XRD, Raman) and electrochemical measurements demonstrate the strong interaction with E.coli bacteria and thus providing an excellent power density i.e. 1850 mW/m2 .The maximum anode half -cell potential is measured to be 0.65V. Therefore, use of noble metal free anodic material further decrease the cost and the long term cell stability makes it an effective material for practical applications.

Keywords: microbial fuel cell, cobalt ferrite, E. coli, bioelectricity

Procedia PDF Downloads 136
4548 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: cyclic loading, DPIV, settlement, soil-structure interactions, strip footing

Procedia PDF Downloads 162
4547 The Relationships Between Citizenship Acquisition and Ethnic Identity of Immigrant Women in Taiwan

Authors: Yuan-Yu Chiang, Yu-Han Tseng, Chin-Chen Wen

Abstract:

Many southeast-Asia women migrate to Taiwan by marriage, and it usually takes 4 to 8 years for them to acquire Taiwanese citizenship. This study investigates the relationships between their citizenship acquisition and whether they develop Taiwanese identities. One hundred and ninety-two immigrant women were measured using Multigroup Ethnic Identity Measure-Revised and a global 10-point ethnic identity question. Correlation tests and hierarchical regression were performed to explore whether acquiring citizenship would help immigrant women to develop Taiwanese identities. The results revealed that citizenship acquisition does help immigrant women to identify with Taiwanese society symbolically. However, the results also indicated that acquiring citizenship would not help these immigrant women become involved in deeper cultural exploration of Taiwan nor would it encourage them to make commitments to the host society.

Keywords: immigrants, international marriage, ethnic identity, Taiwan

Procedia PDF Downloads 411
4546 Examination of 12-14 Years Old Volleyball Players’ Body Image Levels

Authors: Dilek Yalız Solmaz, Gülsün Güven

Abstract:

The aim of this study is to examine the body image levels of 12-14 years old girls who are playing volleyball. The research group consists of 113 girls who are playing volleyball in Sakarya during the fall season of 2015-2016. Data was collected by means of the 'Body Image Questionnaire' which was originally developed by Secord and Jourard. The consequence of repeated analysis of the reliability of the scale was determined to as '.96'. This study employed statistical calculations as mean, standard deviation and t-test. According to results of this study, it was determined that the mean point of the volleyball players is 158.5 ± 25.1 (minimum=40; maximum=200) and it can be said that the volleyball players’ body image levels are high. There is a significant difference between the underweight (167.4 ± 20.7) and normal weight (151.4 ± 26.2) groups according to their Body Mass Index. Body image levels of underweight group were determined higher than normal weight group.

Keywords: volleyball, players, body image, body image levels

Procedia PDF Downloads 207
4545 Research Facility Assessment for Biomass Combustion in Moving Grate Furnaces

Authors: Francesco Gallucci, Mariangela Salerno, Ettore Guerriero, Manfredi Amalfi, Giancarlo Chiatti, Fulvio Palmieri

Abstract:

The paper deals with the experimental activities on a biomass combustion test-bed. More in detail, experimental campaigns have been devoted to investigate the operation of a biomass moving grate furnace. A research-oriented facility based on a moving grate furnace (350kW) has been set up in order to perform experimental activities in a wide range of test configurations. The paper reports the description of the complete biomass-plant and the assessment of the system operation. As the first step, the chemical and physical properties of the used wooden biomass have been preliminarily investigated. Once the biomass fuel has been characterized, investigations have been devoted to point out the operation of the furnace. It has been operated at full load, highlighting the influence of biomass combustion parameters on particulate matter and gaseous emission.

Keywords: biomass, combustion, experimental, pollutants

Procedia PDF Downloads 276
4544 Correlation between Dynamic Knee Valgus with Isometric Hip External Rotators Strength during Single Leg Landing

Authors: Ahmed Fawzy, Khaled Ayad, Gh. M. Koura, W. Reda

Abstract:

The excessive frontal plane motion of the lower extremity during sports activities is thought to be a contributing factor to many traumatic and overuse injuries of the knee joint, little is known about the biomechanical factors that contribute to this loading pattern. Objectives: The purpose of this study was to investigate if there is a relationship between hip external rotators isometric strength and the value of frontal plane projection angle (FPPA) during single leg landing tasks in normal male subjects. Methods: One hundred (male) subjects free from lower extremity injuries for at least six months ago participated in this study. Their mean age was (23.25 ± 2.88) years, mean weight was (74.76 ± 13.54) (Kg), mean height was (174.23 ± 6.56) (Cm). The knee frontal plane projection angle was measured by digital video camera using single leg landing task. Hip external rotators isometric strength were assessed by portable hand held dynamometer. Muscle strength had been normalized to the body weight to obtain more accurate measurements. Results: The results demonstrated that there was no significant relationship between hip external rotators isometric strength and the value of FPPA during single leg landing tasks in normal male subjects. Conclusion: It can be concluded that there is no relationship between hip external rotators isometric strength and the value of FPPA during functional activities in normal male subjects.

Keywords: 2-dimensional motion analysis, hip strength, kinematics, knee injuries

Procedia PDF Downloads 221
4543 Audio-Visual Aids and the Secondary School Teaching

Authors: Shrikrishna Mishra, Badri Yadav

Abstract:

In this complex society of today where experiences are innumerable and varied, it is not at all possible to present every situation in its original colors hence the opportunities for learning by actual experiences always are not at all possible. It is only through the use of proper audio visual aids that the life situation can be trough in the class room by an enlightened teacher in their simplest form and representing the original to the highest point of similarity which is totally absent in the verbal or lecture method. In the presence of audio aids, the attention is attracted interest roused and suitable atmosphere for proper understanding is automatically created, but in the existing traditional method greater efforts are to be made in order to achieve the aforesaid essential requisite. Inspire of the best and sincere efforts on the side of the teacher the net effect as regards understanding or learning in general is quite negligible.

Keywords: Audio-Visual Aids, the secondary school teaching, complex society, audio

Procedia PDF Downloads 477
4542 Comparison of Quality Indices for Sediment Assessment in Ireland

Authors: Tayyaba Bibi, Jenny Ronan, Robert Hernan, Kathleen O’Rourke, Brendan McHugh, Evin McGovern, Michelle Giltrap, Gordon Chambers, James Wilson

Abstract:

Sediment contamination is a major source of ecosystem stress and has received significant attention from the scientific community. Both the Water Framework Directive (WFD) and Marine Strategy Framework Directive (MSFD) require a robust set of tools for biological and chemical monitoring. For the MSFD in particular, causal links between contaminant and effects need to be assessed. Appropriate assessment tools are required in order to make an accurate evaluation. In this study, a range of recommended sediment bioassays and chemical measurements are assessed in a number of potentially impacted and lowly impacted locations around Ireland. Previously, assessment indices have been developed on individual compartments, i.e. contaminant levels or biomarker/bioassay responses. A number of assessment indices are applied to chemical and ecotoxicological data from the Seachange project (Project code) and compared including the metal pollution index (MPI), pollution load index (PLI) and Chapman index for chemistry as well as integrated biomarker response (IBR). The benefits and drawbacks of the use of indices and aggregation techniques are discussed. In addition to this, modelling of raw data is investigated to analyse links between contaminant and effects.

Keywords: bioassays, contamination indices, ecotoxicity, marine environment, sediments

Procedia PDF Downloads 223
4541 Analyzing the Upcoming Changes in the Multi Brand E-commerce Industry with Specific Reference to the Indian Market

Authors: Shubham Banerjee

Abstract:

The paper focuses on, how the business model of the Indian multi brand ecommerce industry is unstable and is headed towards an e-commerce bubble burst. Due to multiple players in the industry and little or no product differentiation, the Indian multi brand ecommerce industry has turned into an oligopoly market where there is hardly any brand loyalty of the customers. Companies have been rapidly increasing their selling cost in the forms of discounts and advertisements to retain and grow its customer base. This is resulting into higher revenues, but is driving the companies further away from their break-even point. With close to half a decade into the industry, none of the companies have been able to generate profits. With private investors losing patience and devaluing companies, the paper will throw light on how the multi brand e-commerce industry will change in the coming years.

Keywords: bubble burst, finance, multi brand ecommerce, product differentiation, private investor

Procedia PDF Downloads 282