Search results for: grasshopper optimization algorithm
3185 Numerical Study for Spatial Optimization of DVG for Fin and Tube Heat Exchangers
Authors: Amit Arora, P. M. V. Subbarao, R. S. Agarwal
Abstract:
This study attempts to find promising locations of upwash delta winglets for an inline finned tube heat exchanger. Later, location of winglets that delivers highest improvement in thermal performance is identified. Numerical results clearly showed that optimally located upwash delta winglets not only improved the thermal performance of fin area in tube wake and tubes, but also improved overall thermal performance of heat exchanger.Keywords: apparent friction factor, delta winglet, fin and tube heat exchanger, longitudinal vortices
Procedia PDF Downloads 3103184 Durability Analysis of a Knuckle Arm Using VPG System
Authors: Geun-Yeon Kim, S. P. Praveen Kumar, Kwon-Hee Lee
Abstract:
A steering knuckle arm is the component that connects the steering system and suspension system. The structural performances such as stiffness, strength, and durability are considered in its design process. The former study suggested the lightweight design of a knuckle arm considering the structural performances and using the metamodel-based optimization. The six shape design variables were defined, and the optimum design was calculated by applying the kriging interpolation method. The finite element method was utilized to predict the structural responses. The suggested knuckle was made of the aluminum Al6082, and its weight was reduced about 60% in comparison with the base steel knuckle, satisfying the design requirements. Then, we investigated its manufacturability by performing foraging analysis. The forging was done as hot process, and the product was made through two-step forging. As a final step of its developing process, the durability is investigated by using the flexible dynamic analysis software, LS-DYNA and the pre and post processor, eta/VPG. Generally, a car make does not provide all the information with the part manufacturer. Thus, the part manufacturer has a limit in predicting the durability performance with the unit of full car. The eta/VPG has the libraries of suspension, tire, and road, which are commonly used parts. That makes a full car modeling. First, the full car is modeled by referencing the following information; Overall Length: 3,595mm, Overall Width: 1,595mm, CVW (Curve Vehicle Weight): 910kg, Front Suspension: MacPherson Strut, Rear Suspension: Torsion Beam Axle, Tire: 235/65R17. Second, the road is selected as the cobblestone. The road condition of the cobblestone is almost 10 times more severe than that of usual paved road. Third, the dynamic finite element analysis using the LS-DYNA is performed to predict the durability performance of the suggested knuckle arm. The life of the suggested knuckle arm is calculated as 350,000km, which satisfies the design requirement set up by the part manufacturer. In this study, the overall design process of a knuckle arm is suggested, and it can be seen that the developed knuckle arm satisfies the design requirement of the durability with the unit of full car. The VPG analysis is successfully performed even though it does not an exact prediction since the full car model is very rough one. Thus, this approach can be used effectively when the detail to full car is not given.Keywords: knuckle arm, structural optimization, Metamodel, forging, durability, VPG (Virtual Proving Ground)
Procedia PDF Downloads 4193183 Effect of Baffles on the Cooling of Electronic Components
Authors: O. Bendermel, C. Seladji, M. Khaouani
Abstract:
In this work, we made a numerical study of the thermal and dynamic behaviour of air in a horizontal channel with electronic components. The influence to use baffles on the profiles of velocity and temperature is discussed. The finite volume method and the algorithm Simple are used for solving the equations of conservation of mass, momentum and energy. The results found show that baffles improve heat transfer between the cooling air and electronic components. The velocity will increase from 3 times per rapport of the initial velocity.Keywords: electronic components, baffles, cooling, fluids engineering
Procedia PDF Downloads 2973182 Ecological Ice Hockey Butterfly Motion Assessment Using Inertial Measurement Unit Capture System
Authors: Y. Zhang, J. Perez, S. Marnier
Abstract:
To date, no study on goaltending butterfly motion has been completed in real conditions, during an ice hockey game or training practice, to the author's best knowledge. This motion, performed to save score, is unnatural, intense, and repeated. The target of this research activity is to identify representative biomechanical criteria for this goaltender-specific movement pattern. Determining specific physical parameters may allow to will identify the risk of hip and groin injuries sustained by goaltenders. Four professional or academic goalies were instrumented during ice hockey training practices with five inertial measurement units. These devices were inserted in dedicated pockets located on each thigh and shank, and the fifth on the lumbar spine. A camera was also installed close to the ice to observe and record the goaltenders' activities, especially the butterfly motions, in order to synchronize the captured data and the behavior of the goaltender. Each data recorded began with a calibration of the inertial units and a calibration of the fully equipped goaltender on the ice. Three butterfly motions were recorded out of the training practice to define referential individual butterfly motions. Then, a data processing algorithm based on the Madgwick filter computed hip and knee joints joint range of motion as well as angular specific angular velocities. The developed algorithm software automatically identified and analyzed all the butterfly motions executed by the four different goaltenders. To date, it is still too early to show that the analyzed criteria are representative of the trauma generated by the butterfly motion as the research is only at its beginning. However, this descriptive research activity is promising in its ecological assessment, and once the criteria are found, the tools and protocols defined will allow the prevention of as many injuries as possible. It will thus be possible to build a specific training program for each goalie.Keywords: biomechanics, butterfly motion, human motion analysis, ice hockey, inertial measurement unit
Procedia PDF Downloads 1253181 Pilot Scale Production and Compatibility Criteria of New Self-Cleaning Materials
Authors: Jonjaua Ranogajec, Ognjen Rudic, Snezana Pasalic, Snezana Vucetic, Damir Cjepa
Abstract:
The paper involves a chain of activities from synthesis, establishment of the methodology for characterization and testing of novel protective materials through the pilot production and application on model supports. It summarizes the results regarding the development of the pilot production protocol for newly developed self-cleaning materials. The optimization of the production parameters was completed in order to improve the most important functional properties (mineralogy characteristics, particle size, self-cleaning properties and photocatalytic activity) of the newly designed nanocomposite material.Keywords: pilot production, self-cleaning materials, compatibility, cultural heritage
Procedia PDF Downloads 3953180 Optimal Design of Wind Turbine Blades Equipped with Flaps
Authors: I. Kade Wiratama
Abstract:
As a result of the significant growth of wind turbines in size, blade load control has become the main challenge for large wind turbines. Many advanced techniques have been investigated aiming at developing control devices to ease blade loading. Amongst them, trailing edge flaps have been proven as effective devices for load alleviation. The present study aims at investigating the potential benefits of flaps in enhancing the energy capture capabilities rather than blade load alleviation. A software tool is especially developed for the aerodynamic simulation of wind turbines utilising blades equipped with flaps. As part of the aerodynamic simulation of these wind turbines, the control system must be also simulated. The simulation of the control system is carried out via solving an optimisation problem which gives the best value for the controlling parameter at each wind turbine run condition. Developing a genetic algorithm optimisation tool which is especially designed for wind turbine blades and integrating it with the aerodynamic performance evaluator, a design optimisation tool for blades equipped with flaps is constructed. The design optimisation tool is employed to carry out design case studies. The results of design case studies on wind turbine AWT 27 reveal that, as expected, the location of flap is a key parameter influencing the amount of improvement in the power extraction. The best location for placing a flap is at about 70% of the blade span from the root of the blade. The size of the flap has also significant effect on the amount of enhancement in the average power. This effect, however, reduces dramatically as the size increases. For constant speed rotors, adding flaps without re-designing the topology of the blade can improve the power extraction capability as high as of about 5%. However, with re-designing the blade pretwist the overall improvement can be reached as high as 12%.Keywords: flaps, design blade, optimisation, simulation, genetic algorithm, WTAero
Procedia PDF Downloads 3373179 Multi-Sensor Image Fusion for Visible and Infrared Thermal Images
Authors: Amit Kumar Happy
Abstract:
This paper is motivated by the importance of multi-sensor image fusion with a specific focus on infrared (IR) and visual image (VI) fusion for various applications, including military reconnaissance. Image fusion can be defined as the process of combining two or more source images into a single composite image with extended information content that improves visual perception or feature extraction. These images can be from different modalities like visible camera & IR thermal imager. While visible images are captured by reflected radiations in the visible spectrum, the thermal images are formed from thermal radiation (infrared) that may be reflected or self-emitted. A digital color camera captures the visible source image, and a thermal infrared camera acquires the thermal source image. In this paper, some image fusion algorithms based upon multi-scale transform (MST) and region-based selection rule with consistency verification have been proposed and presented. This research includes the implementation of the proposed image fusion algorithm in MATLAB along with a comparative analysis to decide the optimum number of levels for MST and the coefficient fusion rule. The results are presented, and several commonly used evaluation metrics are used to assess the suggested method's validity. Experiments show that the proposed approach is capable of producing good fusion results. While deploying our image fusion algorithm approaches, we observe several challenges from the popular image fusion methods. While high computational cost and complex processing steps of image fusion algorithms provide accurate fused results, they also make it hard to become deployed in systems and applications that require a real-time operation, high flexibility, and low computation ability. So, the methods presented in this paper offer good results with minimum time complexity.Keywords: image fusion, IR thermal imager, multi-sensor, multi-scale transform
Procedia PDF Downloads 1153178 Procedure to Optimize the Performance of Chemical Laser Using the Genetic Algorithm Optimizations
Authors: Mohammedi Ferhate
Abstract:
This work presents details of the study of the entire flow inside the facility where the exothermic chemical reaction process in the chemical laser cavity is analyzed. In our paper we will describe the principles of chemical lasers where flow reversal is produced by chemical reactions. We explain the device for converting chemical potential energy laser energy. We see that the phenomenon thus has an explosive trend. Finally, the feasibility and effectiveness of the proposed method is demonstrated by computer simulationKeywords: genetic, lasers, nozzle, programming
Procedia PDF Downloads 943177 Impact of Combined Heat and Power (CHP) Generation Technology on Distribution Network Development
Authors: Sreto Boljevic
Abstract:
In the absence of considerable investment in electricity generation, transmission and distribution network (DN) capacity, the demand for electrical energy will quickly strain the capacity of the existing electrical power network. With anticipated growth and proliferation of Electric vehicles (EVs) and Heat pump (HPs) identified the likelihood that the additional load from EV changing and the HPs operation will require capital investment in the DN. While an area-wide implementation of EVs and HPs will contribute to the decarbonization of the energy system, they represent new challenges for the existing low-voltage (LV) network. Distributed energy resources (DER), operating both as part of the DN and in the off-network mode, have been offered as a means to meet growing electricity demand while maintaining and ever-improving DN reliability, resiliency and power quality. DN planning has traditionally been done by forecasting future growth in demand and estimating peak load that the network should meet. However, new problems are arising. These problems are associated with a high degree of proliferation of EVs and HPs as load imposes on DN. In addition to that, the promotion of electricity generation from renewable energy sources (RES). High distributed generation (DG) penetration and a large increase in load proliferation at low-voltage DNs may have numerous impacts on DNs that create issues that include energy losses, voltage control, fault levels, reliability, resiliency and power quality. To mitigate negative impacts and at a same time enhance positive impacts regarding the new operational state of DN, CHP system integration can be seen as best action to postpone/reduce capital investment needed to facilitate promotion and maximize benefits of EVs, HPs and RES integration in low-voltage DN. The aim of this paper is to generate an algorithm by using an analytical approach. Algorithm implementation will provide a way for optimal placement of the CHP system in the DN in order to maximize the integration of RES and increase in proliferation of EVs and HPs.Keywords: combined heat & power (CHP), distribution networks, EVs, HPs, RES
Procedia PDF Downloads 2023176 Forensic Detection of Errors Permitted by the Witnesses in Their Testimony
Authors: Lev Bertovsky
Abstract:
The purpose of this study was to determine the reasons for the formation of false testimony from witnesses and make recommendations on the recognition of such cases. During the studies, which were based on the achievements of professionals in the field of psychology, as well as personal investigative practice, the stages of perception of the information were studied, as well as the process of its reclaim from the memory and transmission to the communicator upon request. Based on the principles of the human brain, kinds of conscientious witness mistakes were systematized. Proposals were formulated for the optimization of investigative actions in cases where the witnesses make an honest mistake with respect to the effects previously observed by them.Keywords: criminology, eyewitness testimony, honest mistake, information, investigator, investigation, questioning
Procedia PDF Downloads 1853175 Cooperative Agents to Prevent and Mitigate Distributed Denial of Service Attacks of Internet of Things Devices in Transportation Systems
Authors: Borhan Marzougui
Abstract:
Road and Transport Authority (RTA) is moving ahead with the implementation of the leader’s vision in exploring all avenues that may bring better security and safety services to the community. Smart transport means using smart technologies such as IoT (Internet of Things). This technology continues to affirm its important role in the context of Information and Transportation Systems. In fact, IoT is a network of Internet-connected objects able to collect and exchange different data using embedded sensors. With the growth of IoT, Distributed Denial of Service (DDoS) attacks is also growing exponentially. DDoS attacks are the major and a real threat to various transportation services. Currently, the defense mechanisms are mainly passive in nature, and there is a need to develop a smart technique to handle them. In fact, new IoT devices are being used into a botnet for DDoS attackers to accumulate for attacker purposes. The aim of this paper is to provide a relevant understanding of dangerous types of DDoS attack related to IoT and to provide valuable guidance for the future IoT security method. Our methodology is based on development of the distributed algorithm. This algorithm manipulates dedicated intelligent and cooperative agents to prevent and to mitigate DDOS attacks. The proposed technique ensure a preventive action when a malicious packets start to be distributed through the connected node (Network of IoT devices). In addition, the devices such as camera and radio frequency identification (RFID) are connected within the secured network, and the data generated by it are analyzed in real time by intelligent and cooperative agents. The proposed security system is based on a multi-agent system. The obtained result has shown a significant reduction of a number of infected devices and enhanced the capabilities of different security dispositives.Keywords: IoT, DDoS, attacks, botnet, security, agents
Procedia PDF Downloads 1433174 An Investigation Enhancing E-Voting Application Performance
Authors: Aditya Verma
Abstract:
E-voting using blockchain provides us with a distributed system where data is present on each node present in the network and is reliable and secure too due to its immutability property. This work compares various blockchain consensus algorithms used for e-voting applications in the past, based on performance and node scalability, and chooses the optimal one and improves on one such previous implementation by proposing solutions for the loopholes of the optimally working blockchain consensus algorithm, in our chosen application, e-voting.Keywords: blockchain, parallel bft, consensus algorithms, performance
Procedia PDF Downloads 1673173 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field
Authors: Yana Snegireva
Abstract:
Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model
Procedia PDF Downloads 753172 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby
Authors: Jazim Sohail, Filipe Teixeira-Dias
Abstract:
Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI
Procedia PDF Downloads 2173171 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 663170 From Theory to Practice: Harnessing Mathematical and Statistical Sciences in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in diverse domains has created an urgent need for effective utilization of mathematical and statistical sciences in data analytics. This abstract explores the journey from theory to practice, emphasizing the importance of harnessing mathematical and statistical innovations to unlock the full potential of data analytics. Drawing on a comprehensive review of existing literature and research, this study investigates the fundamental theories and principles underpinning mathematical and statistical sciences in the context of data analytics. It delves into key mathematical concepts such as optimization, probability theory, statistical modeling, and machine learning algorithms, highlighting their significance in analyzing and extracting insights from complex datasets. Moreover, this abstract sheds light on the practical applications of mathematical and statistical sciences in real-world data analytics scenarios. Through case studies and examples, it showcases how mathematical and statistical innovations are being applied to tackle challenges in various fields such as finance, healthcare, marketing, and social sciences. These applications demonstrate the transformative power of mathematical and statistical sciences in data-driven decision-making. The abstract also emphasizes the importance of interdisciplinary collaboration, as it recognizes the synergy between mathematical and statistical sciences and other domains such as computer science, information technology, and domain-specific knowledge. Collaborative efforts enable the development of innovative methodologies and tools that bridge the gap between theory and practice, ultimately enhancing the effectiveness of data analytics. Furthermore, ethical considerations surrounding data analytics, including privacy, bias, and fairness, are addressed within the abstract. It underscores the need for responsible and transparent practices in data analytics, and highlights the role of mathematical and statistical sciences in ensuring ethical data handling and analysis. In conclusion, this abstract highlights the journey from theory to practice in harnessing mathematical and statistical sciences in data analytics. It showcases the practical applications of these sciences, the importance of interdisciplinary collaboration, and the need for ethical considerations. By bridging the gap between theory and practice, mathematical and statistical sciences contribute to unlocking the full potential of data analytics, empowering organizations and decision-makers with valuable insights for informed decision-making.Keywords: data analytics, mathematical sciences, optimization, machine learning, interdisciplinary collaboration, practical applications
Procedia PDF Downloads 933169 Design, Analysis and Obstacle Avoidance Control of an Electric Wheelchair with Sit-Sleep-Seat Elevation Functions
Authors: Waleed Ahmed, Huang Xiaohua, Wilayat Ali
Abstract:
The wheelchair users are generally exposed to physical and psychological health problems, e.g., pressure sores and pain in the hip joint, associated with seating posture or being inactive in a wheelchair for a long time. Reclining Wheelchair with back, thigh, and leg adjustment helps in daily life activities and health preservation. The seat elevating function of an electric wheelchair allows the user (lower limb amputation) to reach different heights. An electric wheelchair is expected to ease the lives of the elderly and disable people by giving them mobility support and decreasing the percentage of accidents caused by users’ narrow sight or joystick operation errors. Thus, this paper proposed the design, analysis and obstacle avoidance control of an electric wheelchair with sit-sleep-seat elevation functions. A 3D model of a wheelchair is designed in SolidWorks that was later used for multi-body dynamic (MBD) analysis and to verify driving control system. The control system uses the fuzzy algorithm to avoid the obstacle by getting information in the form of distance from the ultrasonic sensor and user-specified direction from the joystick’s operation. The proposed fuzzy driving control system focuses on the direction and velocity of the wheelchair. The wheelchair model has been examined and proven in MSC Adams (Automated Dynamic Analysis of Mechanical Systems). The designed fuzzy control algorithm is implemented on Gazebo robotic 3D simulator using Robotic Operating System (ROS) middleware. The proposed wheelchair design enhanced mobility and quality of life by improving the user’s functional capabilities. Simulation results verify the non-accidental behavior of the electric wheelchair.Keywords: fuzzy logic control, joystick, multi body dynamics, obstacle avoidance, scissor mechanism, sensor
Procedia PDF Downloads 1293168 A Benchmark System for Testing Medium Voltage Direct Current (MVDC-CB) Robustness Utilizing Real Time Digital Simulation and Hardware-In-Loop Theory
Authors: Ali Kadivar, Kaveh Niayesh
Abstract:
The integration of green energy resources is a major focus, and the role of Medium Voltage Direct Current (MVDC) systems is exponentially expanding. However, the protection of MVDC systems against DC faults is a challenge that can have consequences on reliable and safe grid operation. This challenge reveals the need for MVDC circuit breakers (MVDC CB), which are in infancies of their improvement. Therefore will be a lack of MVDC CBs standards, including thresholds for acceptable power losses and operation speed. To establish a baseline for comparison purposes, a benchmark system for testing future MVDC CBs is vital. The literatures just give the timing sequence of each switch and the emphasis is on the topology, without in-depth study on the control algorithm of DCCB, as the circuit breaker control system is not yet systematic. A digital testing benchmark is designed for the Proof-of-concept of simulation studies using software models. It can validate studies based on real-time digital simulators and Transient Network Analyzer (TNA) models. The proposed experimental setup utilizes data accusation from the accurate sensors installed on the tested MVDC CB and through general purpose input/outputs (GPIO) from the microcontroller and PC Prototype studies in the laboratory-based models utilizing Hardware-in-the-Loop (HIL) equipment connected to real-time digital simulators is achieved. The improved control algorithm of the circuit breaker can reduce the peak fault current and avoid arc resignation, helping the coordination of DCCB in relay protection. Moreover, several research gaps are identified regarding case studies and evaluation approaches.Keywords: DC circuit breaker, hardware-in-the-loop, real time digital simulation, testing benchmark
Procedia PDF Downloads 793167 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function
Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio
Abstract:
Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).Keywords: algorithm, diabetes, laboratory medicine, non-invasive
Procedia PDF Downloads 333166 Comparison of Hydrogen and Electrification Perspectives in Decarbonizing the Transport Sector
Authors: Matteo Nicoli, Gianvito Colucci, Valeria Di Cosmo, Daniele Lerede, Laura Savoldi
Abstract:
The transport sector is currently responsible for approximately 1/3 of greenhouse gas emissions in Europe. In the wider context of achieving carbon neutrality of the global energy system, different alternatives are available to decarbonizethe transport sector. In particular, while electricity is already the most consumed energy commodity in rail transport, battery electric vehicles are one of the zero-emissions options on the market for road transportation. On the other hand, hydrogen-based fuel cell vehicles are available for road and non-road vehicles. The European Commission is strongly pushing toward the integration of hydrogen in the energy systems of European countries and its widespread adoption as an energy vector to achieve the Green Deal targets. Furthermore, the Italian government is defining hydrogen-related objectives with the publication of a dedicated Hydrogen Strategy. The adoption of energy system optimization models to study the possible penetration of alternative zero-emitting transport technologies gives the opportunity to perform an overall analysis of the effects that the development of innovative technologies has on the entire energy system and on the supply-side, devoted to the production of energy carriers such as hydrogen and electricity. Using an open-source modeling framework such as TEMOA, this work aims to compare the role of hydrogen and electric vehicles in the decarbonization of the transport sector. The analysis investigates the advantages and disadvantages of adopting the two options, from the economic point of view (costs associated with the two options) and the environmental one (looking at the emissions reduction perspectives). Moreover, an analysis on the profitability of the investments in hydrogen and electric vehicles will be performed. The study investigates the evolution of energy consumption and greenhouse gas emissions in different transportation modes (road, rail, navigation, and aviation) by detailed analysis of the full range of vehicles included in the techno-economic database used in the TEMOA model instance adopted for this work. The transparency of the analysis is guaranteed by the accessibility of the TEMOA models, based on an open-access source code and databases.Keywords: battery electric vehicles, decarbonization, energy system optimization models, fuel cell vehicles, hydrogen, open-source modeling, TEMOA, transport
Procedia PDF Downloads 1123165 Laser Cooling of Internal Degrees of Freedom of Molecules: Cesium Case
Authors: R. Horchani
Abstract:
Optical pumping technique with laser fields combined with photo-association of ultra-cold atoms leads to control on demand the vibrational and/or the rotational population of molecules. Here, we review the basic concepts and main steps should be followed, including the excitation schemes and detection techniques we use to achieve the ro-vibrational cooling of Cs2 molecules. We also discuss the extension of this technique to other molecules. In addition, we present a theoretical model used to support the experiment. These simulations can be widely used for the preparation of various experiments since they allow the optimization of several important experimental parameters.Keywords: cold molecule, photo-association, optical pumping, vibrational and rotational cooling
Procedia PDF Downloads 3013164 Optimal Number and Placement of Vertical Links in 3D Network-On-Chip
Authors: Nesrine Toubaline, Djamel Bennouar, Ali Mahdoum
Abstract:
3D technology can lead to a significant reduction in power and average hop-count in Networks on Chip (NoCs). It offers short and fast vertical links which copes with the long wire problem in 2D NoCs. This work proposes heuristic-based method to optimize number and placement of vertical links to achieve specified performance goals. Experiments show that significant improvement can be achieved by using a specific number of vertical interconnect.Keywords: interconnect optimization, monolithic inter-tier vias, network on chip, system on chip, through silicon vias, three dimensional integration circuits
Procedia PDF Downloads 3033163 A Trends Analysis of Yatch Simulator
Authors: Jae-Neung Lee, Keun-Chang Kwak
Abstract:
This paper describes an analysis of Yacht Simulator international trends and also explains about Yacht. Examples of yacht Simulator using Yacht Simulator include image processing for totaling the total number of vehicles, edge/target detection, detection and evasion algorithm, image processing using SIFT (scale invariant features transform) matching, and application of median filter and thresholding.Keywords: yacht simulator, simulator, trends analysis, SIFT
Procedia PDF Downloads 4323162 A Framework of Dynamic Rule Selection Method for Dynamic Flexible Job Shop Problem by Reinforcement Learning Method
Authors: Rui Wu
Abstract:
In the volatile modern manufacturing environment, new orders randomly occur at any time, while the pre-emptive methods are infeasible. This leads to a real-time scheduling method that can produce a reasonably good schedule quickly. The dynamic Flexible Job Shop problem is an NP-hard scheduling problem that hybrid the dynamic Job Shop problem with the Parallel Machine problem. A Flexible Job Shop contains different work centres. Each work centre contains parallel machines that can process certain operations. Many algorithms, such as genetic algorithms or simulated annealing, have been proposed to solve the static Flexible Job Shop problems. However, the time efficiency of these methods is low, and these methods are not feasible in a dynamic scheduling problem. Therefore, a dynamic rule selection scheduling system based on the reinforcement learning method is proposed in this research, in which the dynamic Flexible Job Shop problem is divided into several parallel machine problems to decrease the complexity of the dynamic Flexible Job Shop problem. Firstly, the features of jobs, machines, work centres, and flexible job shops are selected to describe the status of the dynamic Flexible Job Shop problem at each decision point in each work centre. Secondly, a framework of reinforcement learning algorithm using a double-layer deep Q-learning network is applied to select proper composite dispatching rules based on the status of each work centre. Then, based on the selected composite dispatching rule, an available operation is selected from the waiting buffer and assigned to an available machine in each work centre. Finally, the proposed algorithm will be compared with well-known dispatching rules on objectives of mean tardiness, mean flow time, mean waiting time, or mean percentage of waiting time in the real-time Flexible Job Shop problem. The result of the simulations proved that the proposed framework has reasonable performance and time efficiency.Keywords: dynamic scheduling problem, flexible job shop, dispatching rules, deep reinforcement learning
Procedia PDF Downloads 1083161 Improving Lane Detection for Autonomous Vehicles Using Deep Transfer Learning
Authors: Richard O’Riordan, Saritha Unnikrishnan
Abstract:
Autonomous Vehicles (AVs) are incorporating an increasing number of ADAS features, including automated lane-keeping systems. In recent years, many research papers into lane detection algorithms have been published, varying from computer vision techniques to deep learning methods. The transition from lower levels of autonomy defined in the SAE framework and the progression to higher autonomy levels requires increasingly complex models and algorithms that must be highly reliable in their operation and functionality capacities. Furthermore, these algorithms have no room for error when operating at high levels of autonomy. Although the current research details existing computer vision and deep learning algorithms and their methodologies and individual results, the research also details challenges faced by the algorithms and the resources needed to operate, along with shortcomings experienced during their detection of lanes in certain weather and lighting conditions. This paper will explore these shortcomings and attempt to implement a lane detection algorithm that could be used to achieve improvements in AV lane detection systems. This paper uses a pre-trained LaneNet model to detect lane or non-lane pixels using binary segmentation as the base detection method using an existing dataset BDD100k followed by a custom dataset generated locally. The selected roads will be modern well-laid roads with up-to-date infrastructure and lane markings, while the second road network will be an older road with infrastructure and lane markings reflecting the road network's age. The performance of the proposed method will be evaluated on the custom dataset to compare its performance to the BDD100k dataset. In summary, this paper will use Transfer Learning to provide a fast and robust lane detection algorithm that can handle various road conditions and provide accurate lane detection.Keywords: ADAS, autonomous vehicles, deep learning, LaneNet, lane detection
Procedia PDF Downloads 1043160 Cars Redistribution Optimization Problem in the Free-Float Car-Sharing
Authors: Amine Ait-Ouahmed, Didier Josselin, Fen Zhou
Abstract:
Free-Float car-sharing is an one-way car-sharing service where cars are available anytime and anywhere in the streets such that no dedicated stations are needed. This means that after driving a car you can park it anywhere. This car-sharing system creates an imbalance car distribution in the cites which can be regulated by staff agents through the redistribution of cars. In this paper, we aim to solve the car-reservation and agents traveling problem so that the number of successful cars’ reservations could be maximized. Beside, we also tend to minimize the distance traveled by agents for cars redistribution. To this end, we present a mixed integer linear programming formulation for the car-sharing problem.Keywords: one-way car-sharing, vehicle redistribution, car reservation, linear programming
Procedia PDF Downloads 3483159 Edge Enhancement Visual Methodology for Fat Amount and Distribution Assessment in Dry-Cured Ham Slices
Authors: Silvia Grassi, Stefano Schiavon, Ernestina Casiraghi, Cristina Alamprese
Abstract:
Dry-cured ham is an uncooked meat product particularly appreciated for its peculiar sensory traits among which lipid component plays a key role in defining quality and, consequently, consumers’ acceptability. Usually, fat content and distribution are chemically determined by expensive, time-consuming, and destructive analyses. Moreover, different sensory techniques are applied to assess product conformity to desired standards. In this context, visual systems are getting a foothold in the meat market envisioning more reliable and time-saving assessment of food quality traits. The present work aims at developing a simple but systematic and objective visual methodology to assess the fat amount of dry-cured ham slices, in terms of total, intermuscular and intramuscular fractions. To the aim, 160 slices from 80 PDO dry-cured hams were evaluated by digital image analysis and Soxhlet extraction. RGB images were captured by a flatbed scanner, converted in grey-scale images, and segmented based on intensity histograms as well as on a multi-stage algorithm aimed at edge enhancement. The latter was performed applying the Canny algorithm, which consists of image noise reduction, calculation of the intensity gradient for each image, spurious response removal, actual thresholding on corrected images, and confirmation of strong edge boundaries. The approach allowed for the automatic calculation of total, intermuscular and intramuscular fat fractions as percentages of the total slice area. Linear regression models were run to estimate the relationships between the image analysis results and the chemical data, thus allowing for the prediction of the total, intermuscular and intramuscular fat content by the dry-cured ham images. The goodness of fit of the obtained models was confirmed in terms of coefficient of determination (R²), hypothesis testing and pattern of residuals. Good regression models have been found being 0.73, 0.82, and 0.73 the R2 values for the total fat, the sum of intermuscular and intramuscular fat and the intermuscular fraction, respectively. In conclusion, the edge enhancement visual procedure brought to a good fat segmentation making the simple visual approach for the quantification of the different fat fractions in dry-cured ham slices sufficiently simple, accurate and precise. The presented image analysis approach steers towards the development of instruments that can overcome destructive, tedious and time-consuming chemical determinations. As future perspectives, the results of the proposed image analysis methodology will be compared with those of sensory tests in order to develop a fast grading method of dry-cured hams based on fat distribution. Therefore, the system will be able not only to predict the actual fat content but it will also reflect the visual appearance of samples as perceived by consumers.Keywords: dry-cured ham, edge detection algorithm, fat content, image analysis
Procedia PDF Downloads 1763158 Placement of Inflow Control Valve for Horizontal Oil Well
Authors: S. Thanabanjerdsin, F. Srisuriyachai, J. Chewaroungroj
Abstract:
Drilling horizontal well is one of the most cost-effective method to exploit reservoir by increasing exposure area between well and formation. Together with horizontal well technology, intelligent completion is often co-utilized to increases petroleum production by monitoring/control downhole production. Combination of both technological results in an opportunity to lower water cresting phenomenon, a detrimental problem that does not lower only oil recovery but also cause environmental problem due to water disposal. Flow of reservoir fluid is a result from difference between reservoir and wellbore pressure. In horizontal well, reservoir fluid around the heel location enters wellbore at higher rate compared to the toe location. As a consequence, Oil-Water Contact (OWC) at the heel side of moves upward relatively faster compared to the toe side. This causes the well to encounter an early water encroachment problem. Installation of Inflow Control Valve (ICV) in particular sections of horizontal well can involve several parameters such as number of ICV, water cut constrain of each valve, length of each section. This study is mainly focused on optimization of ICV configuration to minimize water production and at the same time, to enhance oil production. A reservoir model consisting of high aspect ratio of oil bearing zone to underneath aquifer is drilled with horizontal well and completed with variation of ICV segments. Optimization of the horizontal well configuration is firstly performed by varying number of ICV, segment length, and individual preset water cut for each segment. Simulation results show that installing ICV can increase oil recovery factor up to 5% of Original Oil In Place (OOIP) and can reduce of produced water depending on ICV segment length as well as ICV parameters. For equally partitioned-ICV segment, more number of segment results in better oil recovery. However, number of segment exceeding 10 may not give a significant additional recovery. In first production period, deformation of OWC strongly depends on number of segment along the well. Higher number of segment results in smoother deformation of OWC. After water breakthrough at heel location segment, the second production period begins. Deformation of OWC is principally dominated by ICV parameters. In certain situations that OWC is unstable such as high production rate, high viscosity fluid above aquifer and strong aquifer, second production period may give wide enough window to ICV parameter to take the roll.Keywords: horizontal well, water cresting, inflow control valve, reservoir simulation
Procedia PDF Downloads 4183157 The Microstructure and Corrosion Behavior of High Entropy Metallic Layers Electrodeposited by Low and High-Temperature Methods
Authors: Zbigniew Szklarz, Aldona Garbacz-Klempka, Magdalena Bisztyga-Szklarz
Abstract:
Typical metallic alloys bases on one major alloying component, where the addition of other elements is intended to improve or modify certain properties, most of all the mechanical properties. However, in 1995 a new concept of metallic alloys was described and defined. High Entropy Alloys (HEA) contains at least five alloying elements in an amount from 5 to 20 at.%. A common feature this type of alloys is an absence of intermetallic phases, high homogeneity of the microstructure and unique chemical composition, what leads to obtaining materials with very high strength indicators, stable structures (also at high temperatures) and excellent corrosion resistance. Hence, HEA can be successfully used as a substitutes for typical metallic alloys in various applications where a sufficiently high properties are desirable. For fabricating HEA, a few ways are applied: 1/ from liquid phase i.e. casting (usually arc melting); 2/ from solid phase i.e. powder metallurgy (sintering methods preceded by mechanical synthesis) and 3/ from gas phase e.g. sputtering or 4/ other deposition methods like electrodeposition from liquids. Application of different production methods creates different microstructures of HEA, which can entail differences in their properties. The last two methods also allows to obtain coatings with HEA structures, hereinafter referred to as High Entropy Films (HEF). With reference to above, the crucial aim of this work was the optimization of the manufacturing process of the multi-component metallic layers (HEF) by the low- and high temperature electrochemical deposition ( ED). The low-temperature deposition process was crried out at ambient or elevated temperature (up to 100 ᵒC) in organic electrolyte. The high-temperature electrodeposition (several hundred Celcius degrees), in turn, allowed to form the HEF layer by electrochemical reduction of metals from molten salts. The basic chemical composition of the coatings was CoCrFeMnNi (known as Cantor’s alloy). However, it was modified by other, selected elements like Al or Cu. The optimization of the parameters that allow to obtain as far as it possible homogeneous and equimolar composition of HEF is the main result of presented studies. In order to analyse and compare the microstructure, SEM/EBSD, TEM and XRD techniques were employed. Morover, the determination of corrosion resistance of the CoCrFeMnNi(Cu or Al) layers in selected electrolytes (i.e. organic and non-organic liquids) was no less important than the above mentioned objectives.Keywords: high entropy alloys, electrodeposition, corrosion behavior, microstructure
Procedia PDF Downloads 803156 Prevalence, Median Time, and Associated Factors with the Likelihood of Initial Antidepressant Change: A Cross-Sectional Study
Authors: Nervana Elbakary, Sami Ouanes, Sadaf Riaz, Oraib Abdallah, Islam Mahran, Noriya Al-Khuzaei, Yassin Eltorki
Abstract:
Major Depressive Disorder (MDD) requires therapeutic interventions during the initial month after being diagnosed for better disease outcomes. International guidelines recommend a duration of 4–12 weeks for an initial antidepressant (IAD) trial at an optimized dose to get a response. If depressive symptoms persist after this duration, guidelines recommend switching, augmenting, or combining strategies as the next step. Most patients with MDD in the mental health setting have been labeled incorrectly as treatment-resistant where in fact they have not been subjected to an adequate trial of guideline-recommended therapy. Premature discontinuation of IAD due to ineffectiveness can cause unfavorable consequences. Avoiding irrational practices such as subtherapeutic doses of IAD, premature switching between the ADs, and refraining from unjustified polypharmacy can help the disease to go into a remission phase We aimed to determine the prevalence and the patterns of strategies applied after an IAD was changed because of a suboptimal response as a primary outcome. Secondary outcomes included the median survival time on IAD before any change; and the predictors that were associated with IAD change. This was a retrospective cross- sectional study conducted in Mental Health Services in Qatar. A dataset between January 1, 2018, and December 31, 2019, was extracted from the electronic health records. Inclusion and exclusion criteria were defined and applied. The sample size was calculated to be at least 379 patients. Descriptive statistics were reported as frequencies and percentages, in addition, to mean and standard deviation. The median time of IAD to any change strategy was calculated using survival analysis. Associated predictors were examined using two unadjusted and adjusted cox regression models. A total of 487 patients met the inclusion criteria of the study. The average age for participants was 39.1 ± 12.3 years. Patients with first experience MDD episode 255 (52%) constituted a major part of our sample comparing to the relapse group 206(42%). About 431 (88%) of the patients had an occurrence of IAD change to any strategy before end of the study. Almost half of the sample (212 (49%); 95% CI [44–53%]) had their IAD changed less than or equal to 30 days. Switching was consistently more common than combination or augmentation at any timepoint. The median time to IAD change was 43 days with 95% CI [33.2–52.7]. Five independent variables (age, bothersome side effects, un-optimization of the dose before any change, comorbid anxiety, first onset episode) were significantly associated with the likelihood of IAD change in the unadjusted analysis. The factors statistically associated with higher hazard of IAD change in the adjusted analysis were: younger age, un-optimization of the IAD dose before any change, and comorbid anxiety. Because almost half of the patients in this study changed their IAD as early as within the first month, efforts to avoid treatment failure are needed to ensure patient-treatment targets are met. The findings of this study can have direct clinical guidance for health care professionals since an optimized, evidence-based use of AD medication can improve the clinical outcomes of patients with MDD; and also, to identify high-risk factors that could worsen the survival time on IAD such as young age and comorbid anxietyKeywords: initial antidepressant, dose optimization, major depressive disorder, comorbid anxiety, combination, augmentation, switching, premature discontinuation
Procedia PDF Downloads 151