Search results for: energy in buildings
Aerodynamic Analysis of the Airfoil of a VAWT by Using 2D CFD Modelling
Authors: Luis F. Garcia, Julian E. Jaramillo, Jorge L. Chacón
Abstract:
Colombia is a country where the benefits of wind power industry are barely used because of the geography in some areas does not allow the implementation of onshore horizontal axis wind turbines. Furthermore, exist rural areas without access to the electrical grid. Therefore, there is currently a deficit of energy supply in some towns. This research took place in one of those areas (i.e. Chicamocha Canyon-Santander) where the answer to the energy supply problems could be the use of vertical axis wind turbines, which can be used for turbulent flows. Hence, one task of this research is the analysis of the wind resources in the Chicamocha Canyon in order to implement the wind energy. The wind turbines must be designed in such a way that the blades take good advantage of the wind resources in the area of interest. Consequently, in the current research the analysis of two different airfoils (i.e. NACA0018 and DU 06-W-200) through a 2D CFD simulation is carried out by means of a free-software (OpenFOAM). Predicted results using the “Spalart-Allmaras” turbulence model are similar to the wind tunnel data published in the literature. Moreover, global parameters such as dimensionless lift and drag coefficients were calculated. Finally, this research encourages VAWT studies under wind turbulent flows in order to achieve the best use of natural resources in Colombia.Keywords: airfoil, wind turbine, turbulence modelling, Chicamocha, CFD
Procedia PDF Downloads 489Optimizing Resource Allocation and Indoor Location Using Bluetooth Low Energy
Authors: Néstor Álvarez-Díaz, Pino Caballero-Gil, Héctor Reboso-Morales, Francisco Martín-Fernández
Abstract:
The recent tendency of "Internet of Things" (IoT) has developed in the last years, causing the emergence of innovative communication methods among multiple devices. The appearance of Bluetooth Low Energy (BLE) has allowed a push to IoT in relation to smartphones. In this moment, a set of new applications related to several topics like entertainment and advertisement has begun to be developed but not much has been done till now to take advantage of the potential that these technologies can offer on many business areas and in everyday tasks. In the present work, the application of BLE technology and smartphones is proposed on some business areas related to the optimization of resource allocation in huge facilities like airports. An indoor location system has been developed through triangulation methods with the use of BLE beacons. The described system can be used to locate all employees inside the building in such a way that any task can be automatically assigned to a group of employees. It should be noted that this system cannot only be used to link needs with employees according to distances, but it also takes into account other factors like occupation level or category. In addition, it has been endowed with a security system to manage business and personnel sensitive data. The efficiency of communications is another essential characteristic that has been taken into account in this work.Keywords: bluetooth low energy, indoor location, resource assignment, smartphones
Procedia PDF Downloads 397Regenerating Habitats. A Housing Based on Modular Wooden Systems
Authors: Rui Pedro de Sousa Guimarães Ferreira, Carlos Alberto Maia Domínguez
Abstract:
Despite the ambitions to achieve climate neutrality by 2050, to fulfill the Paris Agreement's goals, the building and construction sector remains one of the most resource-intensive and greenhouse gas-emitting industries in the world, accounting for 40% of worldwide CO ₂ emissions. Over the past few decades, globalization and population growth have led to an exponential rise in demand in the housing market and, by extension, in the building industry. Considering this housing crisis, it is obvious that we will not stop building in the near future. However, the transition, which has already started, is challenging and complex because it calls for the worldwide participation of numerous organizations in altering how building systems, which have been a part of our everyday existence for over a century, are used. Wood is one of the alternatives that is most frequently used nowadays (under responsible forestry conditions) because of its physical qualities and, most importantly, because it produces fewer carbon emissions during manufacturing than steel or concrete. Furthermore, as wood retains its capacity to store CO ₂ after application and throughout the life of the building, working as a natural carbon filter, it helps to reduce greenhouse gas emissions. After a century-long focus on other materials, in the last few decades, technological advancements have made it possible to innovate systems centered around the use of wood. However, there are still some questions that require further exploration. It is necessary to standardize production and manufacturing processes based on prefabrication and modularization principles to achieve greater precision and optimization of the solutions, decreasing building time, prices, and waste from raw materials. In addition, this approach will make it possible to develop new architectural solutions to solve the rigidity and irreversibility of buildings, two of the most important issues facing housing today. Most current models are still created as inflexible, fixed, monofunctional structures that discourage any kind of regeneration, based on matrices that sustain the conventional family's traditional model and are founded on rigid, impenetrable compartmentalization. Adaptability and flexibility in housing are, and always have been, necessities and key components of architecture. People today need to constantly adapt to their surroundings and themselves because of the fast-paced, disposable, and quickly obsolescent nature of modern items. Migrations on a global scale, different kinds of co-housing, or even personal changes are some of the new questions that buildings have to answer. Designing with the reversibility of construction systems and materials in mind not only allows for the concept of "looping" in construction, with environmental advantages that enable the development of a circular economy in the sector but also unleashes multiple social benefits. In this sense, it is imperative to develop prefabricated and modular construction systems able to address the formalization of a reversible proposition that adjusts to the scale of time and its multiple reformulations, many of which are unpredictable. We must allow buildings to change, grow, or shrink over their lifetime, respecting their nature and, finally, the nature of the people living in them. It´s the ability to anticipate the unexpected, adapt to social factors, and take account of demographic shifts in society to stabilize communities, the foundation of real innovative sustainability.Keywords: modular, timber, flexibility, housing
Procedia PDF Downloads 87Advanced Energy Absorbers Used in Blast Resistant Systems
Authors: Martina Drdlová, Michal Frank, Radek Řídký, Jaroslav Buchar, Josef Krátký
Abstract:
The main aim of the presented experiments is to improve behaviour of sandwich structures under dynamic loading, such as crash or explosion. This paper describes experimental investigation on the response of new advanced materials to low and high velocity load. Blast wave energy absorbers were designed using two types of porous lightweight raw particle materials based on expanded glass and ceramics with dimensions of 0.5-1 mm, combined with polymeric binder. The effect of binder amount on the static and dynamic properties of designed materials was observed. Prism shaped specimens were prepared and loaded to obtain physico-mechanical parameters – bulk density, compressive and flexural strength under quasistatic load, the dynamic response was determined using Split Hopkinson Pressure bar apparatus. Numerical investigation of the material behaviour in sandwich structure was performed using implicit/explicit solver LS-Dyna. As the last step, the developed material was used as the interlayer of blast resistant litter bin, and it´s functionality was verified by real field blast tests.Keywords: blast energy absorber, SHPB, expanded glass, expanded ceramics
Procedia PDF Downloads 464Polymer Nanostructures Based Catalytic Materials for Energy and Environmental Applications
Authors: S. Ghosh, L. Ramos, A. N. Kouamé, A.-L. Teillout, H. Remita
Abstract:
Catalytic materials have attracted continuous attention due to their promising applications in a variety of energy and environmental applications including clean energy, energy conversion and storage, purification and separation, degradation of pollutants and electrochemical reactions etc. With the advanced synthetic technologies, polymer nanostructures and nanocomposites can be directly synthesized through soft template mediated approach using swollen hexagonal mesophases and modulate the size, morphology, and structure of polymer nanostructures. As an alternative to conventional catalytic materials, one-dimensional PDPB polymer nanostructures shows high photocatalytic activity under visible light for the degradation of pollutants. These photocatalysts are very stable with cycling. Transmission electron microscopy (TEM), and AFM-IR characterizations reveal that the morphology and structure of the polymer nanostructures do not change after photocatalysis. These stable and cheap polymer nanofibers and metal polymer nanocomposites are easy to process and can be reused without appreciable loss of activity. The polymer nanocomposites formed via one pot chemical redox reaction with 3.4 nm Pd nanoparticles on poly(diphenylbutadiyne) (PDPB) nanofibers (30 nm). The reduction of Pd (II) ions is accompanied by oxidative polymerization leading to composites materials. Hybrid Pd/PDPB nanocomposites used as electrode materials for the electrocatalytic oxidation of ethanol without using support of proton exchange Nafion membrane. Hence, these conducting polymer nanofibers and nanocomposites offer the perspective of developing a new generation of efficient photocatalysts for environmental protection and in electrocatalysis for fuel cell applications.Keywords: conducting polymer, swollen hexagonal mesophases, solar photocatalysis, electrocatalysis, water depollution
Procedia PDF Downloads 390Advancing Net Zero Showcase in Subtropical High-Rise Commercial Building
Authors: Melody Wong
Abstract:
Taikoo Green Ribbon is the winning scheme of International Advancing Net Zero ANZ Ideas Competition 2021 and shortlisted as a finalist of top Architectural Award “AJ100 Sustainability Initiative of the Year, 2022, demonstrating city's aspirations to reach carbon neutrality by 2050. The project showcases total design solutions to blend technology and nature to create a futuristic workplace achieving net zero within a decade. The net zero building design featured with extremely low embodied carbon emission (<250 kgCO2/sqm), significant surplus in renewable energy generation (130% of energy consumption) and various carbon capture technology. The project leverages aesthetics, user-experience, sustainability, and technology to develop over 40 design features. Utilizing AI-controlled Smart Envelope system, the possibility of naturally ventilation was maximized to adjust the microclimate to foster behavourial change. The design principle – healthy and collaborative working environment is realized with a landscaped sky-track with kinetic energy pads, natural ventilated open space with edible plants across floors, and 500-seat open-space rooftop theatre to reshape and redefine the new generation of workplaces.Keywords: NetZero, zero carbon, green, sustainability
Procedia PDF Downloads 83Performances Analysis and Optimization of an Adsorption Solar Cooling System
Authors: Nadia Allouache
Abstract:
The use of solar energy in cooling systems is an interesting alternative to the increasing demand of energy in the world and more specifically in southern countries where the needs of refrigeration and air conditioning are tremendous. This technique is even more attractive with regards to environmental issues. This study focuses on performances analysis and optimization of solar reactor of an adsorption cooling machine working with activated carbon-methanol pair. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The results show the poor heat conduction inside the porous medium and the resistance between the metallic wall and the bed engender the important temperature gradient and a great difference between the metallic wall and the bed temperature; this is considered as the essential causes decreasing the performances of the machine. For fixed conditions of functioning, the total desorbed mass presents a maximum for an optimal value of the height of the adsorber; this implies the existence of an optimal dimensioning of the adsorber.Keywords: solar cooling system, performances Analysis, optimization, heat and mass transfer, activated carbon-methanol pair, numerical modeling
Procedia PDF Downloads 442Quality Assurance Comparison of Map Check 2, Epid, and Gafchromic® EBT3 Film for IMRT Treatment Planning
Authors: Khalid Iqbal, Saima Altaf, M. Akram, Muhammad Abdur Rafaye, Saeed Ahmad Buzdar
Abstract:
Objective: Verification of patient-specific intensity modulated radiation therapy (IMRT) plans using different 2-D detectors has become increasingly popular due to their ease of use and immediate readout of the results. The purpose of this study was to test and compare various 2-D detectors for dosimetric quality assurance (QA) of intensity-modulated radiotherapy (IMRT) with the vision to find alternative QA methods. Material and Methods: Twenty IMRT patients (12 of brain and 8 of the prostate) were planned on Eclipse treatment planning system using Varian Clinac DHX on both energies 6MV and 15MV. Verification plans of all such patients were also made and delivered to Map check2, EPID (Electronic portal imaging device) and Gafchromic EBT3. Gamma index analyses were performed using different criteria to evaluate and compare the dosimetric results. Results: Statistical analysis shows the passing rate of 99.55%, 97.23% and 92.9% for 6MV and 99.53%, 98.3% and 94.85% for 15 MV energy using a criteria of ±5% of 3mm, ±3% of 3mm and ±3% of 2mm respectively for brain, whereas using ±5% of 3mm and ±3% of 3mm gamma evaluation criteria, the passing rate is 94.55% and 90.45% for 6MV and 95.25%9 and 95% for 15 MV energy for the case of prostate using EBT3 film. Map check 2 results shows the passing rates of 98.17%, 97.68% and 86.78% for 6MV energy and 94.87%,97.46% and 88.31% for 15 MV energy respectively for brain using a criteria of ±5% of 3mm, ±3% of 3mm and ±3% of 2mm, whereas using ±5% of 3mm and ±3% of 3mm gamma evaluation criteria gives the passing rate of 97.7% and 96.4% for 6MV and 98.75%9 and 98.05% for 15 MV energy for the case of prostate. EPID 6 MV and gamma analysis shows the passing rate of 99.56%, 98.63% and 98.4% for the brain, 100% and 99.9% for prostate using the same criteria as for map check 2 and EBT 3 film. Conclusion: The results demonstrate excellent passing rates were obtained for all dosimeter when compared with the planar dose distributions for 6 MV IMRT fields as well as for 15 MV. EPID results are better than EBT3 films and map check 2 because it is likely that part of this difference is real, and part is due to manhandling and different treatment set up verification which contributes dose distribution difference. Overall all three dosimeter exhibits results within limits according to AAPM report.120.Keywords: gafchromic EBT3, radiochromic film dosimetry, IMRT verification, EPID
Procedia PDF Downloads 426Adaptive Nonlinear Control of a Variable Speed Horizontal Axis Wind Turbine: Controller for Optimal Power Capture
Authors: Rana M. Mostafa, Nouby M. Ghazaly, Ahmed S. Ali
Abstract:
This article introduces a solution for increasing the wind energy extracted from turbines to overcome the more electric power required. This objective provides a new science discipline; wind turbine control. This field depends on the development in power electronics to provide new control strategies for turbines. Those strategies should deal with all turbine operating modes. Here there are two control strategies developed for variable speed horizontal axis wind turbine for rated and over rated wind speed regions. These strategies will support wind energy validation, decrease manufacturing overhead cost. Here nonlinear adaptive method was used to design speed controllers to a scheme for ‘Aeolos50 kw’ wind turbine connected to permanent magnet generator via a gear box which was built on MATLAB/Simulink. These controllers apply maximum power point tracking concept to guarantee goal achievement. Procedures were carried to test both controllers efficiency. The results had been shown that the developed controllers are acceptable and this can be easily declared from simulation results.Keywords: adaptive method, pitch controller, wind energy, nonlinear control
Procedia PDF Downloads 246Approaches to Reduce the Complexity of Mathematical Models for the Operational Optimization of Large-Scale Virtual Power Plants in Public Energy Supply
Authors: Thomas Weber, Nina Strobel, Thomas Kohne, Eberhard Abele
Abstract:
In context of the energy transition in Germany, the importance of so-called virtual power plants in the energy supply continues to increase. The progressive dismantling of the large power plants and the ongoing construction of many new decentralized plants result in great potential for optimization through synergies between the individual plants. These potentials can be exploited by mathematical optimization algorithms to calculate the optimal application planning of decentralized power and heat generators and storage systems. This also includes linear or linear mixed integer optimization. In this paper, procedures for reducing the number of decision variables to be calculated are explained and validated. On the one hand, this includes combining n similar installation types into one aggregated unit. This aggregated unit is described by the same constraints and target function terms as a single plant. This reduces the number of decision variables per time step and the complexity of the problem to be solved by a factor of n. The exact operating mode of the individual plants can then be calculated in a second optimization in such a way that the output of the individual plants corresponds to the calculated output of the aggregated unit. Another way to reduce the number of decision variables in an optimization problem is to reduce the number of time steps to be calculated. This is useful if a high temporal resolution is not necessary for all time steps. For example, the volatility or the forecast quality of environmental parameters may justify a high or low temporal resolution of the optimization. Both approaches are examined for the resulting calculation time as well as for optimality. Several optimization models for virtual power plants (combined heat and power plants, heat storage, power storage, gas turbine) with different numbers of plants are used as a reference for the investigation of both processes with regard to calculation duration and optimality.Keywords: CHP, Energy 4.0, energy storage, MILP, optimization, virtual power plant
Procedia PDF Downloads 183Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals
Authors: C. C .D. Kulathilake, M. Jayatilake, T. Takahashi
Abstract:
The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions.Keywords: autoradiographs, fatty acid, radiopharmaceuticals, sugar
Procedia PDF Downloads 454Hydrological Response of the Glacierised Catchment: Himalayan Perspective
Authors: Sonu Khanal, Mandira Shrestha
Abstract:
Snow and Glaciers are the largest dependable reserved sources of water for the river system originating from the Himalayas so an accurate estimate of the volume of water contained in the snowpack and the rate of release of water from snow and glaciers are, therefore, needed for efficient management of the water resources. This research assess the fusion of energy exchanges between the snowpack, air above and soil below according to mass and energy balance which makes it apposite than the models using simple temperature index for the snow and glacier melt computation. UEBGrid a Distributed energy based model is used to calculate the melt which is then routed by Geo-SFM. The model robustness is maintained by incorporating the albedo generated from the Landsat-7 ETM images on a seasonal basis for the year 2002-2003 and substrate map derived from TM. The Substrate file includes predominantly the 4 major thematic layers viz Snow, clean ice, Glaciers and Barren land. This approach makes use of CPC RFE-2 and MERRA gridded data sets as the source of precipitation and climatic variables. The subsequent model run for the year between 2002-2008 shows a total annual melt of 17.15 meter is generate from the Marshyangdi Basin of which 71% is contributed by the glaciers , 18% by the rain and rest being from the snow melt. The albedo file is decisive in governing the melt dynamics as 30% increase in the generated surface albedo results in the 10% decrease in the simulated discharge. The melt routed with the land cover and soil variables using Geo-SFM shows Nash-Sutcliffe Efficiency of 0.60 with observed discharge for the study period.Keywords: Glacier, Glacier melt, Snowmelt, Energy balance
Procedia PDF Downloads 458Theoretical Investigations and Simulation of Electromagnetic Ion Cyclotron Waves in the Earth’s Magnetosphere Through Magnetospheric Multiscale Mission
Authors: A. A. Abid
Abstract:
Wave-particle interactions are considered to be the paramount in the transmission of energy in collisionless space plasmas, where electromagnetic fields confined the charged particles movement. One of the distinct features of energy transfer in collisionless plasma is wave-particle interaction which is ubiquitous in space plasmas. The three essential populations of the inner magnetosphere are cold plasmaspheric plasmas, ring-currents, and radiation belts high energy particles. The transition region amid such populations initiates wave-particle interactions among distinct plasmas and the wave mode perceived in the magnetosphere is the electromagnetic ion cyclotron (EMIC) wave. These waves can interact with numerous particle species resonantly, accompanied by plasma particle heating is still in debate. In this work we paid particular attention to how EMIC waves impact plasma species, specifically how they affect the heating of electrons and ions during storm and substorm in the Magnetosphere. Using Magnetospheric Multiscale (MMS) mission and electromagnetic hybrid simulation, this project will investigate the energy transfer mechanism (e.g., Landau interactions, bounce resonance interaction, cyclotron resonance interaction, etc.) between EMIC waves and cold-warm plasma populations. Other features such as the production of EMIC waves and the importance of cold plasma particles in EMIC wave-particle interactions will also be worth exploring. Wave particle interactions, electromagnetic hybrid simulation, electromagnetic ion cyclotron (EMIC) waves, Magnetospheric Multiscale (MMS) mission, space plasmas, inner magnetosphereKeywords: MMS, magnetosphere, wave particle interraction, non-maxwellian distribution
Procedia PDF Downloads 67Experimental and Computational Fluid Dynamics Analysis of Horizontal Axis Wind Turbine
Authors: Saim Iftikhar Awan, Farhan Ali
Abstract:
Wind power has now become one of the most important resources of renewable energy. The machine which extracts kinetic energy from wind is wind turbine. This work is all about the electrical power analysis of horizontal axis wind turbine to check the efficiency of different configurations of wind turbines to get maximum output and comparison of experimental and Computational Fluid Dynamics (CFD) results. Different experiments have been performed to obtain that configuration with the help of which we can get the maximum electrical power output by changing the different parameters like the number of blades, blade shape, wind speed, etc. in first step experimentation is done, and then the similar configuration is designed in 3D CAD software. After a series of experiments, it has been found that the turbine with four blades at an angle of 75° gives maximum power output and increase in wind speed increases the power output. The models designed on CAD software are imported on ANSYS-FLUENT to predict mechanical power. This mechanical power is then converted into electrical power, and the results were approximately the same in both cases. In the end, a comparison has been done to compare the results of experiments and ANSYS-FLUENT.Keywords: computational analysis, power efficiency, wind energy, wind turbine
Procedia PDF Downloads 166Simulation Model for Optimizing Energy in Supply Chain Management
Authors: Nazli Akhlaghinia, Ali Rajabzadeh Ghatari
Abstract:
In today's world, with increasing environmental awareness, firms are facing severe pressure from various stakeholders, including the government and customers, to reduce their harmful effects on the environment. Over the past few decades, the increasing effects of global warming, climate change, waste, and air pollution have increased the global attention of experts to the issue of the green supply chain and led them to the optimal solution for greenery. Green supply chain management (GSCM) plays an important role in motivating the sustainability of the organization. With increasing environmental concerns, the main objective of the research is to use system thinking methodology and Vensim software for designing a dynamic system model for green supply chain and observing behaviors. Using this methodology, we look for the effects of a green supply chain structure on the behavioral dynamics of output variables. We try to simulate the complexity of GSCM in a period of 30 months and observe the complexity of behaviors of variables including sustainability, providing green products, and reducing energy consumption, and consequently reducing sample pollution.Keywords: supply chain management, green supply chain management, system dynamics, energy consumption
Procedia PDF Downloads 142X-Ray Diffraction, Microstructure, and Mössbauer Studies of Nanostructured Materials Obtained by High-Energy Ball Milling
Authors: N. Boudinar, A. Djekoun, A. Otmani, B. Bouzabata, J. M. Greneche
Abstract:
High-energy ball milling is a solid-state powder processing technique that allows synthesizing a variety of equilibrium and non-equilibrium alloy phases starting from elemental powders. The advantage of this process technology is that the powder can be produced in large quantities and the processing parameters can be easily controlled, thus it is a suitable method for commercial applications. It can also be used to produce amorphous and nanocrystalline materials in commercially relevant amounts and is also amenable to the production of a variety of alloy compositions. Mechanical alloying (high-energy ball milling) provides an inter-dispersion of elements through a repeated cold welding and fracture of free powder particles; the grain size decreases to nano metric scale and the element mix together. Progressively, the concentration gradients disappear and eventually the elements are mixed at the atomic scale. The end products depend on many parameters such as the milling conditions and the thermodynamic properties of the milled system. Here, the mechanical alloying technique has been used to prepare nano crystalline Fe_50 and Fe_64 wt.% Ni alloys from powder mixtures. Scanning electron microscopy (SEM) with energy-dispersive, X-ray analyses and Mössbauer spectroscopy were used to study the mixing at nanometric scale. The Mössbauer Spectroscopy confirmed the ferromagnetic ordering and was use to calculate the distribution of hyperfin field. The Mössbauer spectrum for both alloys shows the existence of a ferromagnetic phase attributed to γ-Fe-Ni solid solution.Keywords: nanocrystalline, mechanical alloying, X-ray diffraction, Mössbauer spectroscopy, phase transformations
Procedia PDF Downloads 439Evaluation of Easy-to-Use Energy Building Design Tools for Solar Access Analysis in Urban Contexts: Comparison of Friendly Simulation Design Tools for Architectural Practice in the Early Design Stage
Abstract:
Current building sector is focused on reduction of energy requirements, on renewable energy generation and on regeneration of existing urban areas. These targets need to be solved with a systemic approach, considering several aspects simultaneously such as climate conditions, lighting conditions, solar radiation, PV potential, etc. The solar access analysis is an already known method to analyze the solar potentials, but in current years, simulation tools have provided more effective opportunities to perform this type of analysis, in particular in the early design stage. Nowadays, the study of the solar access is related to the easiness of the use of simulation tools, in rapid and easy way, during the design process. This study presents a comparison of three simulation tools, from the point of view of the user, with the aim to highlight differences in the easy-to-use of these tools. Using a real urban context as case study, three tools; Ecotect, Townscope and Heliodon, are tested, performing models and simulations and examining the capabilities and output results of solar access analysis. The evaluation of the ease-to-use of these tools is based on some detected parameters and features, such as the types of simulation, requirements of input data, types of results, etc. As a result, a framework is provided in which features and capabilities of each tool are shown. This framework shows the differences among these tools about functions, features and capabilities. The aim of this study is to support users and to improve the integration of simulation tools for solar access with the design process.Keywords: energy building design tools, solar access analysis, solar potential, urban planning
Procedia PDF Downloads 344Optimizing Water Consumption of a Washer-Dryer Which Contains Water Condensation Technology under a Constraint of Energy Consumption and Drying Performance
Authors: Aysegul Sarac
Abstract:
Washer-dryers are the machines which can either wash the laundries or can dry them. In other words, we can define a washer-dryer as a washing machine and a dryer in one machine. Washing machines are characterized by the loading capacity, cabinet depth and spin speed. Dryers are characterized by the drying technology. On the other hand, energy efficiency, water consumption, and noise levels are main characteristics that influence customer decisions to buy washers. Water condensation technology is the most common drying technology existing in the washer-dryer market. Water condensation technology uses water to dry the laundry inside the machine. Thus, in this type of the drying technology water consumption is at high levels comparing other technologies. Water condensation technology sprays cold water in the drum to condense the humidity of hot weather in order to dry the laundry inside. Thus, water consumption influences the drying performance. The scope of this study is to optimize water consumption during drying process under a constraint of energy consumption and drying performance. We are using 6-Sigma methodology to find the optimum water consumption by comparing drying performances of different drying algorithms.Keywords: optimization, 6-Sigma methodology, washer-dryers, water condensation technology
Procedia PDF Downloads 364Significance of Architectural Conservation Today, For a Better Tomorrow
Authors: Sneha Manjunath
Abstract:
Architecture is a continuous process of evolution that keeps changing and evolving through time and gives rise to various design solutions based on the purpose of change and the present function of the space. This evolution in design has been happening for a long time and hence a variety of climate-responsive, context-responsive and human-responsive developments in habitats are witnessed. India has been one of the hot spots for the conservation of heritage and architecture. Buildings ranging from Indus-valley civilization to modern contemporary dwellings have all evolved in one or the other way. Various historical sites such as Hampi in Karnataka, Taj Mahal in Agra and various temples in Southern India are identified and preserved under the Archeological Survey of India. The main objective of such preservation is to help in protecting, preserving and keeping it intact for the future. Study of such heritage-rich buildings and building techniques helps us in understanding the psychology, lifestyle and socio-cultural impacts it had on the complete urban fabric that developed in a region. It also gives an insight into the occupation, economic status and religious beliefs that gave rise to a pattern in an urban form that was more inclusive and appropriate as per the need of the users. Today’s generation draws various inspirations from history with respect to space planning, building services such as lighting, ventilation and sanitation systems and elevation treatments. It is important to know and understand the importance of certain urban planning techniques used to develop ancient towns or cities in a radial pattern, square pattern, or checkered pattern depending on the need of the administrative set-up of the respective town or city. It is believed that every element of design undergoes evolution and it is important for a designer to know, respect and develop the same for the future so as to acknowledge and conserve every aspect of heritage that has been a backbone in urban form generation even today. Hampi in the Karnataka state of India is a very good example of how the monuments and dwellings from 14th Century still stand strong. Temples from North India, such as Kedarnath Temple, survived heavy floods because of their building techniques. Such building materials and construction techniques are to be revived and reused for a better perspective towards space planning in urbanized cities.Keywords: architecture, urban form, heritage, town planning
Procedia PDF Downloads 118Using the Combination of Food Waste and Animal Waste as a Reliable Energy Source in Rural Guatemala
Authors: Jina Lee
Abstract:
Methane gas is a common byproduct in any process of rot and degradation of organic matter. This gas, when decomposition occurs, is emitted directly into the atmosphere. Methane is the simplest alkane hydrocarbon that exists. Its chemical formula is CH₄. This means that there are four atoms of hydrogen and one of carbon, which is linked by covalent bonds. Methane is found in nature in the form of gas at normal temperatures and pressures. In addition, it is colorless and odorless, despite being produced by the rot of plants. It is a non-toxic gas, and the only real danger is that of burns if it were to ignite. There are several ways to generate methane gas in homes, and the amount of methane gas generated by the decomposition of organic matter varies depending on the type of matter in question. An experiment was designed to measure the efficiency, such as a relationship between the amount of raw material and the amount of gas generated, of three different mixtures of organic matter: 1. food remains of home; 2. animal waste (excrement) 3. equal parts mixing of food debris and animal waste. The results allowed us to conclude which of the three mixtures is the one that grants the highest efficiency in methane gas generation and which would be the most suitable for methane gas generation systems for homes in order to occupy less space generating an equal amount of gas.Keywords: alternative energy source, energy conversion, methane gas conversion system, waste management
Procedia PDF Downloads 172Polypyrrole Integrated MnCo2O4 Nanorods Hybrid as Electrode Material for High Performance Supercapacitor
Authors: Santimoy Khilari, Debabrata Pradhan
Abstract:
Ever−increasing energy demand and growing energy crisis along with environmental issues emphasize the research on sustainable energy conversion and storage systems. Recently, supercapacitors or electrochemical capacitors emerge as a promising energy storage technology for future generation. The activity of supercapacitors generally depends on the efficiency of its electrode materials. So, the development of cost−effective efficient electrode materials for supercapacitors is one of the challenges to the scientific community. Transition metal oxides with spinel crystal structure receive much attention for different electrochemical applications in energy storage/conversion devices because of their improved performance as compared to simple oxides. In the present study, we have synthesized polypyrrole (PPy) supported manganese cobaltite nanorods (MnCo2O4 NRs) hybrid electrode material for supercapacitor application. The MnCo2O4 NRs were synthesized by a simple hydrothermal and calcination approach. The MnCo2O4 NRs/PPy hybrid was prepared by in situ impregnation of MnCo2O4 NRs during polymerization of pyrrole. The surface morphology and microstructure of as−synthesized samples was characterized by scanning electron microscopy and transmission electron microscopy, respectively. The crystallographic phase of MnCo2O4 NRs, PPy and hybrid was determined by X-ray diffraction. Electrochemical charge storage activity of MnCo2O4 NRs, PPy and MnCo2O4 NRs/PPy hybrid was evaluated from cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. Significant improvement of specific capacitance was achieved in MnCo2O4 NRs/PPy hybrid as compared to the individual components. Furthermore, the mechanically mixed MnCo2O4 NRs, and PPy shows lower specific capacitance as compared to MnCo2O4 NRs/PPy hybrid suggesting the importance of in situ hybrid preparation. The stability of as prepared electrode materials was tested by cyclic charge-discharge measurement for 1000 cycles. Maximum 94% capacitance was retained with MnCo2O4 NRs/PPy hybrid electrode. This study suggests that MnCo2O4 NRs/PPy hybrid can be used as a low cost electrode material for charge storage in supercapacitors.Keywords: supercapacitors, nanorods, spinel, MnCo2O4, polypyrrole
Procedia PDF Downloads 343Exploring the State of Leadership Effectiveness of Tertiary Institutions in Nigeria
Authors: Ojeka Alexandra
Abstract:
The study investigated the leadership effectiveness of leaders of tertiary institutions in Nigeria. The study sought to examine the leadership styles adopted, the leadership energy and effectiveness of the leaders of two tertiary institutions. The research was undertaken at two institutions, one Polytechnic and one University. The population of the study was the lecturers and the heads of departments of the two institutions. The leadership matrix and leadership effectiveness index questionnaires were employed to collect quantitative and qualitative data. The preferred and practiced styles were compared and contrasted to determine whether or not they were used to achieve goals and objectives of the lecturers and the organizations. The recommendations contribute towards the academic and professional development of the lecturers and their institutions.Keywords: leadership, leadership effectiveness, leadership energy, tertiary institutions, and leadership styles
Procedia PDF Downloads 292Influence of CA, SR and BA Substitution on lafeo3Performances During Chemical Looping Processes
Authors: Rong Sun, Laihong Shen
Abstract:
La-based perovskite oxygen carriers, especially the doped-La(M)FeO₃, showed excellent performances during chemical looping processes. However, the mechanisms of the undoped and doped La(M)FeO₃ are not clear at present, making the mechanisms clear may help the development of chemical looping technologies. In this paper, the method based on the density function theory (DFT) was used to analysis the influence of Ca, Sr, and Ba doping of La on the electronic structure, while the CO oxidation mechanisms on the surface of LaFeO₃ and Ca-doped LaFeO₃ oxygen carriers were also analyzed. The results showed that the band gap was decreased by the doping of low valence. While the doping of low valence element Ca, Sr, and Ba at La site simultaneously resulted to the moving of the valence band toward high energy and made the valence band cross the Fermi energy level. This was resulted from the holes generated by divalent ion substitution. The holes can change the total magnetization from antiferromagnet to weakly ferromagnetism. The calculation results about the formation of oxygen vacancy showed that substitutions of Ca, Sr, and Ba caused a large drop in oxygen vacancy formation energy, indicating that the bulk oxygen transport was improved. Based on the optimized bulk of the undoped and Ca-doped LaFeO₃(010) surface, the CO adsorption was analyzed. The results indicated that the adsorption energy increased by divalent ion substitution, meaning that the adsorption stability decreased. The results can provide a certain theoretical basis for the development of perovskite oxides in chemical looping technologies.Keywords: chemical looping technologies, lanthanum ferrate (LaFeO₃), divalent ion substitution, CO oxidation
Procedia PDF Downloads 107Experimental Analysis of Composite Timber-Concrete Beam with CFRP Reinforcement
Authors: O. Vlcek
Abstract:
The paper deals with current issues in research of advanced methods to increase reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with additional concrete slab in combination with externally bonded fibre - reinforced polymer. The paper describes experimental testing of composite timber-concrete beam with FRP reinforcement and compares results with FEM analysis.Keywords: timber-concrete composite, strengthening, fibre-reinforced polymer, experimental analysis
Procedia PDF Downloads 478Mathematical Modelling of a Low Tip Speed Ratio Wind Turbine for System Design Evaluation
Authors: Amir Jalalian-Khakshour, T. N. Croft
Abstract:
Vertical Axis Wind Turbine (VAWT) systems are becoming increasingly popular as they have a number of advantages over traditional wind turbines. The advantages are reliability, ease of transportation and manufacturing. These attributes could make these technologies useful in developing economies. The performance characteristics of a VAWT are different from a horizontal axis wind turbine, which can be attributed to the low tip speed ratio operation. To unlock the potential of these VAWT systems, the operational behaviour in a number of system topologies and environmental conditions needs to be understood. In this study, a non-linear dynamic simulation method was developed in Matlab and validated against in field data of a large scale, 8-meter rotor diameter prototype. This simulation method has been utilised to determine the performance characteristics of a number of control methods and system topologies. The motivation for this research was to develop a simulation method which accurately captures the operating behaviour and is computationally inexpensive. The model was used to evaluate the performance through parametric studies and optimisation techniques. The study gave useful insights into the applications and energy generation potential of this technology.Keywords: power generation, renewable energy, rotordynamics, wind energy
Procedia PDF Downloads 310Increased Circularity in Metals Production Using the Ausmelt TSL Process
Authors: Jacob Wood, David Wilson, Stephen Hughes
Abstract:
The Ausmelt Top Submerged Lance (TSL) Process has been widely applied for the processing of both primary and secondary copper, nickel, lead, tin, and zinc-bearing feed materials. Continual development and evolution of the technology over more than 30 years has resulted in a more intense smelting process with higher energy efficiency, improved metal recoveries, lower operating costs, and reduced fossil fuel consumption. This paper covers a number of recent advances to the technology, highlighting their positive impacts on smelter operating costs, environmental performance, and contribution towards increased circularity in metals production.Keywords: ausmelt TSL, smelting, circular economy, energy efficiency
Procedia PDF Downloads 249Design and Development of Wind Turbine Emulator to Operate with 1.5 kW Induction Generator
Authors: Himani Ratna Dahiya
Abstract:
This paper contributes to design a Wind Emulator coupled to 1.5 kW Induction generator for Wind Energy Conversion System. A wind turbine emulator (WTE) is important equipment for developing wind energy conversion systems. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators that is hard to achieve with an actual wind turbine since the wind speed varies randomly. In this paper a wind emulator is modeled and simulated using MATLAB. Verification of the simulation results is done by experimental setup using DC motor-Induction generator set, LABVIEW and data acquisition card.Keywords: Wind Turbine Emulator, LABVIEW, matlab, induction generator
Procedia PDF Downloads 595Thorium Resources of Georgia – Is It Its Future Energy ?
Authors: Avtandil Okrostsvaridze, Salome Gogoladze
Abstract:
In the light of exhaustion of hydrocarbon reserves of new energy resources, its search is of vital importance problem for the modern civilization. At the time of energy resource crisis, the radioactive element thorium (232Th) is considered as the main energy resource for the future of our civilization. Modern industry uses thorium in high-temperature and high-tech tools, but the most important property of thorium is that like uranium it can be used as fuel in nuclear reactors. However, thorium has a number of advantages compared to this element: Its concentration in the earth crust is 4-5 times higher than uranium; extraction and enrichment of thorium is much cheaper than of uranium; it is less radioactive; its waste products complete destruction is possible; thorium yields much more energy than uranium. Nowadays, developed countries, among them India and China, have started intensive work for creation of thorium nuclear reactors and intensive search for thorium reserves. It is not excluded that in the next 10 years these reactors will completely replace uranium reactors. Thorium ore mineralization is genetically related to alkaline-acidic magmatism. Thorium accumulations occur as in endogen marked as in exogenous conditions. Unfortunately, little is known about the reserves of this element in Georgia, as planned prospecting-exploration works of thorium have never been carried out here. Although, 3 ore occurrences of this element are detected: 1) In the Greater Caucasus Kakheti segment, in the hydrothermally altered rocks of the Lower Jurassic clay-shales, where thorium concentrations varied between 51 - 3882g/t; 2) In the eastern periphery of the Dzirula massif, in the hydrothermally alteration rocks of the cambrian quartz-diorite gneisses, where thorium concentrations varied between 117-266 g/t; 3) In active contact zone of the Eocene volcanites and syenitic intrusive in Vakijvari ore field of the Guria region, where thorium concentrations varied between 185 – 428 g/t. In addition, geological settings of the areas, where thorium occurrences were fixed, give a theoretical basis on possible accumulation of practical importance thorium ores. Besides, the Black Sea Guria region magnetite sand which is transported from Vakijvari ore field, should contain significant reserves of thorium. As the research shows, monazite (thorium containing mineral) is involved in magnetite in the form of the thinnest inclusions. The world class thorium deposit concentrations of this element vary within the limits of 50-200 g/t. Accordingly, on the basis of these data, thorium resources found in Georgia should be considered as perspective ore deposits. Generally, we consider that complex investigation of thorium should be included into the sphere of strategic interests of the state, because future energy of Georgia, will probably be thorium.Keywords: future energy, Georgia, ore field, thorium
Procedia PDF Downloads 496Thermal Instability in Solid under Irradiation
Authors: P. Selyshchev
Abstract:
Construction materials for nuclear facilities are operated under extreme thermal and radiation conditions. First of all, they are nuclear fuel, fuel assemblies, and reactor vessel. It places high demands on the control of their state, stability of their state, and their operating conditions. An irradiated material is a typical example of an open non-equilibrium system with nonlinear feedbacks between its elements. Fluxes of energy, matter and entropy maintain states which are far away from thermal equilibrium. The links that arise under irradiation are inherently nonlinear. They form the mechanisms of feed-backs that can lead to instability. Due to this instability the temperature of the sample, heat transfer, and the defect density can exceed the steady-state value in several times. This can lead to change of typical operation and an accident. Therefore, it is necessary to take into account the thermal instability to avoid the emergency situation. The point is that non-thermal energy can be accumulated in materials because irradiation produces defects (first of all these are vacancies and interstitial atoms), which are metastable. The stored energy is about energy of defect formation. Thus, an annealing of the defects is accompanied by releasing of non-thermal stored energy into thermal one. Temperature of the material grows. Increase of temperature results in acceleration of defect annealing. Density of the defects drops and temperature grows more and more quickly. The positive feed-back is formed and self-reinforcing annealing of radiation defects develops. To describe these phenomena a theoretical approach to thermal instability is developed via formalism of complex systems. We consider system of nonlinear differential equations for different components of microstructure and temperature. The qualitative analysis of this non-linear dynamical system is carried out. Conditions for development of instability have been obtained. Points of bifurcation have been found. Convenient way to represent obtained results is a set of phase portraits. It has been shown that different regimes of material state under irradiation can develop. Thus degradation of irradiated material can be limited by means of choice appropriate kind of evolution of materials under irradiation.Keywords: irradiation, material, non-equilibrium state, nonlinear feed-back, thermal instability
Procedia PDF Downloads 270Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion
Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin
Abstract:
This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection
Procedia PDF Downloads 482