Search results for: offline learning
4504 An Approach for Reliably Transforming Habits Towards Environmental Sustainability Behaviors Among Young Adults
Authors: Dike Felix Okechukwu
Abstract:
Studies and reports from authoritative sources such as the Intergovernmental Panel on Climate Change (IPCC) have stated that to effectively solve environmental sustainability challenges such as pollution, inappropriate waste disposal, and unsustainable consumption, there is a need for more research to seek solutions towards environmentally sustainable behavior. However, literature thus far reports only sporadic developments of TL in Environmental Sustainability because there are scarce reports showing the reliable process(es) to produce TL - for sustainability projects or otherwise. Nonetheless, a recently published article demonstrates how TL can be used to help young adults gain transformed mindsets and habits toward environmental sustainability behaviors and practices. This study, however, does not demonstrate, on a repeated basis, the dependability of the method or reliability of the procedures in using its proposed methodology to help young adults achieve transformed habits towards environmental sustainability behaviors, especially in diverse contexts. In this study, it is demonstrated, through repeated measures, a reliable process that can be used to achieve transformations in habits and mindsets toward environmental sustainability behaviors. To achieve this, the design adopted is multiple case studies and a thematic analysis techniques. Five cases in diverse contexts were used to analyze pieces of evidence of Transformative Learning Outcomes toward environmentally sustainable behaviors. Results from the study offer fresh perspectives on a reliable methodology that can be adopted to achieve Transformations in Habits and mindsets toward environmental sustainability behaviors.Keywords: environmental sustainability, transformative learning, behaviour, learning, education
Procedia PDF Downloads 974503 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles
Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil
Abstract:
The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing
Procedia PDF Downloads 1004502 The Development of a Supplementary Course in the Social Studies, Religion and Culture Learning Area in Support of ASEAN Community and for Use in the Northeastern Border Area of Thailand
Authors: Angkana Tungkasamit, Ladda Silanoi , Teerachai Nethanomsak, Sitthipon Art-in, Siribhong Bhiasiri
Abstract:
As the date for the commencement of the ASEAN Community in Year 2015 is approaching, it has become apparent to all that there is an urgent need to get Thai people ready to meet the challenge of entering into the Community confidently. Our research team has been organized by the Faculty of Education, Khon Kaen University with the task of training administrators and teachers of the schools along the borders with Laos People’s Democratic Republic and the Kingdom of Cambodia to be able to develop supplementary courses on ASEAN Community. The course to be developed is based on the essential elements of the Community, i.e. general backgrounds of the member countries, the education, social and economic life in the Community and social skills needed for a good citizen of the ASEAN Community. The study, based on learning outcome and learning management process as a basis for inquiry, was a research and development in nature using participative action research as a means to achieve the goal of helping school administrators and teachers to learn how to develop supplementary courses to be used in their schools. A post-workshop evaluation of the outcome was made and found that, besides the successfully completed supplementary course, the participants were satisfied with their participation in the workshop because they had participated in every step of the development activity, from the beginning to the end.Keywords: development of supplementary course, ASEAN community, social studies, northeastern border area of Thailand
Procedia PDF Downloads 3594501 Infrared Spectroscopy in Tandem with Machine Learning for Simultaneous Rapid Identification of Bacteria Isolated Directly from Patients' Urine Samples and Determination of Their Susceptibility to Antibiotics
Authors: Mahmoud Huleihel, George Abu-Aqil, Manal Suleiman, Klaris Riesenberg, Itshak Lapidot, Ahmad Salman
Abstract:
Urinary tract infections (UTIs) are considered to be the most common bacterial infections worldwide, which are caused mainly by Escherichia (E.) coli (about 80%). Klebsiella pneumoniae (about 10%) and Pseudomonas aeruginosa (about 6%). Although antibiotics are considered as the most effective treatment for bacterial infectious diseases, unfortunately, most of the bacteria already have developed resistance to the majority of the commonly available antibiotics. Therefore, it is crucial to identify the infecting bacteria and to determine its susceptibility to antibiotics for prescribing effective treatment. Classical methods are time consuming, require ~48 hours for determining bacterial susceptibility. Thus, it is highly urgent to develop a new method that can significantly reduce the time required for determining both infecting bacterium at the species level and diagnose its susceptibility to antibiotics. Fourier-Transform Infrared (FTIR) spectroscopy is well known as a sensitive and rapid method, which can detect minor molecular changes in bacterial genome associated with the development of resistance to antibiotics. The main goal of this study is to examine the potential of FTIR spectroscopy, in tandem with machine learning algorithms, to identify the infected bacteria at the species level and to determine E. coli susceptibility to different antibiotics directly from patients' urine in about 30minutes. For this goal, 1600 different E. coli isolates were isolated for different patients' urine sample, measured by FTIR, and analyzed using different machine learning algorithm like Random Forest, XGBoost, and CNN. We achieved 98% success in isolate level identification and 89% accuracy in susceptibility determination.Keywords: urinary tract infections (UTIs), E. coli, Klebsiella pneumonia, Pseudomonas aeruginosa, bacterial, susceptibility to antibiotics, infrared microscopy, machine learning
Procedia PDF Downloads 1734500 Kansei Engineering Applied to the Design of Rural Primary Education Classrooms: Design-Based Learning Case
Authors: Jimena Alarcon, Andrea Llorens, Gabriel Hernandez, Maritza Palma, Lucia Navarrete
Abstract:
The research has funding from the Government of Chile and is focused on defining the design of rural primary classroom that stimulates creativity. The relevance of the study consists of its capacity to define adequate educational spaces for the implementation of the design-based learning (DBL) methodology. This methodology promotes creativity and teamwork, generating a meaningful learning experience for students, based on the appreciation of their environment and the generation of projects that contribute positively to their communities; also, is an inquiry-based form of learning that is based on the integration of design thinking and the design process into the classroom. The main goal of the study is to define the design characteristics of rural primary school classrooms, associated with the implementation of the DBL methodology. Along with the change in learning strategies, it is necessary to change the educational spaces in which they develop. The hypothesis indicates that a change in the space and equipment of the classrooms based on the emotions of the students will motivate better learning results based on the implementation of a new methodology. In this case, the pedagogical dynamics require an important interaction between the participants, as well as an environment favorable to creativity. Methodologies from Kansei engineering are used to know the emotional variables associated with their definition. The study is done to 50 students between 6 and 10 years old (average age of seven years), 48% of men and 52% women. Virtual three-dimensional scale models and semantic differential tables are used. To define the semantic differential, self-applied surveys were carried out. Each survey consists of eight separate questions in two groups: question A to find desirable emotions; question B related to emotions. Both questions have a maximum of three alternatives to answer. Data were tabulated with IBM SPSS Statistics version 19. Terms referred to emotions are grouped into twenty concepts with a higher presence in surveys. To select the values obtained as part of the implementation of Semantic Differential, a number expected of 'chi-square test (x2)' frequency calculated for classroom space is considered lower limit. All terms over the N expected a cut point, are included to prepare tables for surveys to find a relation between emotion and space. Statistic contrast (Chi-Square) represents significance level ≥ 0, indicator that frequencies appeared are not random. Then, the most representative terms depend on the variable under study: a) definition of textures and color of vertical surfaces is associated with emotions such as tranquility, attention, concentration, creativity; and, b) distribution of the equipment of the rooms, with emotions associated with happiness, distraction, creativity, freedom. The main findings are linked to the generation of classrooms according to diverse DBL team dynamics. Kansei engineering is the appropriate methodology to know the emotions that students want to feel in the classroom space.Keywords: creativity, design-based learning, education spaces, emotions
Procedia PDF Downloads 1444499 Arabic Language in Modern Era: Some Challenges
Authors: Tajudeen Yusuf
Abstract:
Arabic language and its instruction occupy a prominent status in the contemporary world, especially in academic and research institutions. Arabic, like other international languages, consolidates understanding among people of different nations and societies. It is a promising medium of sharing thoughts and feelings. As a means of communication and interaction, the language has gained its outstanding status since ancient times, especially because of the relationship it maintains with Islam and its heritage. Adding to its importance is the rapid growth and advancement of Science and Technology in the contemporary Era which has eventually made communication between human societies all over the world inevitable. Despite, the Arabic language still experiences many challenges especially in some area such as irrelevant textbooks and other teaching materials, old versions of teaching methods and inadequate teachers who professionally trained. Eventually, these have resulted in difficulties in the teaching and learning of the language. Therefore, urgent and necessary measures to enhance the teaching and learning of Arabic language within and outside Arab countries are therefore needed to be taken.Keywords: Arabic, language, challenges, modern era
Procedia PDF Downloads 6014498 Collaborative Stylistic Group Project: A Drama Practical Analysis Application
Authors: Omnia F. Elkommos
Abstract:
In the course of teaching stylistics to undergraduate students of the Department of English Language and Literature, Faculty of Arts and Humanities, the linguistic tool kit of theories comes in handy and useful for the better understanding of the different literary genres: Poetry, drama, and short stories. In the present paper, a model of teaching of stylistics is compiled and suggested. It is a collaborative group project technique for use in the undergraduate diverse specialisms (Literature, Linguistics and Translation tracks) class. Students initially are introduced to the different linguistic tools and theories suitable for each literary genre. The second step is to apply these linguistic tools to texts. Students are required to watch videos performing the poems or play, for example, and search the net for interpretations of the texts by other authorities. They should be using a template (prepared by the researcher) that has guided questions leading students along in their analysis. Finally, a practical analysis would be written up using the practical analysis essay template (also prepared by the researcher). As per collaborative learning, all the steps include activities that are student-centered addressing differentiation and considering their three different specialisms. In the process of selecting the proper tools, the actual application and analysis discussion, students are given tasks that request their collaboration. They also work in small groups and the groups collaborate in seminars and group discussions. At the end of the course/module, students present their work also collaboratively and reflect and comment on their learning experience. The module/course uses a drama play that lends itself to the task: ‘The Bond’ by Amy Lowell and Robert Frost. The project results in an interpretation of its theme, characterization and plot. The linguistic tools are drawn from pragmatics, and discourse analysis among others.Keywords: applied linguistic theories, collaborative learning, cooperative principle, discourse analysis, drama analysis, group project, online acting performance, pragmatics, speech act theory, stylistics, technology enhanced learning
Procedia PDF Downloads 1894497 A Review on Intelligent Systems for Geoscience
Authors: R Palson Kennedy, P.Kiran Sai
Abstract:
This article introduces machine learning (ML) researchers to the hurdles that geoscience problems present, as well as the opportunities for improvement in both ML and geosciences. This article presents a review from the data life cycle perspective to meet that need. Numerous facets of geosciences present unique difficulties for the study of intelligent systems. Geosciences data is notoriously difficult to analyze since it is frequently unpredictable, intermittent, sparse, multi-resolution, and multi-scale. The first half addresses data science’s essential concepts and theoretical underpinnings, while the second section contains key themes and sharing experiences from current publications focused on each stage of the data life cycle. Finally, themes such as open science, smart data, and team science are considered.Keywords: Data science, intelligent system, machine learning, big data, data life cycle, recent development, geo science
Procedia PDF Downloads 1394496 Deep Reinforcement Learning for Advanced Pressure Management in Water Distribution Networks
Authors: Ahmed Negm, George Aggidis, Xiandong Ma
Abstract:
With the diverse nature of urban cities, customer demand patterns, landscape topologies or even seasonal weather trends; managing our water distribution networks (WDNs) has proved a complex task. These unpredictable circumstances manifest as pipe failures, intermittent supply and burst events thus adding to water loss, energy waste and increased carbon emissions. Whilst these events are unavoidable, advanced pressure management has proved an effective tool to control and mitigate them. Henceforth, water utilities have struggled with developing a real-time control method that is resilient when confronting the challenges of water distribution. In this paper we use deep reinforcement learning (DRL) algorithms as a novel pressure control strategy to minimise pressure violations and leakage under both burst and background leakage conditions. Agents based on asynchronous actor critic (A2C) and recurrent proximal policy optimisation (Recurrent PPO) were trained and compared to benchmarked optimisation algorithms (differential evolution, particle swarm optimisation. A2C manages to minimise leakage by 32.48% under burst conditions and 67.17% under background conditions which was the highest performance in the DRL algorithms. A2C and Recurrent PPO performed well in comparison to the benchmarks with higher processing speed and lower computational effort.Keywords: deep reinforcement learning, pressure management, water distribution networks, leakage management
Procedia PDF Downloads 974495 Implementation of Real-World Learning Experiences in Teaching Courses of Medical Microbiology and Dietetics for Health Science Students
Authors: Miriam I. Jimenez-Perez, Mariana C. Orellana-Haro, Carolina Guzman-Brambila
Abstract:
As part of microbiology and dietetics courses, students of medicine and nutrition analyze the main pathogenic microorganisms and perform dietary analyzes. The course of microbiology describes in a general way the main pathogens including bacteria, viruses, fungi, and parasites, as well as their interaction with the human species. We hypothesize that lack of practical application of the course causes the students not to find the value and the clinical application of it when in reality it is a matter of great importance for healthcare in our country. The courses of the medical microbiology and dietetics are mostly theoretical and only a few hours of laboratory practices. Therefore, it is necessary the incorporation of new innovative techniques that involve more practices and community fieldwork, real cases analysis and real-life situations. The purpose of this intervention was to incorporate real-world learning experiences in the instruction of medical microbiology and dietetics courses, in order to improve the learning process, understanding and the application in the field. During a period of 6 months, medicine and nutrition students worked in a community of urban poverty. We worked with 90 children between 4 and 6 years of age from low-income families with no access to medical services, to give an infectious diagnosis related to nutritional status in these children. We expect that this intervention would give a different kind of context to medical microbiology and dietetics students improving their learning process, applying their knowledge and laboratory practices to help a needed community. First, students learned basic skills in microbiology diagnosis test during laboratory sessions. Once, students acquired abilities to make biochemical probes and handle biological samples, they went to the community and took stool samples from children (with the corresponding informed consent). Students processed the samples in the laboratory, searching for enteropathogenic microorganism with RapID™ ONE system (Thermo Scientific™) and parasites using Willis and Malloy modified technique. Finally, they compared the results with the nutritional status of the children, previously measured by anthropometric indicators. The anthropometric results were interpreted by the OMS Anthro software (WHO, 2011). The microbiological result was interpreted by ERIC® Electronic RapID™ Code Compendium software and validated by a physician. The results were analyses of infectious outcomes and nutritional status. Related to fieldwork community learning experiences, our students improved their knowledge in microbiology and were capable of applying this knowledge in a real-life situation. They found this kind of learning useful when they translate theory to a real-life situation. For most of our students, this is their first contact as health caregivers with real population, and this contact is very important to help them understand the reality of many people in Mexico. In conclusion, real-world or fieldwork learning experiences empower our students to have a real and better understanding of how they can apply their knowledge in microbiology and dietetics and help a much- needed population, this is the kind of reality that many people live in our country.Keywords: real-world learning experiences, medical microbiology, dietetics, nutritional status, infectious status.
Procedia PDF Downloads 1374494 Design and Evaluation of an Online Case-Based Library for Technology Integration in Teacher Education
Authors: Mustafa Tevfik Hebebci, Ismail Sahin, Sirin Kucuk, Ismail Celik, Ahmet Oguz Akturk
Abstract:
ADDIE is an instructional design model which has the five core elements: analyze, design, develop, implement, and evaluate. The ADDIE approach provides a systematic process for the analysis of instructional needs, the design and development of instructional programs and materials, implementation of a program, and the evaluation of the effectiveness of an instruction. The case-based study is an instructional design model that is a variant of project-oriented learning. Collecting and analyzing stories can be used in two primary ways -perform task analysis and as a learning support during instruction- by instructional designers. Besides, teachers use technology to develop students’ thinking, enriching the learning environment and providing permanent learning. The purpose of this paper is to introduce an interactive online case-study library website developed in a national project. The design goal of the website is to provide interactive, enhanced, case-based and online educational resource for educators through the purpose and within the scope of a national project. The ADDIE instructional design model was used in the development of the website for the interactive case-based library. This web-based library contains the navigation menus as the follows: “Homepage”, "Registration", "Branches", "Aim of The Research", "About TPACK", "National Project", "Contact Us", etc. This library is developed on a web-based platform, which is important in terms of manageability, accessibility, and updateability of data. Users are able to sort the displayed case-studies by their titles, dates, ratings, view counts, etc. In addition, they encouraged to rate and comment on the case-studies. The usability test is used and the expert opinion is taken for the evaluation of the website. This website is a tool to integrate technology in education. It is believed that this website will be beneficial for pre-service and in-service teachers in terms of their professional developments.Keywords: design, ADDIE, case based library, technology integration
Procedia PDF Downloads 4824493 Reinforcement Learning the Born Rule from Photon Detection
Authors: Rodrigo S. Piera, Jailson Sales Ara´ujo, Gabriela B. Lemos, Matthew B. Weiss, John B. DeBrota, Gabriel H. Aguilar, Jacques L. Pienaar
Abstract:
The Born rule was historically viewed as an independent axiom of quantum mechanics until Gleason derived it in 1957 by assuming the Hilbert space structure of quantum measurements [1]. In subsequent decades there have been diverse proposals to derive the Born rule starting from even more basic assumptions [2]. In this work, we demonstrate that a simple reinforcement-learning algorithm, having no pre-programmed assumptions about quantum theory, will nevertheless converge to a behaviour pattern that accords with the Born rule, when tasked with predicting the output of a quantum optical implementation of a symmetric informationally-complete measurement (SIC). Our findings support a hypothesis due to QBism (the subjective Bayesian approach to quantum theory), which states that the Born rule can be thought of as a normative rule for making decisions in a quantum world [3].Keywords: quantum Bayesianism, quantum theory, quantum information, quantum measurement
Procedia PDF Downloads 1144492 The Effectiveness of Using Nihongo Mantappu Channel on Youtube as an Effort to Succeed Sustainable Development Goals 2030 for Tenth Graders of Smam 10 GKB Gresik
Authors: Salsabila Meutia Meutia
Abstract:
Indonesia as one of the countries that agreed to SDG's must commit to achieve this SDG's goal until the deadline of 2030. The government has tried hard to realize all the goals in the SDG’s, but there is still something that has not been achieved, especially the goal in number 4 which is to ensure that every human being has a decent and inclusive education and encourages lifelong learning opportunities for everyone. Teenagers who are the golden generation for Indonesia are starting to feel dependent on Youtube. The addictive virus of teenagers about using YouTube is both good news and bad news for the sustainability of government programs in achieving goals in SDG’s, especially in term of education. One popular YouTube channel among high school teenagers is Nihongo Mantappu which has 1.8 million followers. This channel contains interesting but quality content that can have a positive influence for the audience. This research was conducted to determine the effectiveness of the Nihongo Mantappu channel on Youtube as a means of fostering enthusiasm and awareness of learning in tenth graders of SMA Muhammadiyah 10 GKB, as well as how it affected in achieving quality educational goals as an effort to succeed in the Sustainable Development Goals of 2030. The objectives of this study were carried out with distributing questionnaires to tenth graders of SMA Muhammadiyah 10 GKB and observing objects in the real life. Then the data obtained are analyzed and described properly so that this research is a descriptive study. The results of the study mentioned that YouTube as one of the websites for viewing and sharing videos is a very effective media for disseminating information, especially among teenagers. The Nihongo Mantappu channel is also considered to be a very effective channel in building enthusiasm and awareness of learning in tenth graders of SMA Muhammadiyah 10 GKB. Students as the main subject of education have a great influence on the achievement of one of SDG’s fourth goals, named quality education. Students who are always on fire in the spirit and awareness of learning will greatly help the achievement of quality education goals in the Sustainable Development Goals by 2030.Keywords: Youtube, Nihongo, Mantappu, SDG's
Procedia PDF Downloads 1394491 A Case-Based Reasoning-Decision Tree Hybrid System for Stock Selection
Authors: Yaojun Wang, Yaoqing Wang
Abstract:
Stock selection is an important decision-making problem. Many machine learning and data mining technologies are employed to build automatic stock-selection system. A profitable stock-selection system should consider the stock’s investment value and the market timing. In this paper, we present a hybrid system including both engage for stock selection. This system uses a case-based reasoning (CBR) model to execute the stock classification, uses a decision-tree model to help with market timing and stock selection. The experiments show that the performance of this hybrid system is better than that of other techniques regarding to the classification accuracy, the average return and the Sharpe ratio.Keywords: case-based reasoning, decision tree, stock selection, machine learning
Procedia PDF Downloads 4244490 Variations in Spatial Learning and Memory across Natural Populations of Zebrafish, Danio rerio
Authors: Tamal Roy, Anuradha Bhat
Abstract:
Cognitive abilities aid fishes in foraging, avoiding predators & locating mates. Factors like predation pressure & habitat complexity govern learning & memory in fishes. This study aims to compare spatial learning & memory across four natural populations of zebrafish. Zebrafish, a small cyprinid inhabits a diverse range of freshwater habitats & this makes it amenable to studies investigating role of native environment in spatial cognitive abilities. Four populations were collected across India from waterbodies with contrasting ecological conditions. Habitat complexity of the water-bodies was evaluated as a combination of channel substrate diversity and diversity of vegetation. Experiments were conducted on populations under controlled laboratory conditions. A square shaped spatial testing arena (maze) was constructed for testing the performance of adult zebrafish. The square tank consisted of an inner square shaped layer with the edges connected to the diagonal ends of the tank-walls by connections thereby forming four separate chambers. Each of the four chambers had a main door in the centre. Each chamber had three sections separated by two windows. A removable coloured window-pane (red, yellow, green or blue) identified each main door. A food reward associated with an artificial plant was always placed inside the left-hand section of the red-door chamber. The position of food-reward and plant within the red-door chamber was fixed. A test fish would have to explore the maze by taking turns and locate the food inside the right-side section of the red-door chamber. Fishes were sorted from each population stock and kept individually in separate containers for identification. At a time, a test fish was released into the arena and allowed 20 minutes to explore in order to find the food-reward. In this way, individual fishes were trained through the maze to locate the food reward for eight consecutive days. The position of red door, with the plant and the reward, was shuffled every day. Following training, an intermission of four days was given during which the fishes were not subjected to trials. Post-intermission, the fishes were re-tested on the 13th day following the same protocol for their ability to remember the learnt task. Exploratory tendencies and latency of individuals to explore on 1st day of training, performance time across trials, and number of mistakes made each day were recorded. Additionally, mechanism used by individuals to solve the maze each day was analyzed across populations. Fishes could be expected to use algorithm (sequence of turns) or associative cues in locating the food reward. Individuals of populations did not differ significantly in latencies and tendencies to explore. No relationship was found between exploration and learning across populations. High habitat-complexity populations had higher rates of learning & stronger memory while low habitat-complexity populations had lower rates of learning and much reduced abilities to remember. High habitat-complexity populations used associative cues more than algorithm for learning and remembering while low habitat-complexity populations used both equally. The study, therefore, helped understand the role of natural ecology in explaining variations in spatial learning abilities across populations.Keywords: algorithm, associative cue, habitat complexity, population, spatial learning
Procedia PDF Downloads 2914489 Inclusive Early Childhood Education and the Development of Children with Learning Disabilities in Ghana: Cultural-Historical Analysis
Authors: D. K. Kumador, E. A. Muthivhi
Abstract:
Historically, reforms in early childhood education in Ghana have focused narrowly on structural and pedagogical aspects with little attention paid to the broader sociocultural framework within which schooling and child development systems interact. This preliminary study investigates inclusive early childhood education within rapidly changing Ghanaian socio-cultural context, and its consequences for the development of children with learning disabilities. The study addresses an important topic, which is largely under-researched outside of Europe, North America, and Australasia. While inclusive education has been widely accepted globally at the level of policy, its implementation is uneven, as is shown in numerous studies across an array of countries and education systems. Despite this burgeoning area of research internationally, there have been far fewer studies conducted in African settings and fewer still that use cultural-historical activity theory as an investigative approach. More so, specific literature on the subject in the Ghanaian context is non-existent and, as such, coming to a deeper understanding of the sociocultural practices that shape, and possibly impede, inclusive early childhood education in an African country, Ghana, is a worthwhile research endeavour. Using cultural-historical activity theory as a methodological framework, this study employed classroom observations, and in-depth interviews and focus group discussions of preschool teachers in three kindergarten centres in the Greater Accra Region of Ghana to qualitatively explore inclusive early childhood education and the development of children with learning disabilities. The findings showed that literature from Ghana rarely discusses child informed consent as an on-going process that must be articulated throughout the research process from data collection to analysis, reporting and dissemination. Further, the study showed that the introduction and implementation of inclusive education framework – with its concomitant revisions in the curriculum, policies, and school rules, as well as enhanced community and parent involvement – into existing schooling practices, generated contradictions in inclusive teachers’ approaches to teaching and learning, and classroom management. Generally, contradictions in the understanding and acceptability of approaches to teaching and learning occur when a new way of doing things is incorporated into existing practices. These contradictions are thought to be a source of change and development. Thus, they guide teachers to unlearn outmoded practices, relearn or learn new approaches that are beneficial to the development of all children. Nonetheless, the findings of the current study showed that preschool teachers’ belief systems and perceptions of disabilities mediated the outcomes of such contradictions. Also, that was evidenced in the way they engaged children with learning disabilities compared to their typically developing counterparts, showing disregard for what was prescribed by new policies and school rules. The findings have implications for research with young children and the development outcomes of children with learning disabilities in inclusive early childhood education settings.Keywords: CHAT, classroom management, cultural-historical activity theory, ghana, inclusive early childhood education, schooling practices, young children with learning disabilities
Procedia PDF Downloads 1314488 Emerging Technologies in Distance Education
Authors: Eunice H. Li
Abstract:
This paper discusses and analyses a small portion of the literature that has been reviewed for research work in Distance Education (DE) pedagogies that I am currently undertaking. It begins by presenting a brief overview of Taylor's (2001) five-generation models of Distance Education. The focus of the discussion will be on the 5th generation, Intelligent Flexible Learning Model. For this generation, educational and other institutions make portal access and interactive multi-media (IMM) an integral part of their operations. The paper then takes a brief look at current trends in technologies – for example smart-watch wearable technology such as Apple Watch. The emergent trends in technologies carry many new features. These are compared to former DE generational features. Also compared is the time span that has elapsed between the generations that are referred to in Taylor's model. This paper is a work in progress. The paper therefore welcome new insights, comparisons and critique of the issues discussed.Keywords: distance education, e-learning technologies, pedagogy, generational models
Procedia PDF Downloads 4654487 Impressions of HyFlex in an Engineering Technology Program in an Undergraduate Urban Commuter Institution
Authors: Zory Marantz
Abstract:
Hybrid flexible (HyFlex) is a pedagogical methodology whereby an instructor delivers content in three modalities, i.e. live in-person (LIP), live online synchronous (LOS), and non-live online asynchronous (nLOaS). HyFlex is focused on providing the largest level of flexibility needed to achieve a cohesive environment across all modalities and incorporating four basic principles – learner’s choice, reusability, accessibility, and equivalency. Much literature has focused on the advantages of this methodology in providing students with the flexibility to choose their learning modality as best suits their schedules and learning styles. Initially geared toward graduate-level students, the concept has been applied to undergraduate studies, particularly during our national pedagogical response to the COVID19 pandemic. There is still little literature about the practicality and feasibility of HyFlex for hardware laboratory intensive engineering technology programs, particularly in dense, urban commuter institutions of higher learning. During a semester of engineering, a lab-based course was taught in the HyFlex modality, and students were asked to complete a survey about their experience. The data demonstrated that there is no single mode that is preferred by a majority of students and the usefulness of any modality is limited to how familiar the student and instructor are with the technology being applied. The technology is only as effective as our understanding and comfort with its functionality. For HyFlex to succeed in its implementation in an engineering technology environment within an urban commuter institution, faculty and students must be properly introduced to the technology being used.Keywords: education, HyFlex, technology, urban, commuter, pedagogy
Procedia PDF Downloads 994486 Multimodal Deep Learning for Human Activity Recognition
Authors: Ons Slimene, Aroua Taamallah, Maha Khemaja
Abstract:
In recent years, human activity recognition (HAR) has been a key area of research due to its diverse applications. It has garnered increasing attention in the field of computer vision. HAR plays an important role in people’s daily lives as it has the ability to learn advanced knowledge about human activities from data. In HAR, activities are usually represented by exploiting different types of sensors, such as embedded sensors or visual sensors. However, these sensors have limitations, such as local obstacles, image-related obstacles, sensor unreliability, and consumer concerns. Recently, several deep learning-based approaches have been proposed for HAR and these approaches are classified into two categories based on the type of data used: vision-based approaches and sensor-based approaches. This research paper highlights the importance of multimodal data fusion from skeleton data obtained from videos and data generated by embedded sensors using deep neural networks for achieving HAR. We propose a deep multimodal fusion network based on a twostream architecture. These two streams use the Convolutional Neural Network combined with the Bidirectional LSTM (CNN BILSTM) to process skeleton data and data generated by embedded sensors and the fusion at the feature level is considered. The proposed model was evaluated on a public OPPORTUNITY++ dataset and produced a accuracy of 96.77%.Keywords: human activity recognition, action recognition, sensors, vision, human-centric sensing, deep learning, context-awareness
Procedia PDF Downloads 1074485 The Impact of Animal-Assisted Learning on Emotional Wellbeing and Engagement with Reading
Authors: Jill Steel
Abstract:
Introduction: Animal-assisted learning (AAL) interventions are increasing exponentially, yet a paucity of quality research in the field exists. The aim of this study was to evaluate how the promotion of emotional wellbeing, through AAL, in this case, a dog, may support children’s engagement with reading in a Primary 1 classroom. Research indicates that dogs can provide emotional support to children; by forming a trusting attachment with a non-critical ‘friend’ who confers unconditional positive regard on the child, confidence may be boosted and anxiety reduced. By promoting emotional wellbeing through interactions with the dog, it is hoped that children begin to associate reading with feelings of wellbeing, which then results in increased engagement with reading. Methodology: A review of the literature was conducted. The relationship between emotional wellbeing and learning was explored, followed by an examination of the literature relating to Animal-Assisted Therapy and AAL. Scottish educational policy and legislation were analysed to establish the extent to which AAL might be suitable for the Scottish pedagogical context. An empirical study was conducted in a mainstream Primary 1 classroom over a four-week period. An inclusive approach was adopted whereby all children that wanted to interact with the dog were given the opportunity to do so, and all 25 children subsequently chose to participate. Children were not withdrawn from the classroom. Primary methods included interviews, observations, and questionnaires. Three focus children were selected for closer study. Main Results: Results were remarkably close to previous research and literature. Children’s emotional wellbeing was boosted, and engagement in reading improved. Principal Conclusions and Implications for Field: It was concluded that AAL could support emotional wellbeing and, in turn, promote children’s engagement with reading. The main limitation of the study was its short-term nature, and a longer randomised controlled trial with a larger sample, currently being undertaken by the author, would provide a fuller answer to the research question. Barriers to AAL include health and safety concerns and steps to ensure the welfare of the dog.Keywords: animal-assisted learning, emotional wellbeing, reading, reading to dogs
Procedia PDF Downloads 1334484 Predicting Response to Cognitive Behavioral Therapy for Psychosis Using Machine Learning and Functional Magnetic Resonance Imaging
Authors: Eva Tolmeijer, Emmanuelle Peters, Veena Kumari, Liam Mason
Abstract:
Cognitive behavioral therapy for psychosis (CBTp) is effective in many but not all patients, making it important to better understand the factors that determine treatment outcomes. To date, no studies have examined whether neuroimaging can make clinically useful predictions about who will respond to CBTp. To this end, we used machine learning methods that make predictions about symptom improvement at the individual patient level. Prior to receiving CBTp, 22 patients with a diagnosis of schizophrenia completed a social-affective processing task during functional MRI. Multivariate pattern analysis assessed whether treatment response could be predicted by brain activation responses to facial affect that was either socially threatening or prosocial. The resulting models did significantly predict symptom improvement, with distinct multivariate signatures predicting psychotic (r=0.54, p=0.01) and affective (r=0.32, p=0.05) symptoms. Psychotic symptom improvement was accurately predicted from relatively focal threat-related activation across hippocampal, occipital, and temporal regions; affective symptom improvement was predicted by a more dispersed profile of responses to prosocial affect. These findings enrich our understanding of the neurobiological underpinning of treatment response. This study provides a foundation that will hopefully lead to greater precision and tailoring of the interventions offered to patients.Keywords: cognitive behavioral therapy, machine learning, psychosis, schizophrenia
Procedia PDF Downloads 2754483 Seashore Debris Detection System Using Deep Learning and Histogram of Gradients-Extractor Based Instance Segmentation Model
Authors: Anshika Kankane, Dongshik Kang
Abstract:
Marine debris has a significant influence on coastal environments, damaging biodiversity, and causing loss and damage to marine and ocean sector. A functional cost-effective and automatic approach has been used to look up at this problem. Computer vision combined with a deep learning-based model is being proposed to identify and categorize marine debris of seven kinds on different beach locations of Japan. This research compares state-of-the-art deep learning models with a suggested model architecture that is utilized as a feature extractor for debris categorization. The model is being proposed to detect seven categories of litter using a manually constructed debris dataset, with the help of Mask R-CNN for instance segmentation and a shape matching network called HOGShape, which can then be cleaned on time by clean-up organizations using warning notifications of the system. The manually constructed dataset for this system is created by annotating the images taken by fixed KaKaXi camera using CVAT annotation tool with seven kinds of category labels. A pre-trained HOG feature extractor on LIBSVM is being used along with multiple templates matching on HOG maps of images and HOG maps of templates to improve the predicted masked images obtained via Mask R-CNN training. This system intends to timely alert the cleanup organizations with the warning notifications using live recorded beach debris data. The suggested network results in the improvement of misclassified debris masks of debris objects with different illuminations, shapes, viewpoints and litter with occlusions which have vague visibility.Keywords: computer vision, debris, deep learning, fixed live camera images, histogram of gradients feature extractor, instance segmentation, manually annotated dataset, multiple template matching
Procedia PDF Downloads 1104482 A Proposed Framework for Better Managing Small Group Projects on an Undergraduate Foundation Programme at an International University Campus
Authors: Sweta Rout-Hoolash
Abstract:
Each year, selected students from around 20 countries begin their degrees at Middlesex University with the International Foundation Program (IFP), developing the skills required for academic study at a UK university. The IFP runs for 30 learning/teaching weeks at Middlesex University Mauritius Branch Campus, which is an international campus of UK’s Middlesex University. Successful IFP students join their degree courses already settled into life at their chosen campus (London, Dubai, Mauritius or Malta) and confident that they understand what is required for degree study. Although part of the School of Science and Technology, in Mauritius it prepares students for undergraduate level across all Schools represented on campus – including disciplines such as Accounting, Business, Computing, Law, Media and Psychology. The researcher has critically reviewed the framework and resources in the curriculum for a particular six week period of IFP study (dedicated group work phase). Despite working together closely for 24 weeks, IFP students approach the final 6 week small group work project phase with mainly inhibitive feelings. It was observed that students did not engage effectively in the group work exercise. Additionally, groups who seemed to be working well did not necessarily produce results reflecting effective collaboration, nor individual members’ results which were better than prior efforts. The researcher identified scope for change and innovation in the IFP curriculum and how group work is introduced and facilitated. The study explores the challenges of groupwork in the context of the Mauritius campus, though it is clear that the implications of the project are not restricted to one campus only. The presentation offers a reflective review on the previous structure put in place for the management of small group assessed projects on the programme from both the student and tutor perspective. The focus of the research perspective is the student voice, by taking into consideration past and present IFP students’ experiences as written in their learning journals. Further, it proposes the introduction of a revised framework to help students take greater ownership of the group work process in order to engage more effectively with the learning outcomes of this crucial phase of the programme. The study has critically reviewed recent and seminal literature on how to achieve greater student ownership during this phase especially under an environment of assessed multicultural group work. The presentation proposes several new approaches for encouraging students to take more control of the collaboration process. Detailed consideration is given to how the proposed changes impact on the work of other stakeholders, or partners to student learning. Clear proposals are laid out for evaluation of the different approaches intended to be implemented during the upcoming academic year (student voice through their own submitted reflections, focus group interviews and through the assessment results). The proposals presented are all realistic and have the potential to transform students’ learning. Furthermore, the study has engaged with the UK Professional Standards Framework for teaching and supporting learning in higher education, and demonstrates practice at the level of ‘fellow’ of the Higher Education Academy (HEA).Keywords: collaborative peer learning, enhancing learning experiences, group work assessment, learning communities, multicultural diverse classrooms, studying abroad
Procedia PDF Downloads 3294481 Managing Configuration Management in Different Types of Organizations
Authors: Dilek Bilgiç
Abstract:
Configuration Management (CM) is a discipline assuring the consistency between product information the reality all along the product lifecycle. Although the extensive benefits of this discipline, such as the direct impact on increasing return on investment, reducing lifecycle costs, are realized by most organizations. It is worth evaluating that CM functions might be successfully implemented in some organized anarchies. This paper investigates how to manage ambiguity in CM processes as an opportunity within an environment that has different types of complexities and choice arenas. It is not explained how to establish a configuration management organization in a company; more specifically, it is analyzed how to apply configuration management processes when different types of streams exist. From planning to audit, all the CM functions may provide different organization learning opportunities when those applied with the right leadership methods.Keywords: configuration management, leadership, organizational analysis, organized anarchy, cm process, organizational learning, organizational maturity, configuration status accounting, leading innovation, change management
Procedia PDF Downloads 2154480 Case-Based Reasoning: A Hybrid Classification Model Improved with an Expert's Knowledge for High-Dimensional Problems
Authors: Bruno Trstenjak, Dzenana Donko
Abstract:
Data mining and classification of objects is the process of data analysis, using various machine learning techniques, which is used today in various fields of research. This paper presents a concept of hybrid classification model improved with the expert knowledge. The hybrid model in its algorithm has integrated several machine learning techniques (Information Gain, K-means, and Case-Based Reasoning) and the expert’s knowledge into one. The knowledge of experts is used to determine the importance of features. The paper presents the model algorithm and the results of the case study in which the emphasis was put on achieving the maximum classification accuracy without reducing the number of features.Keywords: case based reasoning, classification, expert's knowledge, hybrid model
Procedia PDF Downloads 3694479 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach
Authors: James Ladzekpo
Abstract:
Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.Keywords: diabetes, machine learning, prediction, biomarkers
Procedia PDF Downloads 604478 Early Childhood Education: Working with Children, Families, and Communities for Collective Impact
Authors: Sunico Armie Flores
Abstract:
Early childhood education (ECE) is pivotal in shaping the future of individuals and society. This paper explores the collaborative efforts required among educators, families, and communities to create a collective impact on young children’s development. It delves into the importance of these partnerships, effective strategies for engagement, and the challenges and opportunities inherent in fostering such collaboration. By examining current research and practices, the paper aims to highlight the essential role of an integrated approach in achieving significant and sustainable improvements in early childhood outcomes.Keywords: early childhood education, lifelong learning, cognitive development, socio-emotional development, educators, families, communities, collaborative efforts, collective impact, early learning environments, holistic development, high-quality ECE programs, investment in education
Procedia PDF Downloads 494477 Experimental Model for Instruction of Pre-Service Teachers in ICT Tools and E-Learning Environments
Authors: Rachel Baruch
Abstract:
This article describes the implementation of an experimental model for teaching ICT tools and digital environments in teachers training college. In most educational systems in the Western world, new programs were developed in order to bridge the digital gap between teachers and students. In spite of their achievements, these programs are limited due to several factors: The teachers in the schools implement new methods incorporating technological tools into the curriculum, but meanwhile the technology changes and advances. The interface of tools changes frequently, some tools disappear and new ones are invented. These conditions require an experimental model of training the pre-service teachers. The appropriate method for instruction within the domain of ICT tools should be based on exposing the learners to innovations, helping them to gain experience, teaching them how to deal with challenges and difficulties on their own, and training them. This study suggests some principles for this approach and describes step by step the implementation of this model.Keywords: ICT tools, e-learning, pre-service teachers, new model
Procedia PDF Downloads 4694476 Focusing on the Utilization of Information and Communication Technology for Improving Childrens’ Potentials in Science: Challenges for Sustainable Development in Nigeria
Authors: Osagiede Mercy Afe
Abstract:
After the internet explosion in the 90’s, Technology was immediately integrated into the school system. Technology which symbolizes advancement in human knowledge was seen as a setback by many educators many efforts have been made to help stem this erroneous believes and help educators realize the benefits of technology and ways of implementing it in the classrooms especially in the sciences. This advancement created a constantly expanding gap between the pupil’s perception on the use of technology within the learning atmosphere and the teacher’s perception and limitations hence the focus of this paper is on the need to refocus on the potentials of Science and Technology in enhancing children learning at school especially in science for sustainable development in Nigeria. The paper recommended measures for facilitating the sustenance of science and technology in Nigerian schools so as to enhance the potentials of our children in Science and Technology for a better tomorrow.Keywords: children, information communication technology (ICT), potentials, sustainable development, science education
Procedia PDF Downloads 4954475 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 283