Search results for: numerical%20validation
683 Efficacy of Erector Spinae Plane Block for Postoperative Pain Management in Coronary Artery Bypass Graft Patients
Authors: Santosh Sharma Parajuli, Diwas Manandhar
Abstract:
Background: Perioperative pain management plays an integral part in patients undergoing cardiac surgery. We studied the effect of Erector Spinae Plane block on acute postoperative pain reduction and 24 hours opioid consumption in adult cardiac surgical patients. Methods: Twenty-five adult cardiac surgical patients who underwent cardiac surgery with sternotomy in whom ESP catheters were placed preoperatively were kept in group E, and the other 25 patients who had undergone cardiac surgery without ESP catheter and pain management done with conventional opioid injection were placed in group C. Fentanyl was used for pain management. The primary study endpoint was to compare the consumption of fentanyl and to assess the numeric rating scale in the postoperative period in the first 24 hours in both groups. Results: The 24 hours fentanyl consumption was 43.00±51.29 micrograms in the Erector Spinae Plane catheter group and 147.00±60.94 micrograms in the control group postoperatively which was statistically significant (p <0.001). The numeric rating scale was also significantly reduced in the Erector Spinae Plane group compared to the control group in the first 24 hours postoperatively. Conclusion: Erector Spinae Plane block is superior to the conventional opioid injection method for postoperative pain management in CABG patients. Erector Spinae Plane block not only decreases the overall opioid consumption but also the NRS score in these patients.Keywords: erector, spinae, plane, numerical rating scale
Procedia PDF Downloads 71682 Propeller Performance Modeling through a Computational Fluid Dynamics Analysis Method
Authors: Maxime Alex Junior Kuitche, Ruxandra Mihaela Botez, Jean-Chirstophe Maunand
Abstract:
The evolution of aircraft is closely linked to the study and improvement of propulsion systems. Determining the propulsion performance is a real challenge in aircraft modeling and design. In addition to theoretical methodologies, experimental procedures are used to obtain a good estimation of the propulsion performances. For piston-propeller propulsion, the propeller needs several experimental tests which could be extremely demanding in terms of time and money. This paper presents a new procedure to estimate the performance of a propeller from a numerical approach using computational fluid dynamic analysis. The propeller was initially scanned, and then, its 3D model was represented using CATIA. A structured meshing and Shear Stress Transition k-ω turbulence model were applied to describe accurately the flow pattern around the propeller. Thus, the Partial Differential Equations were solved using ANSYS FLUENT software. The method was applied on the UAS-S45’s propeller designed and manufactured by Hydra Technologies in Mexico. An extensive investigation was performed for several flight conditions in terms of altitudes and airspeeds with the aim to determine thrust coefficients, power coefficients and efficiency of the propeller. The Computational Fluid Dynamics results were compared with experimental data acquired from wind tunnel tests performed at the LARCASE Price-Paidoussis wind tunnel. The results of this comparison have demonstrated that our approach was highly accurate.Keywords: CFD analysis, propeller performance, unmanned aerial system propeller, UAS-S45
Procedia PDF Downloads 357681 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 307680 Settlement Analysis of Back-To-Back Mechanically Stabilized Earth Walls
Authors: Akhila Palat, B. Umashankar
Abstract:
Back-to-back Mechanically Stabilized Earth (MSE) walls are cost-effective soil-retaining structures that can tolerate large settlements compared to conventional gravity retaining walls. They are also an economical way to meet everyday earth retention needs for highway and bridge grade separations, railroads, commercial and residential developments. But, existing design guidelines (FHWA/BS/ IS codes) do not provide a mechanistic approach for the design of back-to-back reinforced retaining walls. The settlement analysis of such structures is limited in the literature. A better understanding of the deformations of this wall system requires an analytical tool that incorporates the properties of backfill material, foundation soil, and geosynthetic reinforcement, and account for the soil–structure interactions in a realistic manner. This study was conducted to investigate the effect of reinforced back-to-back MSE walls on wall settlements and facing deformations. Back-to-back reinforced retaining walls were modeled and compared using commercially available finite difference package FLAC 2D. Parametric studies were carried out for various angles of shearing resistance of backfill material and foundation soil, and the axial stiffness of the reinforcement. A 6m-high wall was modeled, and the facing panels were taken as full-length panels with nominal thickness. Reinforcement was modeled as cable elements (two-dimensional structural elements). Interfaces were considered between soil and wall, and soil and reinforcement.Keywords: back-to-back walls, numerical modeling, reinforced wall, settlement
Procedia PDF Downloads 307679 Design and Analysis of a Lightweight Fire-Resistant Door
Authors: Zainab Fadil, Mouath Alawadhi, Abdullah Alhusainan, Fahad Alqadiri, Abdulaziz Alqadiri
Abstract:
This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire-resistance doors. Fire-rated doors specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers
Procedia PDF Downloads 92678 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model
Authors: Qijiao He
Abstract:
MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation
Procedia PDF Downloads 175677 Impact of the Electricity Market Prices during the COVID-19 Pandemic on Energy Storage Operation
Authors: Marin Mandić, Elis Sutlović, Tonći Modrić, Luka Stanić
Abstract:
With the restructuring and deregulation of the power system, storage owners, generation companies or private producers can offer their multiple services on various power markets and earn income in different types of markets, such as the day-ahead, real-time, ancillary services market, etc. During the COVID-19 pandemic, electricity prices, as well as ancillary services prices, increased significantly. The optimization of the energy storage operation was performed using a suitable model for simulating the operation of a pumped storage hydropower plant under market conditions. The objective function maximizes the income earned through energy arbitration, regulation-up, regulation-down and spinning reserve services. The optimization technique used for solving the objective function is mixed integer linear programming (MILP). In numerical examples, the pumped storage hydropower plant operation has been optimized considering the already achieved hourly electricity market prices from Nord Pool for the pre-pandemic (2019) and the pandemic (2020 and 2021) years. The impact of the electricity market prices during the COVID-19 pandemic on energy storage operation is shown through the analysis of income, operating hours, reserved capacity and consumed energy for each service. The results indicate the role of energy storage during a significant fluctuation in electricity and services prices.Keywords: electrical market prices, electricity market, energy storage optimization, mixed integer linear programming (MILP) optimization
Procedia PDF Downloads 179676 Woodcast Is Ecologically Sound and Tolerated by Majority of Patients
Authors: R. Hassan, J. Duncombe, E. Darke, A. Dias, K. Anderson, R. G. Middleton
Abstract:
Background: NHS England has set itself the task of delivering a “Net Zero” National Health service by 2040. It is incumbent upon all health care practioners to work towards this goal. Orthopaedic surgeons are no exception. Distal radial fractures are the most common fractures sustained by the adult population. However, studiesare shortcoming on individual patient experience. The aim of this study was to assess the patient’ssatisfaction and outcomes with woodcast used in the conservative management of distal radius fractures. Methods: For all patients managed with woodcast in our unit, we undertook a structured questionnairethat included the Patient Rated Wrist Evaluation (PRWE) score, The EQ-5D-5L score, and the pain numerical score at the time of injury and six weeks after. Results: 30 patients were initially managed with woodcast.80% of patients tolerated woodcast for the full duration of their treatment. Of these, 20% didn’t tolerate woodcast and had their casts removed within 48 hours. Of the remaining, 79.1% were satisfied about woodcast comfort, 66% were very satisfied about woodcast weight, 70% were satisfied with temperature and sweatiness, 62.5% were very satisfied about the smell/odour, and 75% were satisfied about the level of support woodcast provided. During their treatment, 83.3% of patients rated their pain as five or less. Conclusion: For those who completed their treatment in woodcast, none required any further intervention or utilised the open appointment because of ongoing wrist problems. In conclusion, when woodcast is tolerated, patients’ satisfaction and outcome levels were good. However, we acknowledged 20% of patients in our series were not able to tolerate woodacst, Therefore, we suggest a comparison between the widely used synthetic plaster of Pariscasting and woodcast to come in order.Keywords: distal radius fractures, ecological cast, sustainability, woodcast
Procedia PDF Downloads 86675 Designing and Prototyping Permanent Magnet Generators for Wind Energy
Authors: T. Asefi, J. Faiz, M. A. Khan
Abstract:
This paper introduces dual rotor axial flux machines with surface mounted and spoke type ferrite permanent magnets with concentrated windings; they are introduced as alternatives to a generator with surface mounted Nd-Fe-B magnets. The output power, voltage, speed and air gap clearance for all the generators are identical. The machine designs are optimized for minimum mass using a population-based algorithm, assuming the same efficiency as the Nd-Fe-B machine. A finite element analysis (FEA) is applied to predict the performance, emf, developed torque, cogging torque, no load losses, leakage flux and efficiency of both ferrite generators and that of the Nd-Fe-B generator. To minimize cogging torque, different rotor pole topologies and different pole arc to pole pitch ratios are investigated by means of 3D FEA. It was found that the surface mounted ferrite generator topology is unable to develop the nominal electromagnetic torque, and has higher torque ripple and is heavier than the spoke type machine. Furthermore, it was shown that the spoke type ferrite permanent magnet generator has favorable performance and could be an alternative to rare-earth permanent magnet generators, particularly in wind energy applications. Finally, the analytical and numerical results are verified using experimental results.Keywords: axial flux, permanent magnet generator, dual rotor, ferrite permanent magnet generator, finite element analysis, wind turbines, cogging torque, population-based algorithms
Procedia PDF Downloads 156674 Numerical and Simulation Analysis of Composite Friction Materials Using Single Plate Clutch Pad in Agricultural Tractors
Authors: Ravindra Raju, Vidhu Kampurath
Abstract:
For smooth transition of the power from the engine to the transmission system, a clutch is used. In agricultural tractors, friction clutches are widely used in power transmission applications. To transmit the maximum torque in friction clutches, selection of materials is one of the important tasks. The present used material for friction disc is Asbestos, Ceramic etc. In this study, analysis is performed using composites materials. The composite materials are considered due to their high strength to weight ratio. Composite materials like kevlar49, kevlar 29U were used in the study. The paper presents a systematic approach to optimize the structural and thermal characteristics of the clutch friction pad. A single plate clutch is modeled using Creo 2.0 software and analyzed using ANSYS. Thermal analysis considers the reduction of heat generated between the friction surfaces and reducing the temperature rise during the steady state period. Structural analysis is done to minimize the stresses developed as a result of the loading contact between friction surfaces. Also, modal analysis is done to optimize the natural frequency of the friction plate to avoid being in resonance with the engine frequency range. The analysis carried out on ANSYS workbench to get the foremost appropriate friction material for clutch. From the analyzed results stress, strain / total deformation values and natural frequency of the materials were compared for all the composite materials and the best one was taken out. For the study purpose, specifications of the clutch are obtained from the MF1035 (47KW) Tractor model.Keywords: ANSYS, clutch, composite materials, creo
Procedia PDF Downloads 304673 A Modified Refined Higher Order Zigzag Theory for Stress Analysis of Hybrid Composite Laminates
Authors: Dhiraj Biswas, Chaitali Ray
Abstract:
A modified refined higher order zigzag theory has been developed in this paper in order to compute the accurate interlaminar stresses within hybrid laminates. Warping has significant effect on the mechanical behaviour of the laminates. To the best of author(s)’ knowledge the stress analysis of hybrid laminates is not reported in the published literature. The present paper aims to develop a new C0 continuous element based on the refined higher order zigzag theories considering warping effect in the formulation of hybrid laminates. The eight noded isoparametric plate bending element is used for the flexural analysis of laminated composite plates to study the performance of the proposed model. The transverse shear stresses are computed by using the differential equations of stress equilibrium in a simplified manner. A computer code has been developed using MATLAB software package. Several numerical examples are solved to assess the performance of the present finite element model based on the proposed higher order zigzag theory by comparing the present results with three-dimensional elasticity solutions. The present formulation is validated by comparing the results obtained from the relevant literature. An extensive parametric study has been carried out on the hybrid laminates with varying percentage of materials and angle of orientation of fibre content.Keywords: hybrid laminate, Interlaminar stress, refined higher order zigzag theory, warping effect
Procedia PDF Downloads 225672 Shear Stress and Effective Structural Stress Fields of an Atherosclerotic Coronary Artery
Authors: Alireza Gholipour, Mergen H. Ghayesh, Anthony Zander, Stephen J. Nicholls, Peter J. Psaltis
Abstract:
A three-dimensional numerical model of an atherosclerotic coronary artery is developed for the determination of high-risk situation and hence heart attack prediction. Employing the finite element method (FEM) using ANSYS, fluid-structure interaction (FSI) model of the artery is constructed to determine the shear stress distribution as well as the von Mises stress field. A flexible model for an atherosclerotic coronary artery conveying pulsatile blood is developed incorporating three-dimensionality, artery’s tapered shape via a linear function for artery wall distribution, motion of the artery, blood viscosity via the non-Newtonian flow theory, blood pulsation via use of one-period heartbeat, hyperelasticity via the Mooney-Rivlin model, viscoelasticity via the Prony series shear relaxation scheme, and micro-calcification inside the plaque. The material properties used to relate the stress field to the strain field have been extracted from clinical data from previous in-vitro studies. The determined stress fields has potential to be used as a predictive tool for plaque rupture and dissection. The results show that stress concentration due to micro-calcification increases the von Mises stress significantly; chance of developing a crack inside the plaque increases. Moreover, the blood pulsation varies the stress distribution substantially for some cases.Keywords: atherosclerosis, fluid-structure interaction, coronary arteries, pulsatile flow
Procedia PDF Downloads 177671 Optimal Selling Prices for Small Sized Poultry Farmers
Authors: Hidefumi Kawakatsu, Dong Li, Kosuke Kato
Abstract:
In Japan, meat-type chickens are mainly classified into three categories: (1) Broilers, (2) Branded chickens, and (3) Jidori (Free-range local traditional pedigree chickens). The Jidori chickens are certified by the Japanese Ministry of Agriculture, whilst, for the Branded chickens, there is no regulation with respect to their breed (genotype) or methods for rearing them. It is, therefore, relatively easy for poultry farmers to introduce Branded than Jidori chickens. The Branded chickens are normally fed a low-calorie diet with ingredients such as herbs, which lengthens their breeding period (compared with that of the Broilers) and increases their market value. In the field of inventory management, fast-growing animals such as broilers are categorised as ameliorating items. To the best of our knowledge, there are no previous studies that have explicitly considered smaller sized poultry farmers with limited breeding areas. This study develops an inventory model for a small sized poultry farmer that produces both the Broilers (Product 1) and the Branded chickens (Product 2) with different amelioration rates. The poultry farmer’s total profit per unit of time is formulated as a function of selling prices by using a price-dependent demand function. The existence of a unique optimal selling price for each product, which maximises the total profit, established. It has also been confirmed through numerical examples that, when the breeding area is fixed, the total profit could increase if the poultry farmer reduced the product quantity of Product 1 to introduce Product 2.Keywords: amelioration, deterioration, small sized poultry farmers, optimal price
Procedia PDF Downloads 218670 Impact of Data and Model Choices to Urban Flood Risk Assessments
Authors: Abhishek Saha, Serene Tay, Gerard Pijcke
Abstract:
The availability of high-resolution topography and rainfall information in urban areas has made it necessary to revise modeling approaches used for simulating flood risk assessments. Lidar derived elevation models that have 1m or lower resolutions are becoming widely accessible. The classical approaches of 1D-2D flow models where channel flow is simulated and coupled with a coarse resolution 2D overland flow models may not fully utilize the information provided by high-resolution data. In this context, a study was undertaken to compare three different modeling approaches to simulate flooding in an urban area. The first model used is the base model used is Sobek, which uses 1D model formulation together with hydrologic boundary conditions and couples with an overland flow model in 2D. The second model uses a full 2D model for the entire area with shallow water equations at the resolution of the digital elevation model (DEM). These models are compared against another shallow water equation solver in 2D, which uses a subgrid method for grid refinement. These models are simulated for different horizontal resolutions of DEM varying between 1m to 5m. The results show a significant difference in inundation extents and water levels for different DEMs. They are also sensitive to the different numerical models with the same physical parameters, such as friction. The study shows the importance of having reliable field observations of inundation extents and levels before a choice of model and data can be made for spatial flood risk assessments.Keywords: flooding, DEM, shallow water equations, subgrid
Procedia PDF Downloads 145669 Physical and Morphological Response to Land Reclamation Projects in a Wave-Dominated Bay
Authors: Florian Monetti, Brett Beamsley, Peter McComb, Simon Weppe
Abstract:
Land reclamation from the ocean has considerably increased over past decades to support worldwide rapid urban growth. Reshaping the coastline, however, inevitably affects coastal systems. One of the main challenges for coastal oceanographers is to predict the physical and morphological responses for nearshore systems to man-made changes over multiple time-scales. Fully-coupled numerical models are powerful tools for simulating the wide range of interactions between flow field and bedform morphology. Restricted and inconsistent measurements, combined with limited computational resources, typically make this exercise complex and uncertain. In the present study, we investigate the impact of proposed land reclamation within a wave-dominated bay in New Zealand. For this purpose, we first calibrated our morphological model based on the long-term evolution of the bay resulting from land reclamation carried out in the 1950s. This included the application of sedimentological spin-up and reduction techniques based on historical bathymetry datasets. The updated bathymetry, including the proposed modifications of the bay, was then used to predict the effect of the proposed land reclamation on the wave climate and morphology of the bay after one decade. We show that reshaping the bay induces a distinct symmetrical response of the shoreline which likely will modify the nearshore wave patterns and consequently recreational activities in the area.Keywords: coastal waves, impact of land reclamation, long-term coastal evolution, morphodynamic modeling
Procedia PDF Downloads 179668 Assessment of Tidal Current Energy Potential at LAMU and Mombasa in Kenya
Authors: Lucy Patricia Onundo, Wilfred Njoroge Mwema
Abstract:
The tidal power potential available for electricity generation from Mombasa and Lamu sites in Kenya will be examined. Several African countries in the Western Indian Ocean endure insufficiencies in the power sector, including both generation and distribution. One important step towards increasing energy security and availability is to intensify the use of renewable energy sources. The access to cost-efficient hydropower is low in Mombasa and Lamu hence Ocean energy will play an important role. Global-Level resource assessments and oceanographic literature and data have been compiled in an analysis between technology-specific requirements for ocean energy technologies (salinity, tide, tidal current, wave, Ocean thermal energy conversion, wind and solar) and the physical resources in Lamu and Mombasa. The potential for tide and tidal current power is more restricted but may be of interest at some locations. The theoretical maximum power produced over a tidal cycle is determined by the product of the forcing tide and the undisturbed volumetric flow-rate. The extraction of the maximum power reduces the flow-rate, but a significant portion of the maximum power can be extracted with little change to the tidal dynamics. Two-dimensional finite-element, numerical simulations designed and developed agree with the theory. Temporal variations in resource intensity, as well as the differences between small-scale and large-scale applications, are considered.Keywords: energy assessment, marine tidal power, renewable energy, tidal dynamics
Procedia PDF Downloads 584667 Numerical Approach to a Mathematical Modeling of Bioconvection Due to Gyrotactic Micro-Organisms over a Nonlinear Inclined Stretching Sheet
Authors: Madhu Aneja, Sapna Sharma
Abstract:
The water-based bioconvection of a nanofluid containing motile gyrotactic micro-organisms over nonlinear inclined stretching sheet has been investigated. The governing nonlinear boundary layer equations of the model are reduced to a system of ordinary differential equations via Oberbeck-Boussinesq approximation and similarity transformations. Further, the modified set of equations with associated boundary conditions are solved using Finite Element Method. The impact of various pertinent parameters on the velocity, temperature, nanoparticles concentration, density of motile micro-organisms profiles are obtained and analyzed in details. The results show that with the increase in angle of inclination δ, velocity decreases while temperature, nanoparticles concentration, a density of motile micro-organisms increases. Additionally, the skin friction coefficient, Nusselt number, Sherwood number, density number are computed for various thermophysical parameters. It is noticed that increasing Brownian motion and thermophoresis parameter leads to an increase in temperature of fluid which results in a reduction in Nusselt number. On the contrary, Sherwood number rises with an increase in Brownian motion and thermophoresis parameter. The findings have been validated by comparing the results of special cases with existing studies.Keywords: bioconvection, finite element method, gyrotactic micro-organisms, inclined stretching sheet, nanofluid
Procedia PDF Downloads 194666 On the convergence of the Mixed Integer Randomized Pattern Search Algorithm
Authors: Ebert Brea
Abstract:
We propose a novel direct search algorithm for identifying at least a local minimum of mixed integer nonlinear unconstrained optimization problems. The Mixed Integer Randomized Pattern Search Algorithm (MIRPSA), so-called by the author, is based on a randomized pattern search, which is modified by the MIRPSA for finding at least a local minimum of our problem. The MIRPSA has two main operations over the randomized pattern search: moving operation and shrinking operation. Each operation is carried out by the algorithm when a set of conditions is held. The convergence properties of the MIRPSA is analyzed using a Markov chain approach, which is represented by an infinite countable set of state space λ, where each state d(q) is defined by a measure of the qth randomized pattern search Hq, for all q in N. According to the algorithm, when a moving operation is carried out on the qth randomized pattern search Hq, the MIRPSA holds its state. Meanwhile, if the MIRPSA carries out a shrinking operation over the qth randomized pattern search Hq, the algorithm will visit the next state, this is, a shrinking operation at the qth state causes a changing of the qth state into (q+1)th state. It is worthwhile pointing out that the MIRPSA never goes back to any visited states because the MIRPSA only visits any qth by shrinking operations. In this article, we describe the MIRPSA for mixed integer nonlinear unconstrained optimization problems for doing a deep study of its convergence properties using Markov chain viewpoint. We herein include a low dimension case for showing more details of the MIRPSA, when the algorithm is used for identifying the minimum of a mixed integer quadratic function. Besides, numerical examples are also shown in order to measure the performance of the MIRPSA.Keywords: direct search, mixed integer optimization, random search, convergence, Markov chain
Procedia PDF Downloads 476665 Effect of Cavities on the Behaviour of Strip Footing Subjected to Inclined Load
Authors: Ali A. Al-Jazaairry, Tahsin T. Sabbagh
Abstract:
One of the important concerns within the field of geotechnical engineering is the presence of cavities in soils. This present work is an attempt to understand the behaviour of strip footing subjected to inclined load and constructed on cavitied soil. The failure mechanism of strip footing located above such soils was studied analytically. The capability of analytical model to correctly expect the system behaviour is assessed by carrying out verification analysis on available studies. The study was prepared by finite element software (PLAXIS) in which an elastic-perfectly plastic soil model was used. It was indicated, from the results of the study, that the load carrying capacity of foundation constructed on cavity can be analysed well using such analysis. The research covered many foundation cases, and in each foundation case, there occurs a critical depth under which the presence of cavities has shown minimum impact on the foundation performance. When cavities are found above this critical depth, the load carrying capacity of the foundation differs with many influences, such as the location and size of the cavity and footing depth. Figures involving the load carrying capacity with the affecting factors studied are presented. These figures offer information beneficial for the design of strip footings rested on underground cavities. Moreover, the results might be used to design a shallow foundation constructed on cavitied soil, whereas the obtained failure mechanisms may be employed to improve numerical solutions for this kind of problems.Keywords: axial load, cavity, inclined load, strip footing
Procedia PDF Downloads 257664 Comparative Mesh Sensitivity Study of Different Reynolds Averaged Navier Stokes Turbulence Models in OpenFOAM
Authors: Zhuoneng Li, Zeeshan A. Rana, Karl W. Jenkins
Abstract:
In industry, to validate a case, often a multitude of simulation are required and in order to demonstrate confidence in the process where users tend to use a coarser mesh. Therefore, it is imperative to establish the coarsest mesh that could be used while keeping reasonable simulation accuracy. To date, the two most reliable, affordable and broadly used advanced simulations are the hybrid RANS (Reynolds Averaged Navier Stokes)/LES (Large Eddy Simulation) and wall modelled LES. The potentials in these two simulations will still be developed in the next decades mainly because the unaffordable computational cost of a DNS (Direct Numerical Simulation). In the wall modelled LES, the turbulence model is applied as a sub-grid scale model in the most inner layer near the wall. The RANS turbulence models cover the entire boundary layer region in a hybrid RANS/LES (Detached Eddy Simulation) and its variants, therefore, the RANS still has a very important role in the state of art simulations. This research focuses on the turbulence model mesh sensitivity analysis where various turbulence models such as the S-A (Spalart-Allmaras), SSG (Speziale-Sarkar-Gatski), K-Omega transitional SST (Shear Stress Transport), K-kl-Omega, γ-Reθ transitional model, v2f are evaluated within the OpenFOAM. The simulations are conducted on a fully developed turbulent flow over a flat plate where the skin friction coefficient as well as velocity profiles are obtained to compare against experimental values and DNS results. A concrete conclusion is made to clarify the mesh sensitivity for different turbulence models.Keywords: mesh sensitivity, turbulence models, OpenFOAM, RANS
Procedia PDF Downloads 264663 Effect of Mach Number for Gust-Airfoil Interatcion Noise
Authors: ShuJiang Jiang
Abstract:
The interaction of turbulence with airfoil is an important noise source in many engineering fields, including helicopters, turbofan, and contra-rotating open rotor engines, where turbulence generated in the wake of upstream blades interacts with the leading edge of downstream blades and produces aerodynamic noise. One approach to study turbulence-airfoil interaction noise is to model the oncoming turbulence as harmonic gusts. A compact noise source produces a dipole-like sound directivity pattern. However, when the acoustic wavelength is much smaller than the airfoil chord length, the airfoil needs to be treated as a non-compact source, and the gust-airfoil interaction becomes more complicated and results in multiple lobes generated in the radiated sound directivity. Capturing the short acoustic wavelength is a challenge for numerical simulations. In this work, simulations are performed for gust-airfoil interaction at different Mach numbers, using a high-fidelity direct Computational AeroAcoustic (CAA) approach based on a spectral/hp element method, verified by a CAA benchmark case. It is found that the squared sound pressure varies approximately as the 5th power of Mach number, which changes slightly with the observer location. This scaling law can give a better sound prediction than the flat-plate theory for thicker airfoils. Besides, another prediction method, based on the flat-plate theory and CAA simulation, has been proposed to give better predictions than the scaling law for thicker airfoils.Keywords: aeroacoustics, gust-airfoil interaction, CFD, CAA
Procedia PDF Downloads 82662 Modeling Operating Theater Scheduling and Configuration: An Integrated Model in Health-Care Logistics
Authors: Sina Keyhanian, Abbas Ahmadi, Behrooz Karimi
Abstract:
We present a multi-objective binary programming model which considers surgical cases are scheduling among operating rooms and the configuration of surgical instruments in limited capacity hospital trays, simultaneously. Many mathematical models have been developed previously in the literature addressing different challenges in health-care logistics such as assigning operating rooms, leveling beds, etc. But what happens inside the operating rooms along with the inventory management of required instruments for various operations, and also their integration with surgical scheduling have been poorly discussed. Our model considers the minimization of movements between trays during a surgery which recalls the famous cell formation problem in group technology. This assumption can also provide a major potential contribution to robotic surgeries. The tray configuration problem which consumes surgical instruments requirement plan (SIRP) and sequence of surgical procedures based on required instruments (SIRO) is nested inside the bin packing problem. This modeling approach helps us understand that most of the same-output solutions will not be necessarily identical when it comes to the rearrangement of surgeries among rooms. A numerical example has been dealt with via a proposed nested simulated annealing (SA) optimization approach which provides insights about how various configurations inside a solution can alter the optimal condition.Keywords: health-care logistics, hospital tray configuration, off-line bin packing, simulated annealing optimization, surgical case scheduling
Procedia PDF Downloads 283661 Lattice Boltzmann Simulation of Fluid Flow and Heat Transfer Through Porous Media by Means of Pore-Scale Approach: Effect of Obstacles Size and Arrangement on Tortuosity and Heat Transfer for a Porosity Degree
Authors: Annunziata D’Orazio, Arash Karimipour, Iman Moradi
Abstract:
The size and arrangement of the obstacles in the porous media has an influential effect on the fluid flow and heat transfer, even in the same porosity. Regarding to this, in the present study, several different amounts of obstacles, in both regular and stagger arrangements, in the analogous porosity have been simulated through a channel. In order to compare the effect of stagger and regular arrangements, as well as different quantity of obstacles in the same porosity, on fluid flow and heat transfer. In the present study, the Single Relaxation Time Lattice Boltzmann Method, with Bhatnagar-Gross-Ktook (BGK) approximation and D2Q9 model, is implemented for the numerical simulation. Also, the temperature field is modeled through a Double Distribution Function (DDF) approach. Results are presented in terms of velocity and temperature fields, streamlines, percentage of pressure drop and Nusselt number of the obstacles walls. Also, the correlation between tortuosity and Nusselt number of the obstacles walls, for both regular and staggered arrangements, has been proposed. On the other hand, the results illustrated that by increasing the amount of obstacles, as well as changing their arrangement from regular to staggered, in the same porosity, the rate of tortuosity and Nusselt number of the obstacles walls increased.Keywords: lattice boltzmann method, heat transfer, porous media, pore-scale, porosity, tortuosity
Procedia PDF Downloads 91660 Comparative Fragility Analysis of Shallow Tunnels Subjected to Seismic and Blast Loads
Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed
Abstract:
Underground structures are crucial components which required detailed analysis and design. Tunnels, for instance, are massively constructed as transportation infrastructures and utilities network especially in urban environments. Considering their prime importance to the economy and public safety that cannot be compromised, thus any instability to these tunnels will be highly detrimental to their performance. Recent experience suggests that tunnels become vulnerable during earthquakes and blast scenarios. However, a very limited amount of studies has been carried out to study and understanding the dynamic response and performance of underground tunnels under those unpredictable extreme hazards. In view of the importance of enhancing the resilience of these structures, the overall aims of the study are to evaluate probabilistic future performance of shallow tunnels subjected to seismic and blast loads by developing detailed fragility analysis. Critical non-linear time history numerical analyses using sophisticated finite element software Midas GTS NX have been presented about the current methods of analysis, taking into consideration of structural typology, ground motion and explosive characteristics, effect of soil conditions and other associated uncertainties on the tunnel integrity which may ultimately lead to the catastrophic failure of the structures. The proposed fragility curves for both extreme loadings are discussed and compared which provide significant information the performance of the tunnel under extreme hazards which may beneficial for future risk assessment and loss estimation.Keywords: fragility analysis, seismic loads, shallow tunnels, blast loads
Procedia PDF Downloads 347659 Large Eddy Simulations for Flow Blurring Twin-Fluid Atomization Concept Using Volume of Fluid Method
Authors: Raju Murugan, Pankaj S. Kolhe
Abstract:
The present study is mainly focusing on the numerical simulation of Flow Blurring (FB) twin fluid injection concept was proposed by Ganan-Calvo, which involves back flow atomization based on global bifurcation of liquid and gas streams, thus creating two-phase flow near the injector exit. The interesting feature of FB injector spray is an insignificant effect of variation in atomizing air to liquid ratio (ALR) on a spray cone angle. Besides, FB injectors produce a nearly uniform spatial distribution of mean droplet diameter and are least susceptible to variation in thermo-physical properties of fuels, making it a perfect candidate for fuel flexible combustor development. The FB injector working principle has been realized through experimental flow visualization techniques only. The present study explores potential of ANSYS Fluent based Large Eddy Simulation(LES) with volume of fluid (VOF) method to investigate two-phase flow just upstream of injector dump plane and spray quality immediate downstream of injector dump plane. Note that, water and air represent liquid and gas phase in all simulations and ALR is varied by changing the air mass flow rate alone. Preliminary results capture two phase flow just upstream of injector dump plane and qualitative agreement is observed with the available experimental literature.Keywords: flow blurring twin fluid atomization, large eddy simulation, volume of fluid, air to liquid ratio
Procedia PDF Downloads 214658 Room Temperature Lasing from InGaAs Quantum Well Nanowires on Silicon-On-Insulator Substrates
Authors: Balthazar Temu, Zhao Yan, Bogdan-Petrin Ratiu, Sang Soon Oh, Qiang Li
Abstract:
Quantum confinement can be used to increase efficiency and control the emitted spectra in lasers and LEDs. In semiconductor nanowires, quantum confinement can be achieved in the axial direction by stacking multiple quantum disks or in the radial direction by forming a core-shell structure. In this work we demonstrate room temperature lasing in topological photonic crystal nanowire array lasers by using the InGaAs radial quantum well as the gain material. The nanowires with the GaAs/ InGaAs/ InGaP quantum well structure are arranged in a deformed honeycomb lattice, forming a photonic crystal surface emitting laser (PCSEL) . Under optical pumping we show that the PCSEL lase at the wavelength of 1001 nm (undeformed pattern) and 966 nm (stretched pattern), with the lasing threshold of 103 µJ〖/cm 〗^2. We compare the lasing wavelengths from devices with three different nanowire diameters for undeformed compressed and stretched devices, showing that the lasing wavelength increases as the nanowire diameter increases. The impact of deforming the honeycomb pattern is studied, where it was found out that the lasing wavelengths of undeformed devices are always larger than the corresponding stretched or compressed devices with the same nanowire diameter. Using photoluminescence results and numerical simulations on the field profile and the quality factors of the devices, we establish that the lasing of the device is from the radial quantum well structure.Keywords: honeycomb PCSEL, nanowire laser, photonic crystal laser, quantum well laser
Procedia PDF Downloads 23657 Optimization of Economic Order Quantity of Multi-Item Inventory Control Problem through Nonlinear Programming Technique
Authors: Prabha Rohatgi
Abstract:
To obtain an efficient control over a huge amount of inventory of drugs in pharmacy department of any hospital, generally, the medicines are categorized on the basis of their cost ‘ABC’ (Always Better Control), first and then categorize on the basis of their criticality ‘VED’ (Vital, Essential, desirable) for prioritization. About one-third of the annual expenditure of a hospital is spent on medicines. To minimize the inventory investment, the hospital management may like to keep the medicines inventory low, as medicines are perishable items. The main aim of each and every hospital is to provide better services to the patients under certain limited resources. To achieve the satisfactory level of health care services to outdoor patients, a hospital has to keep eye on the wastage of medicines because expiry date of medicines causes a great loss of money though it was limited and allocated for a particular period of time. The objectives of this study are to identify the categories of medicines requiring incentive managerial control. In this paper, to minimize the total inventory cost and the cost associated with the wastage of money due to expiry of medicines, an inventory control model is used as an estimation tool and then nonlinear programming technique is used under limited budget and fixed number of orders to be placed in a limited time period. Numerical computations have been given and shown that by using scientific methods in hospital services, we can give more effective way of inventory management under limited resources and can provide better health care services. The secondary data has been collected from a hospital to give empirical evidence.Keywords: ABC-VED inventory classification, multi item inventory problem, nonlinear programming technique, optimization of EOQ
Procedia PDF Downloads 259656 Finite Difference Modelling of Temperature Distribution around Fire Generated Heat Source in an Enclosure
Authors: A. A. Dare, E. U. Iniegbedion
Abstract:
Industrial furnaces generally involve enclosures of fire typically initiated by the combustion of gases. The fire leads to temperature distribution inside the enclosure. A proper understanding of the temperature and velocity distribution within the enclosure is often required for optimal design and use of the furnace. This study was therefore directed at numerical modeling of temperature distribution inside an enclosure as typical in a furnace. A mathematical model was developed from the conservation of mass, momentum and energy. The stream function-vorticity formulation of the governing equations was solved by an alternating direction implicit (ADI) finite difference technique. The finite difference formulation obtained were then developed into a computer code. This was used to determine the temperature, velocities, stream function and vorticity. The effect of the wall heat conduction was also considered, by assuming a one-dimensional heat flow through the wall. The computer code (MATLAB program) developed was used for the determination of the aforementioned variables. The results obtained showed that the transient temperature distribution assumed a uniform profile which becomes more chaotic with increasing time. The vertical velocity showed increasing turbulent behavior with time, while the horizontal velocity assumed decreasing laminar behavior with time. All of these behaviours were equally reported in the literature. The developed model has provided understanding of heat transfer process in an industrial furnace.Keywords: heat source, modelling, enclosure, furnace
Procedia PDF Downloads 256655 Two-Dimensional CFD Simulation of the Behaviors of Ferromagnetic Nanoparticles in Channel
Authors: Farhad Aalizadeh, Ali Moosavi
Abstract:
This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, particle tracking. The purpose of this paper is applied magnetic field effect on Magnetic Nanoparticles velocities distribution. It is shown that the permeability of the particles determines the effect of the magnetic field on the deposition of the particles and the deposition of the particles is inversely proportional to the Reynolds number. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form. we consider a channel 2D geometry and solve for the resulting spatial distribution of particles. According to obtained results when only magnetic fields are applied perpendicular to the flow, local particles velocity is decreased due to the direct effect of the magnetic field return the system to its original fom. In the method first, in order to avoid mixing with blood, the ferromagnetic particles are covered with a gel-like chemical composition and are injected into the blood vessels. Then, a magnetic field source with a specified distance from the vessel is used and the particles are guided to the affected area. This paper presents a two-dimensional Computational Fluid Dynamics (CFDs) simulation for the steady, laminar flow of an incompressible magnetorheological (MR) fluid between two fixed parallel plates in the presence of a uniform magnetic field. The purpose of this study is to develop a numerical tool that is able to simulate MR fluids flow in valve mode and determineB0, applied magnetic field effect on flow velocities and pressure distributions.Keywords: MHD, channel clots, magnetic nanoparticles, simulations
Procedia PDF Downloads 371654 Numerical Investigation of Material Behavior During Non-Equal Channel Multi Angular Extrusion
Authors: Mohamed S. El-Asfoury, Ahmed Abdel-Moneim, Mohamed N. A. Nasr
Abstract:
The current study uses finite element modeling to investigate and analyze a modified form of the from the conventional equal channel multi-angular pressing (ECMAP), using non-equal channels, on the workpiece material plastic deformation. The modified process non-equal channel multi-angular extrusion (NECMAE) is modeled using two-dimensional plane strain finite element model built using the commercial software ABAQUS. The workpiece material used is pure aluminum. The model was first validated by comparing its results to analytical solutions for single-pass equal channel angular extrusion (ECAP), as well as previously published data. After that, the model was used to examine the effects of different % of reductions of the area (for the second stage) on material plastic deformation, corner gap, and required the load. Three levels of reduction in the area were modeled; 10%, 30%, and 50%, and compared to single-pass and double-pass ECAP. Cases with a higher reduction in the area were found to have smaller corner gaps, higher and much uniform plastic deformation, as well as higher required loads. The current results are mainly attributed to the back pressure effects exerted by the second stage, as well as strain hardening effects experienced during the first stage.Keywords: non-equal channel angular extrusion, multi-pass, sever plastic deformation, back pressure, Finite Element Modelling (FEM)
Procedia PDF Downloads 426