Search results for: legal judgment prediction
1144 Sudden Death and Chronic Disseminated Intravascular Coagulation (DIC): Two Case Reports
Authors: Saker Lilia, Youcef Mellouki, Lakhdar Sellami, Yacine Zerairia, Abdelhaid Zetili, Fatma Guahria, Fateh Kaious, Nesrine Belkhodja, Abdelhamid Mira
Abstract:
Background: Sudden death is regarded as a suspicious demise necessitating autopsy, as stipulated by legal authorities. Chronic disseminated intravascular coagulation (DIC) is an acquired clinical and biological syndrome characterized by a severe and fatal prognosis, stemming from systemic, uncontrolled, diffuse coagulation activation. Irrespective of their origins, DIC is associated with a diverse spectrum of manifestations, encompassing minor biological coagulation alterations to profoundly severe conditions wherein hemorrhagic complications may take precedence. Simultaneously, microthrombi contribute to the development of multi-organ failures. Objective This study seeks to evaluate the role of autopsy in determining the causes of death. Materials and Methods: We present two instances of sudden death involving females who underwent autopsy at the Forensic Medicine Department of the University Hospital of Annaba, Algeria. These autopsies were performed at the request of the prosecutor, aiming to determine the causes of death and illuminate the exact circumstances surrounding it. Methods Utilized: Analysis of the initial information report; Findings from postmortem examinations; Histological assessments and toxicological analyses. Results: The presence of DIC was noted, affecting nearly all veins with distinct etiologies. Conclusion: For the establishment of a meaningful diagnosis: • Thorough understanding of the subject matter is imperative; • Precise alignment with medicolegal data is essential.Keywords: chronic disseminated intravascular coagulation, sudden death, autopsy, causes of death
Procedia PDF Downloads 851143 Probabilistic Slope Stability Analysis of Excavation Induced Landslides Using Hermite Polynomial Chaos
Authors: Schadrack Mwizerwa
Abstract:
The characterization and prediction of landslides are crucial for assessing geological hazards and mitigating risks to infrastructure and communities. This research aims to develop a probabilistic framework for analyzing excavation-induced landslides, which is fundamental for assessing geological hazards and mitigating risks to infrastructure and communities. The study uses Hermite polynomial chaos, a non-stationary random process, to analyze the stability of a slope and characterize the failure probability of a real landslide induced by highway construction excavation. The correlation within the data is captured using the Karhunen-Loève (KL) expansion theory, and the finite element method is used to analyze the slope's stability. The research contributes to the field of landslide characterization by employing advanced random field approaches, providing valuable insights into the complex nature of landslide behavior and the effectiveness of advanced probabilistic models for risk assessment and management. The data collected from the Baiyuzui landslide, induced by highway construction, is used as an illustrative example. The findings highlight the importance of considering the probabilistic nature of landslides and provide valuable insights into the complex behavior of such hazards.Keywords: Hermite polynomial chaos, Karhunen-Loeve, slope stability, probabilistic analysis
Procedia PDF Downloads 781142 Prediction of Boundary Shear Stress with Gradually Tapering Flood Plains
Authors: Spandan Sahu, Amiya Kumar Pati, Kishanjit Kumar Khatua
Abstract:
River is the main source of water. It is a form of natural open channel which gives rise to many complex phenomenon of sciences that needs to be tackled such as the critical flow conditions, boundary shear stress and depth averaged velocity. The development of society more or less solely depends upon the flow of rivers. The rivers are major sources of many sediments and specific ingredients which are much essential for human beings. During floods, part of a river is carried by the simple main channel and rest is carried by flood plains. For such compound asymmetric channels, the flow structure becomes complicated due to momentum exchange between main channel and adjoining flood plains. Distribution of boundary shear in subsections provides us with the concept of momentum transfer between the interface of main channel and the flood plains. Experimentally, to get better data with accurate results are very complex because of the complexity of the problem. Hence, Conveyance Estimation System (CES) software has been used to tackle the complex processes to determine the shear stresses at different sections of an open channel having asymmetric flood plains on both sides of the main channel and the results are compared with the symmetric flood plains for various geometrical shapes and flow conditions. Error analysis is also performed to know the degree of accuracy of the model implemented.Keywords: depth average velocity, non prismatic compound channel, relative flow depth , velocity distribution
Procedia PDF Downloads 1231141 Modern Scotland Yard: Improving Surveillance Policies Using Adversarial Agent-Based Modelling and Reinforcement Learning
Authors: Olaf Visker, Arnout De Vries, Lambert Schomaker
Abstract:
Predictive policing refers to the usage of analytical techniques to identify potential criminal activity. It has been widely implemented by various police departments. Being a relatively new area of research, there are, to the author’s knowledge, no absolute tried, and true methods and they still exhibit a variety of potential problems. One of those problems is closely related to the lack of understanding of how acting on these prediction influence crime itself. The goal of law enforcement is ultimately crime reduction. As such, a policy needs to be established that best facilitates this goal. This research aims to find such a policy by using adversarial agent-based modeling in combination with modern reinforcement learning techniques. It is presented here that a baseline model for both law enforcement and criminal agents and compare their performance to their respective reinforcement models. The experiments show that our smart law enforcement model is capable of reducing crime by making more deliberate choices regarding the locations of potential criminal activity. Furthermore, it is shown that the smart criminal model presents behavior consistent with popular crime theories and outperforms the baseline model in terms of crimes committed and time to capture. It does, however, still suffer from the difficulties of capturing long term rewards and learning how to handle multiple opposing goals.Keywords: adversarial, agent based modelling, predictive policing, reinforcement learning
Procedia PDF Downloads 1481140 Breast Cancer Survivability Prediction via Classifier Ensemble
Authors: Mohamed Al-Badrashiny, Abdelghani Bellaachia
Abstract:
This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the features in SEER database into four groups. After that it tries to find the most important features among the four groups that maximizes the weighted average F-score of a certain classification algorithm. The ensemble component uses three different classifiers, each of which models different set of features from SEER through the features selection module. On top of them, another classifier is used to give the final decision based on the output decisions and confidence scores from each of the underlying classifiers. Different classification algorithms have been examined; the best setup found is by using the decision tree, Bayesian network, and Na¨ıve Bayes algorithms for the underlying classifiers and Na¨ıve Bayes for the classifier ensemble step. The system outperforms all published systems to date when evaluated against the exact same data of SEER (period of 1973-2002). It gives 87.39% weighted average F-score compared to 85.82% and 81.34% of the other published systems. By increasing the data size to cover the whole database (period of 1973-2014), the overall weighted average F-score jumps to 92.4% on the held out unseen test set.Keywords: classifier ensemble, breast cancer survivability, data mining, SEER
Procedia PDF Downloads 3291139 There Is No Meaningful Opportunity in Meaningless Data: Why It Is Unconstitutional to Use Life Expectancy Tables in Post-Graham Sentences
Authors: Stacie Nelson Colling, Adele Cummings
Abstract:
The United States Supreme Court recently announced that it is unconstitutional to sentence a child to life without parole for non-homicide offenses, and that each child so situated must be afforded a meaningful opportunity for release from prison in his lifetime. The Court also declared that it is unconstitutional to impose a mandatory sentence of life without parole on a child for homicide offenses. Across the United States, attorneys and advocates continue to litigate issues surrounding the implementation of these legal principles. Some states have held that any sentence to a finite term of years, no matter how long, is not the same as ‘life’ and therefore does not violate the constitution. Other states have held that a sentence to a term of years that is less than the expected life of that particular child is not unconstitutional. In Colorado, the courts have routinely looked to life expectancy estimates from governmental organizations to determine how long a particular child is expected to live. They then compare that the date that the child is expected to be eligible for parole, and if the child is expected to still be living when he is eligible for parole, the sentence is deemed constitutional. This paper argues that it is inappropriate, reckless, unconstitutional and not scientifically sound to use such estimates in determining whether a child will have a meaningful opportunity for release from prison and life outside of prison before he dies. This paper argues that the opportunity for release must mean more than a probability that a child will be released before his death, and that it must include an opportunity for a meaningful life outside of prison (not just the opportunity to be released and then die on the outside). The paper further argues that life expectancy estimates cannot guide a court or a legislature in determining whether a sentence is or is not constitutional.Keywords: life without parole, life expectancy, juvenile sentencing, meaningful opportunity for release from prison
Procedia PDF Downloads 3951138 The Analysis of Defects Prediction in Injection Molding
Authors: Mehdi Moayyedian, Kazem Abhary, Romeo Marian
Abstract:
This paper presents an evaluation of a plastic defect in injection molding before it occurs in the process; it is known as the short shot defect. The evaluation of different parameters which affect the possibility of short shot defect is the aim of this paper. The analysis of short shot possibility is conducted via SolidWorks Plastics and Taguchi method to determine the most significant parameters. Finite Element Method (FEM) is employed to analyze two circular flat polypropylene plates of 1 mm thickness. Filling time, part cooling time, pressure holding time, melt temperature and gate type are chosen as process and geometric parameters, respectively. A methodology is presented herein to predict the possibility of the short-shot occurrence. The analysis determined melt temperature is the most influential parameter affecting the possibility of short shot defect with a contribution of 74.25%, and filling time with a contribution of 22%, followed by gate type with a contribution of 3.69%. It was also determined the optimum level of each parameter leading to a reduction in the possibility of short shot are gate type at level 1, filling time at level 3 and melt temperature at level 3. Finally, the most significant parameters affecting the possibility of short shot were determined to be melt temperature, filling time, and gate type.Keywords: injection molding, plastic defects, short shot, Taguchi method
Procedia PDF Downloads 2191137 Correlations between Wear Rate and Energy Dissipation Mechanisms in a Ti6Al4V–WC/Co Sliding Pair
Authors: J. S. Rudas, J. M. Gutiérrez Cabeza, A. Corz Rodríguez, L. M. Gómez, A. O. Toro
Abstract:
The prediction of the wear rate of rubbing pairs has attracted the interest of many researchers for years. It has been recently proposed that the sliding wear rate can be inferred from the calculation of the energy rate dissipated by the tribological pair. In this paper some of the dissipative mechanisms present in a pin-on-disc configuration are discussed and both analytical and numerical calculations are carried out. Three dissipative mechanisms were studied: First, the energy release due to temperature gradients within the solid; second, the heat flow from the solid to the environment, and third, the energy loss due to abrasive damage of the surface. The Finite Element Method was used to calculate the dynamics of heat transfer within the solid, with the aid of commercial software. Validation the FEM model was assisted by virtual and laboratory experimentation using different operating points (sliding velocity and geometry contact). The materials for the experiments were Ti6Al4V alloy and Tungsten Carbide (WC-Co). The results showed that the sliding wear rate has a linear relationship with the energy dissipation flow. It was also found that energy loss due to micro-cutting is relevant for the system. This mechanism changes if the sliding velocity and pin geometry are modified though the degradation coefficient continues to present a linear behavior. We found that the less relevant dissipation mechanism for all the cases studied is the energy release by temperature gradients in the solid.Keywords: degradation, dissipative mechanism, dry sliding, entropy, friction, wear
Procedia PDF Downloads 5031136 Modelling and Investigation of Phase Change Phenomena of Multiple Water Droplets
Authors: K. R. Sultana, K. Pope, Y. S. Muzychka
Abstract:
In recent years, the research of heat transfer or phase change phenomena of liquid water droplets experiences a growing interest in aircraft icing, power transmission line icing, marine icing and wind turbine icing applications. This growing interest speeding up the research from single to multiple droplet phenomena. Impingements of multiple droplets and the resulting solidification phenomena after impact on a very cold surface is computationally studied in this paper. The model used in the current study solves the flow equation, composed of energy balance and the volume fraction equations. The main aim of the study is to investigate the effects of several thermo-physical properties (density, thermal conductivity and specific heat) on droplets freezing. The outcome is examined by various important factors, for instance, liquid fraction, total freezing time, droplet temperature and total heat transfer rate in the interface region. The liquid fraction helps to understand the complete phase change phenomena during solidification. Temperature distribution and heat transfer rate help to demonstrate the overall thermal exchange behaviors between the droplets and substrate surface. Findings of this research provide an important technical achievement for ice modeling and prediction studies.Keywords: droplets, CFD, thermos-physical properties, solidification
Procedia PDF Downloads 2441135 Species Distribution Modelling for Assessing the Effect of Land Use Changes on the Habitat of Endangered Proboscis Monkey (Nasalis larvatus) in Kalimantan, Indonesia
Authors: Wardatutthoyyibah, Satyawan Pudyatmoko, Sena Adi Subrata, Muhammad Ali Imron
Abstract:
The proboscis monkey is an endemic species to the island of Borneo with conservation status IUCN (The International Union for Conservation of Nature) of endangered. The population of the monkey has a specific habitat and sensitive to habitat disturbances. As a consequence of increasing rates of land-use change in the last four decades, its population was reported significantly decreased. We quantified the effect of land use change on the proboscis monkey’s habitat through the species distribution modeling (SDM) approach with Maxent Software. We collected presence data and environmental variables, i.e., land cover, topography, bioclimate, distance to the river, distance to the road, and distance to the anthropogenic disturbance to generate predictive distribution maps of the monkeys. We compared two prediction maps for 2000 and 2015 data to represent the current habitat of the monkey. We overlaid the monkey’s predictive distribution map with the existing protected areas to investigate whether the habitat of the monkey is protected under the protected areas networks. The results showed that almost 50% of the monkey’s habitat reduced as the effect of land use change. And only 9% of the current proboscis monkey’s habitat within protected areas. These results are important for the master plan of conservation of the endangered proboscis monkey and provide scientific guidance for the future development incorporating biodiversity issue.Keywords: endemic species, land use change, maximum entropy, spatial distribution
Procedia PDF Downloads 1591134 Predicting Options Prices Using Machine Learning
Authors: Krishang Surapaneni
Abstract:
The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%Keywords: finance, linear regression model, machine learning model, neural network, stock price
Procedia PDF Downloads 771133 Predicting Dose Level and Length of Time for Radiation Exposure Using Gene Expression
Authors: Chao Sima, Shanaz Ghandhi, Sally A. Amundson, Michael L. Bittner, David J. Brenner
Abstract:
In a large-scale radiologic emergency, potentially affected population need to be triaged efficiently using various biomarkers where personal dosimeters are not likely worn by the individuals. It has long been established that radiation injury can be estimated effectively using panels of genetic biomarkers. Furthermore, the rate of radiation, in addition to dose of radiation, plays a major role in determining biological responses. Therefore, a better and more accurate triage involves estimating both the dose level of the exposure and the length of time of that exposure. To that end, a large in vivo study was carried out on mice with internal emitter caesium-137 (¹³⁷Cs). Four different injection doses of ¹³⁷Cs were used: 157.5 μCi, 191 μCi, 214.5μCi, and 259 μCi. Cohorts of 6~7 mice from the control arm and each of the dose levels were sacrificed, and blood was collected 2, 3, 5, 7 and 14 days after injection for microarray RNA gene expression analysis. Using a generalized linear model with penalized maximum likelihood, a panel of 244 genes was established and both the doses of injection and the number of days after injection were accurately predicted for all 155 subjects using this panel. This has proven that microarray gene expression can be used effectively in radiation biodosimetry in predicting both the dose levels and the length of exposure time, which provides a more holistic view on radiation exposure and helps improving radiation damage assessment and treatment.Keywords: caesium-137, gene expression microarray, multivariate responses prediction, radiation biodosimetry
Procedia PDF Downloads 1991132 Multi-Objective Optimization and Effect of Surface Conditions on Fatigue Performance of Burnished Components Made of AISI 52100 Steel
Authors: Ouahiba Taamallah, Tarek Litim
Abstract:
The study deals with the burnishing effect of AISI 52100 steel and parameters influence (Py, i and f on surface integrity. The results show that the optimal effects are closely related to the treatment parameters. With a 92% improvement in roughness, SB can be defined as a finishing operation within the machining range. Due to 85% gain in consolidation rate, this treatment constitutes an efficient process for work-hardening of material. In addition, a statistical study based on regression and Taguchi's design has made it possible to develop mathematical models to predict output responses according to the studied burnishing parameters. Response Surface Methodology RSM showed a simultaneous influence of the burnishing parameters and to observe the optimal parameters of the treatment. ANOVA Analysis of results led to validate the prediction model with a determination coefficient R2=94.60% and R2=93.41% for surface roughness and micro-hardness, respectively. Furthermore, a multi-objective optimization allowed to identify a regime characterized by P=20 Kgf, i=5 passes and f=0.08 mm.rev-1, which favors minimum surface roughness and a maximum of micro-hardness. The result was validated by a composite desirability D_i=1 for both surface roughness and microhardness, respectively. Applying optimal parameters, burnishing showed its beneficial effects in fatigue resistance, especially for imposed loading in the low cycle fatigue of the material where the lifespan increased by 90%.Keywords: AISI 52100 steel, burnishing, Taguchi, fatigue
Procedia PDF Downloads 1881131 The Test of Memory Malingering and Offence Severity
Authors: Kenji Gwee
Abstract:
In Singapore, the death penalty remains in active use for murder and drug trafficking of controlled drugs such as heroin. As such, the psychological assessment of defendants can often be of high stakes. The Test of Memory Malingering (TOMM) is employed by government psychologists to determine the degree of effort invested by defendants, which in turn inform on the veracity of overall psychological findings that can invariably determine the life and death of defendants. The purpose of this study was to find out if defendants facing the death penalty were more likely to invest less effort during psychological assessment (to fake bad in hopes of escaping the death sentence) compared to defendants facing lesser penalties. An archival search of all forensic cases assessed in 2012-2013 by Singapore’s designated forensic psychiatric facility yielded 186 defendants’ TOMM scores. Offence severity, coded into 6 rank-ordered categories, was analyzed in a one-way ANOVA with TOMM score as the dependent variable. There was a statistically significant difference (F(5,87) = 2.473, p = 0.038). A Tukey post-hoc test with Bonferroni correction revealed that defendants facing lower charges (Theft, shoplifting, criminal breach of trust) invested less test-taking effort (TOMM = 37.4±12.3, p = 0.033) compared to those facing the death penalty (TOMM = 46.2±8.1). The surprising finding that those facing death penalties actually invested more test taking effort than those facing relatively minor charges could be due to higher levels of cooperation when faced with death. Alternatively, other legal avenues to escape the death sentence may have been preferred over the mitigatory chance of a psychiatric defence.Keywords: capital sentencing, offence severity, Singapore, Test of Memory Malingering
Procedia PDF Downloads 4361130 Chatter Prediction of Curved Thin-walled Parts Considering Variation of Dynamic Characteristics Based on Acoustic Signals Acquisition
Authors: Damous Mohamed, Zeroudi Nasredine
Abstract:
High-speed milling of thin-walled parts with complex curvilinear profiles often encounters machining instability, commonly referred to as chatter. This phenomenon arises due to the dynamic interaction between the cutting tool and the part, exacerbated by the part's low rigidity and varying dynamic characteristics along the tool path. This research presents a dynamic model specifically developed to predict machining stability for such curved thin-walled components. The model employs the semi-discretization method, segmenting the tool trajectory into small, straight elements to locally approximate the behavior of an inclined plane. Dynamic characteristics for each segment are extracted through experimental modal analysis and incorporated into the simulation model to generate global stability lobe diagrams. Validation of the model is conducted through cutting tests where acoustic intensity is measured to detect instabilities. The experimental data align closely with the predicted stability limits, confirming the model's accuracy and effectiveness. This work provides a comprehensive approach to enhancing machining stability predictions, thereby improving the efficiency and quality of high-speed milling operations for thin-walled parts.Keywords: chatter, curved thin-walled part, semi-discretization method, stability lobe diagrams
Procedia PDF Downloads 281129 Urban Sexual Geographies, Queer Citizenship and the Socio-Economic Status of LGBTIQs in Vienna
Authors: Karin Schoenpflug, Christine M. Klapeer
Abstract:
In a large study for the Vienna City Council’s Antidiscrimination unit (WASt) an interdisciplinary team (in the fields of economics, sociology and political science) working with urban economics, critical citizenship studies, the sociology of work & inequality and urban political/human geography conducted an online survey asking LGBTIs (lesbians, gays, bisexuals, transgender and intersex people) in Vienna detailed questions on their quality-of-life, happiness and well-being. 3.161 persons responded and provided us with a rich data set concerning: 1) Labor market structures, discrimination, working conditions and employment practices (economic citizenship); 2) access to health care, welfare, education and safety in public spaces (social citizenship); 3) political participation as well as access to legal institutions (political citizenship). All those fields are important dimensions in regards to “full” citizenship and the well-being of the LGBTI population, but are also constitutive for the inclusion of sexual and gender minorities into the city population(s) of Vienna. Our data also allows us to map the sexual geography of Vienna as LGBTI communities are more likely to live in certain districts; some places are considered safe(r) and “friendlier”. In this way our work helps to fill a research gap connecting (urban) spaces and sexuality, and it produces new data and insights on the quality-of-life of this subpopulation. Our findings allow for urban (policy) planning and limiting violence and discrimination and improving the collective wellbeing and social cohesion.Keywords: urban sexual geographies, LGBTI, socio-economic status, Vienna, sitizenship status
Procedia PDF Downloads 3511128 Precision Pest Management by the Use of Pheromone Traps and Forecasting Module in Mobile App
Authors: Muhammad Saad Aslam
Abstract:
In 2021, our organization has launched our proprietary mobile App i.e. Farm Intelligence platform, an industrial-first precision agriculture solution, to Pakistan. It was piloted at 47 locations (spanning around 1,200 hectares of land), addressing growers’ pain points by bringing the benefits of precision agriculture to their doorsteps. This year, we have extended its reach by more than 10 times (nearly 130,000 hectares of land) in almost 600 locations across the country. The project team selected highly infested areas to set up traps, which then enabled the sales team to initiate evidence-based conversations with the grower community about preventive crop protection products that includes pesticides and insecticides. Mega farmer meeting field visits and demonstrations plots coupled with extensive marketing activities, were setup to include farmer community. With the help of App real-time pest monitoring (using heat maps and infestation prediction through predictive analytics) we have equipped our growers with on spot insights that will help them optimize pesticide applications. Heat maps allow growers to identify infestation hot spots to fine-tune pesticide delivery, while predictive analytics enable preventive application of pesticides before the situation escalates. Ultimately, they empower growers to keep their crops safe for a healthy harvest.Keywords: precision pest management, precision agriculture, real time pest tracking, pest forecasting
Procedia PDF Downloads 921127 Improved Classification Procedure for Imbalanced and Overlapped Situations
Authors: Hankyu Lee, Seoung Bum Kim
Abstract:
The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.Keywords: classification, imbalanced data with class overlap, split data space, support vector machine
Procedia PDF Downloads 3081126 Hydrological Evaluation of Satellite Precipitation Products Using IHACRES Rainfall-Runoff Model over a Basin in Iran
Authors: Mahmoud Zakeri Niri, Saber Moazami, Arman Abdollahipour, Hossein Ghalkhani
Abstract:
The objective of this research is to hydrological evaluation of four widely-used satellite precipitation products named PERSIANN, TMPA-3B42V7, TMPA-3B42RT, and CMORPH over Zarinehrood basin in Iran. For this aim, at first, daily streamflow of Sarough-cahy river of Zarinehrood basin was simulated using IHACRES rainfall-runoff model with daily rain gauge and temperature as input data from 1988 to 2008. Then, the model was calibrated in two different periods through comparison the simulated discharge with the observed one at hydrometric stations. Moreover, in order to evaluate the performance of satellite precipitation products in streamflow simulation, the calibrated model was validated using daily satellite rainfall estimates from the period of 2003 to 2008. The obtained results indicated that TMPA-3B42V7 with CC of 0.69, RMSE of 5.93 mm/day, MAE of 4.76 mm/day, and RBias of -5.39% performs better simulation of streamflow than those PERSIANN and CMORPH over the study area. It is noteworthy that in Iran, the availability of ground measuring station data is very limited because of the sparse density of hydro-meteorological networks. On the other hand, large spatial and temporal variability of precipitations and lack of a reliable and extensive observing system are the most important challenges to rainfall analysis, flood prediction, and other hydrological applications in this country.Keywords: hydrological evaluation, IHACRES, satellite precipitation product, streamflow simulation
Procedia PDF Downloads 2421125 How Envisioning Process Is Constructed: An Exploratory Research Comparing Three International Public Televisions
Authors: Alexandre Bedard, Johane Brunet, Wendellyn Reid
Abstract:
Public Television is constantly trying to maintain and develop its audience. And to achieve those goals, it needs a strong and clear vision. Vision or envision is a multidimensional process; it is simultaneously a conduit that orients and fixes the future, an idea that comes before the strategy and a mean by which action is accomplished, from a business perspective. Also, vision is often studied from a prescriptive and instrumental manner. Based on our understanding of the literature, we were able to explain how envisioning, as a process, is a creative one; it takes place in the mind and uses wisdom and intelligence through a process of evaluation, analysis and creation. Through an aggregation of the literature, we build a model of the envisioning process, based on past experiences, perceptions and knowledge and influenced by the context, being the individual, the organization and the environment. With exploratory research in which vision was deciphered through the discourse, through a qualitative and abductive approach and a grounded theory perspective, we explored three extreme cases, with eighteen interviews with experts, leaders, politicians, actors of the industry, etc. and more than twenty hours of interviews in three different countries. We compared the strategy, the business model, and the political and legal forces. We also looked at the history of each industry from an inertial point of view. Our analysis of the data revealed that a legitimacy effect due to the audience, the innovation and the creativity of the institutions was at the cornerstone of what would influence the envisioning process. This allowed us to identify how different the process was for Canadian, French and UK public broadcasters, although we concluded that the three of them had a socially constructed vision for their future, based on stakeholder management and an emerging role for the managers: ideas brokers.Keywords: envisioning process, international comparison, television, vision
Procedia PDF Downloads 1351124 Torque Loss Prediction Test Method of Bolted Joints in Heavy Commercial Vehicles
Authors: Volkan Ayik
Abstract:
Loosening as a result of torque loss in bolted joints is one of the most encountered problems resulting in loss of connection between parts. The main reason for this is the dynamic loads to which the joints are subjected while the vehicle is moving. In particular, vibration-induced loads can loosen the joints in any size and geometry. The aim of this study is to study an improved method due to road-induced vibration in heavy commercial vehicles for estimating the vibration performance of bolted joints of the components connected to the chassis, before conducting prototype level vehicle structural strength tests on a proving ground. The frequency and displacements caused by the road conditions-induced vibration loads have been determined for the parts connected to the chassis, and various experimental design scenarios have been formed by matching specific components and vibration behaviors. In the studies, the performance of the torque, washer, test displacement, and test frequency parameters were observed by maintaining the connection characteristics on the vehicle, and the sensitivity ratios for these variables were calculated. As a result of these experimental design findings, tests performed on a developed device based on Junker’s vibration device and proving ground conditions versus test correlation levels were found.Keywords: bolted joints, junker’s test, loosening failure, torque loss
Procedia PDF Downloads 1251123 Technology in the Calculation of People Health Level: Design of a Computational Tool
Authors: Sara Herrero Jaén, José María Santamaría García, María Lourdes Jiménez Rodríguez, Jorge Luis Gómez González, Adriana Cercas Duque, Alexandra González Aguna
Abstract:
Background: Health concept has evolved throughout history. The health level is determined by the own individual perception. It is a dynamic process over time so that you can see variations from one moment to the next. In this way, knowing the health of the patients you care for, will facilitate decision making in the treatment of care. Objective: To design a technological tool that calculates the people health level in a sequential way over time. Material and Methods: Deductive methodology through text analysis, extraction and logical knowledge formalization and education with expert group. Studying time: September 2015- actually. Results: A computational tool for the use of health personnel has been designed. It has 11 variables. Each variable can be given a value from 1 to 5, with 1 being the minimum value and 5 being the maximum value. By adding the result of the 11 variables we obtain a magnitude in a certain time, the health level of the person. The health calculator allows to represent people health level at a time, establishing temporal cuts being useful to determine the evolution of the individual over time. Conclusion: The Information and Communication Technologies (ICT) allow training and help in various disciplinary areas. It is important to highlight their relevance in the field of health. Based on the health formalization, care acts can be directed towards some of the propositional elements of the concept above. The care acts will modify the people health level. The health calculator allows the prioritization and prediction of different strategies of health care in hospital units.Keywords: calculator, care, eHealth, health
Procedia PDF Downloads 2651122 Modeling of Full Range Flow Boiling Phenomenon in 23m Long Vertical Steam Generator Tube
Authors: Chaitanya R. Mali, V. Vinod, Ashwin W. Patwardhan
Abstract:
Design of long vertical steam generator (SG) tubes in nuclear power plant involves an understanding of different aspects of flow boiling phenomenon such as flow instabilities, flow regimes, dry out, critical heat flux, pressure drop, etc. The knowledge of the prediction of local thermal hydraulic characteristics is necessary to understand these aspects. For this purpose, the methodology has been developed which covers all the flow boiling regimes to model full range flow boiling phenomenon. In this methodology, the vertical tube is divided into four sections based on vapor fraction value at the end of each section. Different modeling strategies have been applied to the different sections of the vertical tube. Computational fluid dynamics simulations have been performed on a vertical SG tube of 0.0126 m inner diameter and 23 m length. The thermal hydraulic parameters such as vapor fraction, liquid temperature, heat transfer coefficient, pressure drop, heat flux distribution have been analyzed for different designed heat duties (1.1 MW (20%) to 3.3 MW (60%)) and flow conditions (10 % to 80 %). The sensitivity of different boiling parameters such as bubble departure diameter, nucleation site density, bubble departure frequency on the thermal hydraulic parameters was also studied. Flow instability has been observed at 20 % designed heat duty and 20 % flow conditions.Keywords: thermal hydraulics, boiling, vapor fraction, sensitivity
Procedia PDF Downloads 1471121 Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy
Authors: K. Petcharaporn
Abstract:
The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.Keywords: tomato, mold, quality, prediction, transmittance
Procedia PDF Downloads 3631120 Quantitative Structure-Activity Relationship Analysis of Binding Affinity of a Series of Anti-Prion Compounds to Human Prion Protein
Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Milica Karadžić
Abstract:
The present study is based on the quantitative structure-activity relationship (QSAR) analysis of eighteen compounds with anti-prion activity. The structures and anti-prion activities (expressed in response units, RU%) of the analyzed compounds are taken from CHEMBL database. In the first step of analysis 85 molecular descriptors were calculated and based on them the hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out in order to detect potential significant similarities or dissimilarities among the studied compounds. The calculated molecular descriptors were physicochemical, lipophilicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) descriptors. The first stage of the QSAR analysis was simple linear regression modeling. It resulted in one acceptable model that correlates Henry's law constant with RU% units. The obtained 2D-QSAR model was validated by cross-validation as an internal validation method. The validation procedure confirmed the model’s quality and therefore it can be used for prediction of anti-prion activity. The next stage of the analysis of anti-prion activity will include 3D-QSAR and molecular docking approaches in order to select the most promising compounds in treatment of prion diseases. These results are the part of the project No. 114-451-268/2016-02 financially supported by the Provincial Secretariat for Science and Technological Development of AP Vojvodina.Keywords: anti-prion activity, chemometrics, molecular modeling, QSAR
Procedia PDF Downloads 3041119 A Machine Learning Approach for Earthquake Prediction in Various Zones Based on Solar Activity
Authors: Viacheslav Shkuratskyy, Aminu Bello Usman, Michael O’Dea, Saifur Rahman Sabuj
Abstract:
This paper examines relationships between solar activity and earthquakes; it applied machine learning techniques: K-nearest neighbour, support vector regression, random forest regression, and long short-term memory network. Data from the SILSO World Data Center, the NOAA National Center, the GOES satellite, NASA OMNIWeb, and the United States Geological Survey were used for the experiment. The 23rd and 24th solar cycles, daily sunspot number, solar wind velocity, proton density, and proton temperature were all included in the dataset. The study also examined sunspots, solar wind, and solar flares, which all reflect solar activity and earthquake frequency distribution by magnitude and depth. The findings showed that the long short-term memory network model predicts earthquakes more correctly than the other models applied in the study, and solar activity is more likely to affect earthquakes of lower magnitude and shallow depth than earthquakes of magnitude 5.5 or larger with intermediate depth and deep depth.Keywords: k-nearest neighbour, support vector regression, random forest regression, long short-term memory network, earthquakes, solar activity, sunspot number, solar wind, solar flares
Procedia PDF Downloads 741118 Novel Urban Regulation Panorama in Latin America
Authors: Yeimis Milton, Palomino Pichihua
Abstract:
The city, like living organisms, originates from codes, structured information in the form of rules that condition the physical form and performance of urban space. Usually, the so-called urban codes clash with the spontaneous nature of the city, with the urban Kháos that contextualizes the free creation (poiesis) of human collectives. This contradiction is especially evident in Latin America, which, like other developing regions, lacks adequate instruments to guide urban growth. Thus constructing a hybrid between the formal and informal city, categories that are difficult to separate one from the other. This is a comparative study focusing on the urban codes created to address the pandemic. The objective is to build an overview of these innovations in the region. The sample is made up of official norms published in pandemic, directly linked to urban planning and building control (urban form). The countries analyzed are Brazil, Mexico, Argentina, Peru, Colombia, and Chile. The study uncovers a shared interest in facing future urban problems, in contrast to the inconsistency of proposed legal instruments. Factors such as the lack of articulation, validity time, and ambiguity, among others, accentuate this problem. Likewise, it evidences that the political situation of each country has a significant influence on the development of these norms and the possibility of their long-term impact. In summary, the global emergency has produced opportunities to transform urban systems from their internal rules; however, there are very few successful examples in this field. Therefore, Latin American cities have the task of learning from this defeat in order to lay the foundations for a more resilient and sustainable urban future.Keywords: pandemic, regulation, urban planning, latin America
Procedia PDF Downloads 1011117 Detection of Internal Mold Infection of Intact For Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy
Authors: K. Petcharaporn, N. Prathengjit
Abstract:
The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.Keywords: tomato, mold, quality, prediction, transmittance
Procedia PDF Downloads 5191116 A Radiographic Superimposition in Orthognathic Surgery of Class III Skeletal Malocclusion
Authors: Albert Suryaprawira
Abstract:
Patients requiring correction of severe Class III skeletal discrepancy historically has been among the most challenging treatments for orthodontists. Correction of an aesthetic and functional problem is crucially important. This is a case report of an adult male aged 18 years who complained of difficulty in chewing and speaking. Patient has a prominent profile with mandibular excess. The pre-treatment cephalometric radiograph was taken to analyse the skeletal problem and to measure the amount of bone movement and the prediction soft tissue response. The panoramic radiograph was also taken to analyse bone quality, bone abnormality, third molar impaction, etc. Before the surgery, the pre-surgical cephalometric radiograph was taken to re-evaluate the plan and to settle the final amount of bone cut. After the surgery, the post-surgical cephalometric radiograph was taken to confirm the result with the plan. The superimposition between those radiographs was performed to analyse the outcome. It includes the superimposition of the cranial base, maxilla, and mandible. Superimposition is important to describe the amount of hard and soft tissue movement. It is also important to predict the possibility of relapse after the surgery. The patient needs to understand all the surgical plan, outcome and relapse prevention. The surgery included mandibular set back by bilateral sagittal split osteotomies. Although the discrepancy was severe using this combination of treatment and the use of radiographic superimposition, an aesthetically pleasing and stable result was achieved.Keywords: cephalometric, mandibular set back, orthognathic, superimposition
Procedia PDF Downloads 2581115 Ethical Implications of Gaps in the Implementation Process of the Circular Economy: Special Focus on Underdeveloped Countries
Authors: Sujith Gunawardhana
Abstract:
The circular economy is a system in which resources and energy are derived from renewable sources, utilized efficiently, recycled, and reused to reduce waste, reduce nonrenewable resource consumption, and mitigate negative environmental impacts. However, it poses moral questions about sustainability, the environment, and societal issues. Many societies face challenges when implementing the circular economy, as the concept is still young. The equitable distribution of the advantages and costs of circularity should be ensured during implementation, as some communities, particularly disadvantaged or marginalized ones, may suffer unfairly disproportionately from the harmful effects of production and recycling facilities. Prioritizing the health and safety of workers, communities, and the environment is essential, and strict rules must be implemented to guard against harm. However, most underdeveloped countries need a legal safeguard for this situation. The ultimate objective of the circular economy is to improve social, environmental, and economic performance, but its implementation also requires consideration of the ethics of care and non-epistemic values. Those are often hindered in underdeveloped countries, as the availability of infrastructure and technology, affordability, and legislative framework are poor. To achieve long-term success in the circular economy, evaluating implementation steps and considering health, safety, environmental, and social risks is crucial. To implement the circular economy, respect ethics of care and non-epistemic values. Adopt Kantian Ethics and control technology design to ensure equal benefits for all involved. Ethical gaps may lead underdeveloped countries to generate social pressure against the circular economy.Keywords: circular economy, ethics, values, sustainability
Procedia PDF Downloads 117