Search results for: ionic amino acid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3894

Search results for: ionic amino acid

1014 Distribution Patterns of Trace Metals in Soils of Gbongan-Odeyinka-Orileowu Area, Southwestern Nigeria

Authors: T. A. Adesiyan, J. A. Adekoya A. Akinlua, N. Torto

Abstract:

One hundred and eighty six in situ soil samples of the B–horizon were collected around Gbongan–Odeyinka-Orileowu area, southwestern Nigeria, delineated by longitude 4°15l and 4°30l and latitude 7°14l and 7°31 for a reconnaissance geochemical soil survey. The objective was to determine the distribution pattern of some trace metals in the area with a view to discovering any indication of metallic mineralization. The samples were air–dried and sieved to obtain the minus 230 µ fractions which were used for pH determinations and subjected to hot aqua regia acid digestion. The solutions obtained were analyzed for Ag, As, Au, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, and Zn using atomic absorption spectrometric methods. The resulting data were subjected to simple statistical treatment and used in preparing distribution maps of the elements. With these, the spatial distributions of the elements in the area were discussed. The pH of the soils range from 4.70 to 7.59 and this reflects the geochemical distribution patterns of trace metals in the area. The spatial distribution maps of the elements showed similarity in the distributions of Co, Cr, Fe, Ni, Mn and Pb. This suggests close associations between these elements none of which showed any significant anomaly in the study. The associations might be due to the scavenging actions of Fe–Mn oxides on the elements. Only Ag, Au and Sn on one hand and Zn on the other hand showed significant anomalies, which are thought to be due to mineralization and anthropogenic activities respectively.

Keywords: distribution, metals, Gbongan, Nigeria, mineralization anthropogenic

Procedia PDF Downloads 321
1013 Growth and Some Physiological Properties of Three Selected Species of Bifidobacteria in Admixture of Soy Milk and Goat Milk

Authors: Ahmed Zahran

Abstract:

Bifidobacterium breve ATCC 15700, Bifidobacterium adolescents ATCC 15704 and Bifidobacterium longum ATCC 15707 were tested for their growth, acid production, bile tolerance, antibiotic resistance and adherence to columnar epithelial cells of the small intestine of goat. The growth of all studied species was determined in the MRSL medium. B.longum 15707 was the most active species in comparison with the other two species; it was also more resistant to bile acids. The adhesion of the studied species to the columnar epithelial cells was studied. All the studied species showed some degree of adhesion; however, B.longum adhered more than the other two species. This species was resistant to four types of antibiotics and was sensitive to chloramphenicol 30 µg. The activity of Bifidobacterium species in soymilk was evaluated by measuring the development of titratalle acidity. B.longum 15707 was the most active species in terms of growth and activity of soymilk. So, soymilk containing bifidobacteria could be added to goat milk to produce acceptable functional soy yogurt, using the ratio of (1:4) soy milk to goat milk. This product could be of unique health benefits, especially in the case of high cholesterol levels and replenishment of intestinal flora after antibiotic therapy.

Keywords: bifidobacteria physiological properties, soy milk, goat milk, attachment epithelial cells, columnar tissues, probiotic food

Procedia PDF Downloads 82
1012 Cu Nanoparticle Embedded-Zno Nanoplate Thin Films for Highly Efficient Photocatalytic Hydrogen Production

Authors: Premrudee Promdet, Fan Cui, Gi Byoung Hwang, Ka Chuen To, Sanjayan Sathasivam, Claire J. Carmalt, Ivan P. Parkin

Abstract:

A novel single-step fabrication of Cu nanoparticle embedded ZnO (Cu.ZnO) thin films was developed by aerosol-assisted chemical vapor deposition for stable and efficient hydrogen production in Photoelectrochemical (PEC) cell. In this approach, the Cu.ZnO nanoplate thin films were grown by using acetic acid to promote preferential growth and enhance surface active sites, where Cu nanoparticles can be formed under chemical deposition by reduction of Cu salt. Studies using photoluminescence spectroscopy indicate the enhanced photocatalytic performance is attributed to hot electron generated from SPR. The Cu metal in the composite material is functioning as a sensitizer to supply electrons to the semiconductor resulting in enhanced electron density for redox reaction. This work not only describes a way to obtain photoanodes with high photocatalytic activity but also suggests a low-cost route towards production of photocatalysts for hydrogen production. This work also supports a vital need to understand electron transfer between photoexcited semiconductor materials and metals, a requirement for tailoring the properties of semiconductor/metal composites.

Keywords: photocatalysis, photoelectrochemical cell (PEC), aerosol-assisted chemical vapor deposition (AACVD), surface plasmon resonance (SPR)

Procedia PDF Downloads 217
1011 Evaluation of Lead II Adsorption in Porous Structures Manufactured from Chitosan, Hydroxiapatite and Moringa

Authors: Mishell Vaca, Gema Gonzales, Francisco Quiroz

Abstract:

Heavy metals present in wastewater constitute a danger for living beings in general. In Ecuador, one of the sources of contamination is artisanal mining whose liquid effluents, in many of the cases without prior treatment, are discharged to the surrounding rivers. Lead is a pollutant that accumulated in the body causes severe health effects. Nowadays, there are several treatment methods to reduce this pollutant. The aim of this study is to reduce the concentration of lead II through the use of a porous material formed by a matrix of chitosan, in which hydroxyapatite and moringa particles smaller than 53 um are suspended. These materials are not toxic to the environment, and each one adsorbs metals independently, so the synergic effect between them will be evaluated. The synthesized material has a cylindrical design that allows increasing the surface area, which is expected to have greater capacity of adsorption. It has been determined that the best conditions for its preparation are to dissolve the chitosan in 1% v/v acetic acid with a pH = 5, then the hydroxyapatite and moringa are added to the mixture with magnetic stirring. This suspension is frozen, lyophilized and finally dried. In order to evaluate the performance of the synthesized material, synthetic solutions of lead are prepared at different concentrations, and the percentage of removal is evaluated. It is expected to have an effluent whose lead content is less than 0.2 mg/L which is the limit maximum allowable according to established environmental standards.

Keywords: adsorption, chitosan, hydroxyapatite, lead, moringa, water treatment

Procedia PDF Downloads 159
1010 Functional Characterization of Transcriptional Regulator WhiB Proteins of Mycobacterium Tuberculosis

Authors: Sonam Kumari

Abstract:

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, possesses a remarkable feature of entering into and emerging from a persistent state. The mechanism by which Mtb switches from the dormant state to the replicative form is still poorly characterized. Proteome studies have given us an insight into the role of certain proteins in giving stupendous virulence to Mtb, but numerous dotsremain unconnected and unaccounted. The WhiB family of proteins is one such protein that is associated with developmental processes in actinomycetes.Mtb has seven such proteins (WhiB1 to WhiB7).WhiB proteins are transcriptional regulators; their conserved C-terminal HTH motif is involved in DNA binding. They regulate various essential genes of Mtbby binding to their promoter DNA. Biophysical Analysis of the effect of DNA binding on WhiB proteins has not yet been appropriately characterized. Interaction with DNA induces conformational changes in the WhiB proteins, confirmed by steady-state fluorescence and circular dichroism spectroscopy. ITC has deduced thermodynamic parameters and the binding affinity of the interaction. Since these transcription factors are highly unstable in vitro, their stability and solubility were enhanced by the co-expression of molecular chaperones. The present study findings help determine the conditions under which the WhiB proteins interact with their interacting partner and the factors that influence their binding affinity. This is crucial in understanding their role in regulating gene expression in Mtbandin targeting WhiB proteins as a drug target to cure TB.

Keywords: tuberculosis, WhiB proteins, mycobacterium tuberculosis, nucleic acid binding

Procedia PDF Downloads 102
1009 Antimicrobial, Antioxidant and Free Radical Scavenging Activities of Essential Oils Extracted from Six Eucalyptus Species

Authors: Sanaa K. Bardaweel, Mohammad M. Hudaib, Khaled A. Tawaha, Rasha M. Bashatwah

Abstract:

Eucalyptus species are well reputed for their traditional use in Asia as well as in other parts of the world; therefore, the present study was designed to investigate the antimicrobial and antioxidant activities associated with essential oils from different Eucalyptus species. Essential oils from the leaves of six Eucalyptus species, including: Eucalyptus woodwardi, Eucalyptus stricklandii, Eucalyptus salubris, Eucalyptus sargentii, Eucalyptus torquata and Eucalyptus wandoo were separated by hydrodistillation and dried over anhydrous sodium sulphate. DPPH, ferric reducing antioxidant power, and hydroxyl radical scavenging activity assays were carried out to evaluate the antioxidant potential of the oils. The results indicate that examined oils exhibit substantial antioxidant activities relative to ascorbic acid. Previously, these oils were evaluated for their antimicrobial activities, against wide range of bacterial and fungal strains, and they were shown to possess significant antimicrobial activities. In this study, further investigation into the growth kinetics of oil-treated microbial cultures was conducted. The results clearly demonstrate that the microbial growth was markedly inhibited when treated with sub-MIC concentrations of the oils. Taken together, the results obtained indicate a high potential of the examined essential oils as bioactive oils, for nutraceutical and medical applications, possessing significant antioxidant and anti microbial activities.

Keywords: antimicrobial, antioxidants, essential (volatile) oil, Eucalyptus

Procedia PDF Downloads 402
1008 Development of Filling Material in 3D Printer with the Aid of Computer Software for Supported with Natural Zeolite for the Removal of Nitrogen and Phosphorus

Authors: Luís Fernando Cusioli, Leticia Nishi, Lucas Bairros, Gabriel Xavier Jorge, Sandro Rogério Lautenschalager, Celso Varutu Nakamura, Rosângela Bergamasco

Abstract:

Focusing on the elimination of nitrogen and phosphorus from sewage, the study proposes to face the challenges of eutrophication and to optimize the effectiveness of sewage treatment through biofilms and filling produced by a 3D printer, seeking to identify the most effective Polylactic Acid (PLA), Acrylonitrile Butadiene Styrene (ABS). The study also proposes to evaluate the nitrification process in a Submerged Aerated Biological Filter (FBAS) on a pilot plant scale, quantifying the removal of nitrogen and phosphorus. The experiment will consist of two distinct phases, namely, a bench stage and the implementation of a pilot plant. During the bench stage, samples will be collected at five points to characterize the microbiota. Samples will be collected, and the microbiota will be investigated using Fluorescence In Situ Hybridization (FISH), deepening the understanding of the performance of biofilms in the face of multiple variables. In this context, the study contributes to the search for effective solutions to mitigate eutrophication and, thus, strengthen initiatives to improve effluent treatment.

Keywords: eutrophication, sewage treatment, biofilms, nitrogen and phosphorus removal, 3d printer, environmental efficiency

Procedia PDF Downloads 87
1007 Carvacrol Attenuates Lung Injury in Rats with Severe Acute Pancreatitis

Authors: Salim Cerig, Fatime Geyikoglu, Pınar Akpulat, Suat Colak, Hasan Turkez, Murat Bakir, Mirkhalil Hosseinigouzdagani, Kubra Koc

Abstract:

This study was designed to evaluate whether carvacrol (CAR) could provide protection against lung injury by acute pancreatitis development. The rats were randomized into groups to receive (I) no therapy; (II) 50 μg/kg cerulein at 1h intervals by four intraperitoneal injections (i.p.); (III) 50, 100 and 200 mg/kg CAR by one i.p.; and (IV) cerulein+CAR after 2h of cerulein injection. 12h later, serum samples were obtained to assess pancreatic function the lipase and amylase values. The animals were euthanized and lung samples were excised. The specimens were stained with hematoxylin-eosin (H&E), periodic acid–Schif (PAS), Mallory's trichrome and amyloid. Additionally, oxidative DNA damage was determined by measuring as increases in 8-hydroxy-deoxyguanosine (8-OH-dG) adducts. The results showed that the serum activity of lipase and amylase in AP rats were significantly reduced after the therapy (p<0.05). We also found that the 100 mg/kg dose of CAR significantly decreased 8-OH-dG levels. Moreover, the severe pathological findings in the lung such as necrosis, inflammation, congestion, fibrosis, and thickened alveolar septum were attenuated in the AP+CAR groups when compared with AP group. Finally, the magnitude of the protective effect on lung is certain, and CAR is an effective therapy for lung injury caused by AP.

Keywords: antioxidant activity, acute pancreatitis, carvacrol, experimental, lung injury, oxidative DNA damage

Procedia PDF Downloads 367
1006 The Effect of Traffic on Harmful Metals and Metalloids in the Street Dust and Surface Soil from Urban Areas of Tehran, Iran: Levels, Distribution and Chemical Partitioning Based on Single and Sequential Extraction Procedures

Authors: Hossein Arfaeinia, Ahmad Jonidi Jafari, Sina Dobaradaran, Sadegh Niazi, Mojtaba Ehsanifar, Amir Zahedi

Abstract:

Street dust and surface soil samples were collected from very heavy, heavy, medium and low traffic areas and natural site in Tehran, Iran. These samples were analyzed for some physical–chemical features, total and chemical speciation of selected metals and metalloids (Zn, Al, Sr, Pb, Cu, Cr, Cd, Co, Ni, and V) to study the effect of traffic on their mobility and accumulation in the environment. The pH, electrical conductivity (EC), carbonates and organic carbon (OC) values were similar in soil and dust samples from similar traffic areas. The traffic increases EC contents in dust/soil matrixes but has no effect on concentrations of metals and metalloids in soil samples. Rises in metal and metalloids levels with traffic were found in dust samples. Moreover, the traffic increases the percentage of acid soluble fraction and Fe and Mn oxides associated fractions of Pb and Zn. The mobilization of Cu, Zn, Pb, Cr in dust samples was easier than in soil. The speciation of metals and metalloids except Cd is mainly affected by physicochemical features in soil, although total metals and metalloids affected the speciation in dust samples (except chromium and nickel).

Keywords: street dust, surface soil, traffic, metals, metalloids, chemical speciation

Procedia PDF Downloads 254
1005 Effect of Ultrasound on Carotenoids Extraction from Pepper and Process Optimization Using Response Surface Methodology (RSM)

Authors: Elham Mahdian, Reza Karazhian, Rahele Dehghan Tanha

Abstract:

Pepper (Capsicum annum L.) which belong to the family Solananceae, are known for their versatility as a vegetable crop and are consumed both as fresh vegetables or dehydrated for spices. Pepper is considered an excellent source of bioactive nutrients. Ascorbic acid, carotenoids and phenolic compounds are its main antioxidant constituents. Ultrasound assisted extraction is an inexpensive, simple and efficient alternative to conventional extraction techniques. The mechanism of action for ultrasound-assisted extraction are attributed to cavitations, mechanical forces and thermal impact, which result in disruption of cells walls, reduce particle size, and enhance mass transfer across cell membranes. In this study, response surface methodology was used to optimize experimental conditions for ultrasonic assisted extraction of carotenoid compounds from Chili peppers. Variables were included extraction temperatures at 3 levels (30, 40 and 50 °C), extraction times at 3 levels (10, 25 and 40 minutes) and power at 3 levels (30, 60 and 90 %). It was observed that ultrasound waves applied at temperature of 49°C, time of 10 minutes and power 89 % resulted to the highest carotenoids contents (lycopene and β-carotene), while the lowest value was recorded in the control. Thus, results showed that ultrasound waves have strong impact on extraction of carotenoids from pepper.

Keywords: carotenoids, optimization, pepper, response surface methodology

Procedia PDF Downloads 473
1004 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles

Authors: K. Verma, v. S. Moholkar

Abstract:

In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.

Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation

Procedia PDF Downloads 66
1003 Immobilization of Superoxide Dismutase Enzyme on Layered Double Hydroxide Nanoparticles

Authors: Istvan Szilagyi, Marko Pavlovic, Paul Rouster

Abstract:

Antioxidant enzymes are the most efficient defense systems against reactive oxygen species, which cause severe damage in living organisms and industrial products. However, their supplementation is problematic due to their high sensitivity to the environmental conditions. Immobilization on carrier nanoparticles is a promising research direction towards the improvement of their functional and colloidal stability. In that way, their applications in biomedical treatments and manufacturing processes in the food, textile and cosmetic industry can be extended. The main goal of the present research was to prepare and formulate antioxidant bionanocomposites composed of superoxide dismutase (SOD) enzyme, anionic clay (layered double hydroxide, LDH) nanoparticle and heparin (HEP) polyelectrolyte. To characterize the structure and the colloidal stability of the obtained compounds in suspension and solid state, electrophoresis, dynamic light scattering, transmission electron microscopy, spectrophotometry, thermogravimetry, X-ray diffraction, infrared and fluorescence spectroscopy were used as experimental techniques. LDH-SOD composite was synthesized by enzyme immobilization on the clay particles via electrostatic and hydrophobic interactions, which resulted in a strong adsorption of the SOD on the LDH surface, i.e., no enzyme leakage was observed once the material was suspended in aqueous solutions. However, the LDH-SOD showed only limited resistance against salt-induced aggregation and large irregularly shaped clusters formed during short term interval even at lower ionic strengths. Since sufficiently high colloidal stability is a key requirement in most of the applications mentioned above, the nanocomposite was coated with HEP polyelectrolyte to develop highly stable suspensions of primary LDH-SOD-HEP particles. HEP is a natural anticoagulant with one of the highest negative line charge density among the known macromolecules. The experimental results indicated that it strongly adsorbed on the oppositely charged LDH-SOD surface leading to charge inversion and to the formation of negatively charged LDH-SOD-HEP. The obtained hybrid materials formed stable suspension even under extreme conditions, where classical colloid chemistry theories predict rapid aggregation of the particles and unstable suspensions. Such a stabilization effect originated from electrostatic repulsion between the particles of the same sign of charge as well as from steric repulsion due to the osmotic pressure raised during the overlap of the polyelectrolyte chains adsorbed on the surface. In addition, the SOD enzyme kept its structural and functional integrity during the immobilization and coating processes and hence, the LDH-SOD-HEP bionanocomposite possessed excellent activity in decomposition of superoxide radical anions, as revealed in biochemical test reactions. In conclusion, due to the improved colloidal stability and the good efficiency in scavenging superoxide radical ions, the developed enzymatic system is a promising antioxidant candidate for biomedical or other manufacturing processes, wherever the aim is to decompose reactive oxygen species in suspensions.

Keywords: clay, enzyme, polyelectrolyte, formulation

Procedia PDF Downloads 266
1002 Visualization of Corrosion at Plate-Like Structures Based on Ultrasonic Wave Propagation Images

Authors: Aoqi Zhang, Changgil Lee Lee, Seunghee Park

Abstract:

A non-contact nondestructive technique using laser-induced ultrasonic wave generation method was applied to visualize corrosion damage at aluminum alloy plate structures. The ultrasonic waves were generated by a Nd:YAG pulse laser, and a galvanometer-based laser scanner was used to scan specific area at a target structure. At the same time, wave responses were measured at a piezoelectric sensor which was attached on the target structure. The visualization of structural damage was achieved by calculating logarithmic values of root mean square (RMS). Damage-sensitive feature was defined as the scattering characteristics of the waves that encounter corrosion damage. The corroded damage was artificially formed by hydrochloric acid. To observe the effect of the location where the corrosion was formed, the both sides of the plate were scanned with same scanning area. Also, the effect on the depth of the corrosion was considered as well as the effect on the size of the corrosion. The results indicated that the damages were successfully visualized for almost cases, whether the damages were formed at the front or back side. However, the damage could not be clearly detected because the depth of the corrosion was shallow. In the future works, it needs to develop signal processing algorithm to more clearly visualize the damage by improving signal-to-noise ratio.

Keywords: non-destructive testing, corrosion, pulsed laser scanning, ultrasonic waves, plate structure

Procedia PDF Downloads 299
1001 Human Absorbed Dose Estimation of a New In-111 Imaging Agent Based on Rat Data

Authors: H. Yousefnia, S. Zolghadri

Abstract:

The measurement of organ radiation exposure dose is one of the most important steps to be taken initially, for developing a new radiopharmaceutical. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In-1,4,7,10-tetraazacyclododecane-1,4,7,10 tetraethylene phosphonic acid (111In-DOTMP) complex, have been carried out to estimate the dose in human organs based on the data derived from rats. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian rats at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the rats by the radiation absorbed dose assessment resource (RADAR) method. 111In-DOTMP complex was prepared with high radiochemical purity of >99% (ITLC). Total body effective absorbed dose for 111In-DOTMP was 0.061 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In-DOTMP has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.

Keywords: In-111, DOTMP, Internal Dosimetry, RADAR

Procedia PDF Downloads 406
1000 Evaluation of Moroccan Microalgae Spirulina platensis as a Potential Source of Natural Antioxidants

Authors: T. Ould Bellahcen, A. Amiri, I. Touam, F. Hmimid, A. El Amrani, M. Cherki

Abstract:

The antioxidant activity of three extracts (water, lipidic and ethanolic) prepared from the microalgae Spirulina platensis isolated from Moroccan lake, using 2, 2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis ethylbenzthiazoline-6-sulfonic acid (ABTS) radical assay, was studied and compared. The obtained results revealed that the IC₅₀ found using DPPH were lower than that of ABTS for all extracts from these planktonic blue-green algae. The high levels of phenolic and flavonoid content were found in the ethanolic extract 0,33 ± 0,01 mg GAE/g dw and 0,21 ± 0,01 mg quercetin/g dw respectively. In addition, using DPPH, the highest activity with IC₅₀ = 0,449 ± 0,083 mg/ml, was found for the ethanolic extract, followed by that of lipidic extract (IC₅₀ = 0,491 ± 0,059 mg/ml). The lowest activity was for the aqueous extract (IC₅₀ = 4,148 ± 0,132 mg/ml). For ABTS, the highest activity was observed for the lipidic extract with IC₅₀ = 0,740 ± 0,012 mg/ml, while, the aqueous extract recorded the lowest activity (IC₅₀ = 6,914 ± 0, 0067 mg/ml). A moderate activity was showed for the ethanolic extract (IC₅₀ = 5,852 ± 0, 0171 mg/ml). It can be concluded from this first study that Spirulina platensis extracts show an interesting antioxidant and antiradicals properties suggesting that this alga could be used as a potential source of antioxidants. A qualitative and quantitative analysis of polyphenol and flavonoids in the extracts using HPLC is in progress so as to study the correlation between the antioxidant activity and chemical composition.

Keywords: Spirulina platensis, antioxidant, DPPH, ABTS

Procedia PDF Downloads 164
999 Effects of Novel Protease Enzyme From Bacillus subtilis on Low Protein and Low Energy Guar Meal (Cyamopsis tetragonoloba) Meal Based Diets on Performance and Nutrients Digestibility in Broilers

Authors: Aqeel Ahmed Shad, Tanveer Ahmad, Muhammad Farooq Iqbal, Muhammad Javaid Asad

Abstract:

The supplemental effects of novel protease produced from Bacillus subtilis K-5 and beta-mannanase were evaluated on growth performance, carcass characteristics, nutrients digestibility, blood profile and intestinal morphometry of broilers fed guar meal (Cyamopsis tetragonoloba) based diets with reduced Crude Protein (CP), Essential Amino Acids (EAAs), and Metabolizable energy (ME) contents. One-day old Ross 308 broiler chicks (n=360) were randomly allotted to thirty six experimental units in a way that each of the nine dietary treatments received four replicates with ten birds per replicate. A control diet without guar meal (0GM) was formulated with standard nutrient specifications of Ross 308 for the starter and finisher phases. Two negative control diets, one with 5% (5GM) and second with 10% (10GM) guar meal, were formulated with reduction of 5% CP, 5% EAAs and 80 Kcal/kg ME. These three basal diets (no enzyme) were supplemented with novel protease enzyme (PROT) and commercial beta-mannanase (Beta-M) enzyme. The birds were reared up to 35d of age. The data on weekly body weight gain (BWG) and feed intake were recorded to compute feed:gain for the starter (0-21d) and finisher (22-35d) phases. At the end of 35d of experimental period, four birds per experimental unit were randomly selected for blood samples collection and later slaughtered for ileal digesta, intestinal tract and carcass trait sampling. The data on overall performance (1-35d) indicated improved (P<0.05) BWG and feed:gain in birds supplemented with PROT (1.41% and 1.67) and Beta-M (2.79% and 1.64) than non-supplemented groups. Improved (P<0.05) carcass yield, breast meat yield and thigh meat yield were noted with the supplementation of Beta-M. However, non-significant (P>0.05) effect on carcass traits was noted in broiler fed guar meal based PROT supplemented diets. Crude protein digestibility, nitrogen retention (Nret) and apparent digestibility coefficient for nitrogen (ADCN) were improved (P<0.05) only with PROT. The improvement in apparent metabolizable energy (AME) and apparent metabolizable energy corrected for nitrogen (AMEn) was noted (P<0.05) with both supplemented enzymes. However, no effect (P>0.05) of enzyme addition was noted on blood glucose, total protein and cholesterol. Improved villus height of duodenum, jejunum and ileum was noted (P<0.05) with the addition of both enzymes. The EAAs digestibility was improved (P<0.05) only with PROT. In conclusion, beta-mannanase and protease supplementation better improved the overall bird performance in low nutrient profile guar meal based diets than non-supplemented diets.

Keywords: novel protease, guar meal, broilers, low protein diets, low metabolizable energy diets, nutrients digestibility

Procedia PDF Downloads 61
998 Production, Quality Control, and Biodistribution Studies of 141ce-Edtmp as a Potential Bone Pain Palliation Agent

Authors: Fatemeh Soltani, Simindokht Shirvani Arani, Ali Bahrami Samani, Mahdi Sadeghi, Kamal Yavari

Abstract:

Cerium-141 [T1/2 = 32.501 days, Eβ (max) = 0.580 (29.8%) and 0.435(70.2%) MeV, Eγ=145.44 (48.2%) keV] possesses radionuclidic properties suitable for use in palliative therapy of bone metastases. 141Ce also has gamma energy of 145.44 keV, which resembles that of 99mTc. Therefore, the energy window is adjustable on the Tc-99m energy because of imaging studies. 141Ce can be produced through a relatively easy route that involves thermal neutron bombardment on natural CeO2 in medium flux research reactors (4–5×1013 neutrons/cm2•s). The requirement for an enriched target does not arise. Ethylenediamine tetramethylene phosphonic acid (EDTMP) was synthesized and radiolabeled with 141Ce. Complexation parameters were optimized to achieve maximum yields (>99%). The radiochemical purity of 141Ce-EDTMP was evaluated by radio-thin layer chromatography. The stability of the prepared formulation was monitored for one week at room temperature, and results showed that the preparation was stable during this period (>99%). Biodistribution studies of the complexes carried out in wild-type rats exhibited significant bone uptake with rapid clearance from blood. The properties of produced 141Ce-EDTMP suggest applying a new efficient bone pain palliative therapeutic agent to overcome metastatic bone pains.

Keywords: bone pain palliative, cerium-141, EDTMP, radiopharmaceutical

Procedia PDF Downloads 488
997 Polyampholytic Resins: Advances in Ion Exchanging Properties

Authors: N. P. G. N. Chandrasekara, R. M. Pashley

Abstract:

Ion exchange (IEX) resins are commonly available as cationic or anionic resins but not as polyampholytic resins. This is probably because sequential acid and base washing cannot produce complete regeneration of polyampholytic resins with chemically attached anionic and cationic groups in close proximity. The ‘Sirotherm’ process, developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO) in Melbourne, Australia was originally based on the use of a physical mixture of weakly basic (WB) and weakly acidic (WA) ion-exchange resin beads. These resins were regenerated thermally and they were capable of removing salts from an aqueous solution at higher temperatures compared to the salt sorbed at ambient temperatures with a significant reduction of the sorption capacity with increasing temperature. A new process for the efficient regeneration of mixed bead resins using ammonium bicarbonate with heat was studied recently and this chemical/thermal regeneration technique has the capability for completely regenerating polyampholytic resins. Even so, the low IEX capacities of polyampholytic resins restrict their commercial applications. Recently, we have established another novel process for increasing the IEX capacity of a typical polyampholytic resin. In this paper we will discuss the chemical/thermal regeneration of a polyampholytic (WA/WB) resin and a novel process for enhancing its ion exchange capacity, by increasing its internal pore area. We also show how effective this method is for completely recycled regeneration, with the potential of substantially reducing chemical waste.

Keywords: capacity, ion exchange, polyampholytic resin, regeneration

Procedia PDF Downloads 375
996 Assessing the Incapacity of Indonesian Aviators Medical Conditions in 2016 – 2017

Authors: Ferdi Afian, Inne Yuliawati

Abstract:

Background: The change in causes of death from infectious diseases to non-communicable diseases also occurs in the aviation community in Indonesia. Non-communicable diseases are influenced by several internal risk factors, such as age, lifestyle changes and the presence of other diseases. These risk factors will increase the incidence of heart diseases resulting in the incapacity of Indonesian aviators which will disrupt flight safety. Method: The study was conducted by collecting secondary data. The retrieval of primary data was obtained from medical records at the Indonesian Aviation Health Center in 2016-2017. The subjects in this study were all cases of incapacity in Indonesian aviators medical conditions. Results: In this study, there were 15 cases of aviators in Indonesia who experienced incapacity of medical conditions related to heart and lung diseases in 2016-2017. Based on the secondary data contained in the flight medical records at the Aviation Health Center Aviation, it was found that several factors related to aviators incapacity causing its inability to carried out flight duties. Conclusion: Incapacity of Indonesian aviators medical conditions are most affected by the high value of Body Mass Index (86%) and less affected by high of Uric Acid in the blood (26%) and Hyperglycemia (26%).

Keywords: incapacity, aviators, flight, Indonesia

Procedia PDF Downloads 129
995 Effect of Lignocellulose-Degrading Bacteria Isolated from Termite Gut on the Nutritive Value of Wheat Straw as Ruminant Feed

Authors: Ayoub Azizi-Shotorkhoft, Tahereh Mohammadabadi, Hosein Motamedi, Morteza Chaji, Hasan Fazaeli

Abstract:

This study was conducted to investigate nutritive value of wheat straw processed with termite gut symbiotic bacteria with lignocellulosic-degrading potential including Bacillus licheniformis, Ochrobactrum intermedium and Microbacterium paludicola in vitro. These bacteria were isolated by culturing termite guts contents in different culture media containing different lignin and lignocellulosic materials that had been prepared from water-extracted sawdust and wheat straw. Results showed that incubating wheat straw with all of three isolated bacteria increased (P<0.05) acid-precipitable polymeric lignin (APPL) compared to control, and highest amount of APPL observed following treatment with B. licheniformis. Highest and lowest (P<0.05) in vitro gas production and ruminal organic matter digestibility were obtained when treating wheat straw with B. licheniformis and control, respectively. However, other fermentation parameters such as b (i.e., gas production from the insoluble fermentable fractions at 144h), c (i.e., rate of gas production during incubation), ruminal dry matter digestibility, metabolizable energy, partitioning factor, pH and ammonia nitrogen concentration were similar between experimental treatments (P>0.05). It is concluded that processing wheat straw with isolated bacteria improved its nutritive value as ruminants feed.

Keywords: termite gut bacteria, wheat straw, nutritive value, ruminant

Procedia PDF Downloads 332
994 Flow-Through Supercritical Installation for Producing Biodiesel Fuel

Authors: Y. A. Shapovalov, F. M. Gumerov, M. K. Nauryzbaev, S. V. Mazanov, R. A. Usmanov, A. V. Klinov, L. K. Safiullina, S. A. Soshin

Abstract:

A flow-through installation was created and manufactured for the transesterification of triglycerides of fatty acids and production of biodiesel fuel under supercritical fluid conditions. Transesterification of rapeseed oil with ethanol was carried out according to two parameters: temperature and the ratio of alcohol/oil mixture at the constant pressure of 19 MPa. The kinetics of the yield of fatty acids ethyl esters (FAEE) was determined in the temperature range of 320-380 °C at the alcohol/oil molar ratio of 6:1-20:1. The content of the formed FAEE was determined by the method of correlation of the resulting biodiesel fuel by its kinematic viscosity. The maximum FAEE yield (about 90%) was obtained within 30 min at the ethanol/oil molar ratio of 12:1 and a temperature of 380 °C. When studying of transesterification of triglycerides, a kinetic model of an isothermal flow reactor was used. The reaction order implemented in the flow reactor has been determined. The first order of the reaction was confirmed by data on the conversion of FAEE during the reaction at different temperatures and the molar ratios of the initial reagents (ethanol/oil). Using the Arrhenius equation, the values of the effective constants of the transesterification reaction rate were calculated at different reaction temperatures. In addition, based on the experimental data, the activation energy and the pre-exponential factor of the transesterification reaction were determined.

Keywords: biodiesel, fatty acid esters, supercritical fluid technology, transesterification

Procedia PDF Downloads 114
993 Prevalence of Methylenetetrahydrofolate Reductase A1298C Variant in Tunisian Childhood Acute Lymphoblastic Leukemia

Authors: Rim Frikha, Maha Ben Jema, Moez Elloumi, Tarek Rebai

Abstract:

Background: Acute lymphoblastic leukemia (ALL); a common blood cancer characterized by the interaction between genetic and environmental factors. Methylenetetrahydrofolate reductase (MTHFR) is an essential folate metabolic enzyme in the processes of DNA synthesis and methylation. A common functional variant of the MTHFR gene, the A1298C, which induces disturbances in folate metabolism, may affect susceptibility to ALL. Objective: The present study aimed to assess the prevalence of MTHFR polymorphism A1298 > C in Tunisian children with ALL. Materials and Methods: A total of 28 Tunisian ALL children were enrolled in this study. Genomic DNA was extracted from whole venous blood collected in ethylenediaminetetraacetic acid (EDTA). Genotyping was carried out with restriction fragment length polymorphism (RFLP) using MboII restriction enzyme. Genotype distribution and allele frequency of MTHFR A1298C was calculated in ALL patients. Results: The A1298C variant of MTHFR was found in 11(19.6%) heterozygous and one homozygous patient (3.5%). Conclusions: This result highlights that A1298C polymorphism of MTHFR is common in Tunisian childhood ALL and suggests that this variant may have a potential role in leukemogenesis. Genotyping of large samples and different ethnicities are required to validate these findings.

Keywords: methylenetetrahydrofolate reductase, acute lymphoblastic leukemia, A1298C variant, prevalence

Procedia PDF Downloads 134
992 Functional Ingredients from Potato By-Products: Innovative Biocatalytic Processes

Authors: Salwa Karboune, Amanda Waglay

Abstract:

Recent studies indicate that health-promoting functional ingredients and nutraceuticals can help support and improve the overall public health, which is timely given the aging of the population and the increasing cost of health care. The development of novel ‘natural’ functional ingredients is increasingly challenging. Biocatalysis offers powerful approaches to achieve this goal. Our recent research has been focusing on the development of innovative biocatalytic approaches towards the isolation of protein isolates from potato by-products and the generation of peptides. Potato is a vegetable whose high-quality proteins are underestimated. In addition to their high proportion in the essential amino acids, potato proteins possess angiotensin-converting enzyme-inhibitory potency, an ability to reduce plasma triglycerides associated with a reduced risk of atherosclerosis, and stimulate the release of the appetite regulating hormone CCK. Potato proteins have long been considered not economically feasible due to the low protein content (27% dry matter) found in tuber (Solanum tuberosum). However, potatoes rank the second largest protein supplying crop grown per hectare following wheat. Potato proteins include patatin (40-45 kDa), protease inhibitors (5-25 kDa), and various high MW proteins. Non-destructive techniques for the extraction of proteins from potato pulp and for the generation of peptides are needed in order to minimize functional losses and enhance quality. A promising approach for isolating the potato proteins was developed, which involves the use of multi-enzymatic systems containing selected glycosyl hydrolase enzymes that synergistically work to open the plant cell wall network. This enzymatic approach is advantageous due to: (1) the use of milder reaction conditions, (2) the high selectivity and specificity of enzymes, (3) the low cost and (4) the ability to market natural ingredients. Another major benefit to this enzymatic approach is the elimination of a costly purification step; indeed, these multi-enzymatic systems have the ability to isolate proteins, while fractionating them due to their specificity and selectivity with minimal proteolytic activities. The isolated proteins were used for the enzymatic generation of active peptides. In addition, they were applied into a reduced gluten cookie formulation as consumers are putting a high demand for easy ready to eat snack foods, with high nutritional quality and limited to no gluten incorporation. The addition of potato protein significantly improved the textural hardness of reduced gluten cookies, more comparable to wheat flour alone. The presentation will focus on our recent ‘proof-of principle’ results illustrating the feasibility and the efficiency of new biocatalytic processes for the production of innovative functional food ingredients, from potato by-products, whose potential health benefits are increasingly being recognized.

Keywords: biocatalytic approaches, functional ingredients, potato proteins, peptides

Procedia PDF Downloads 379
991 Investigating the Biosorption Potential of Indigenous Filamentous Fungi from Copperbelt Tailing Dams in Zambia with Copper and Cobalt Tolerance

Authors: Leonce Dusengemungu

Abstract:

Filamentous fungi indigenous to heavy metals (HMs) contaminated environments have a considerable biosorption potential yet are currently under-investigated in developing countries. In the work presented herein, the biosorption potential of three indigenous filamentous fungi (Aspergillus transmontanensis, Cladosporium cladosporioides, and Geotrichum candidum) isolated from copper and cobalt mining wasteland sites in Zambia's Copperbelt province was investigated. In Cu and Co tolerance tests, all the fungal isolates were shown to be tolerant, with mycelial growth at HMs concentrations of up to 7000 ppm. However, exposure to high Cu and Co concentrations hindered the growth of the three strains to varying degrees, resulting in reduced mycelial biomass (evidenced by loss of the infrared bands at 887 and 930 cm-1 of the 1,3-glucans backbone) as well as morphological alterations, sporulation, and pigment synthesis. In addition, gas chromatography-mass spectrometry characterization of the fungal biomass extracts allowed to detect changes in the chemical constituents upon exposure to HMs, with profiles poorer in maltol, 1,2-cyclopentadione, and n-hexadecanoic acid, and richer in furaldehydes. Biosorption tests showed that A. transmontanensis and G. candidum showed better performance as bioremediators than C. cladosporioides, with biosorption efficiencies of 1645, 1853 and 1253 ppm at pH 3, respectively, and may deserve further research in field conditions.

Keywords: bioremediation, fungi, biosorption, heavy metal

Procedia PDF Downloads 62
990 The Investigation of Enzymatic Activity in the Soils Under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia

Authors: T. H. Derdzyan, K. A. Ghazaryan, G. A. Gevorgyan

Abstract:

Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoestearse and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients.

Keywords: Armenia, metallurgical industrial activity, heavy metal pollutionl, soil enzyme activity

Procedia PDF Downloads 295
989 Functional Switching of Serratia marcescens Transcriptional Regulator from Activator to Inhibitor of Quorum Sensing by Exogenous Addition

Authors: Norihiro Kato, Yuriko Takayama

Abstract:

Some gram-negative bacteria enable the simultaneous activation of gene expression involved in N-acylhomoserine lactone (AHL) dependent cell-to-cell communication system. Such regulatory system for the bacterial group behavior is termed as quorum sensing (QS) because a diffusible AHL signal can accumulate around the cell during the increase of the cell density and trigger activation of the sequential QS process. By blocking the QS, the expression of diverse genes related to infection, antibiotic production, and biofilm formation is inhibited. Conditioning of QS by regulation of the DNA-receptor-AHL interaction is a potential target for enhancing host defenses against pathogenicity. We focused on engineered application of transcriptional regulator SpnR produced in opportunistic human pathogen Serratia marcescens. The SpnR can interact with AHL signals at an N-terminal domain and also with a promoter region of a QS target gene at a C-terminal domain. As the initial process of the QS activation, the SpnR forms a complex with the AHL to enhance the expression of pig cluster; the SpnR normally acts as an activator for the expression of the QS-dependent gene. In this research, we attempt to artificially control QS by changing the role of SpnR. The QS-dependent prodigiosin production is expected to inhibit by externally added SpnR in the culture broth of AS-1 strain because the AHL concentration was kept below the threshold by AHL-SpnR complex formation. Maltose-binding protein (MBP)-tagged SpnR (MBP-SpnR) was overexpressed in Escherichia coli and purified using an affinity chromatography equipped with an amylose resin column. The specific interaction between AHL and MBP-SpnR was demonstrated by quartz crystal microbalance (QCM) sensor. AHL with amino end-group was coupled with COOH-terminated self-assembled monolayer prepared on a gold electrode of 27-MHz quartz crystal sensor using water-soluble carbodiimide. After the injection of MBP-SpnR into a cup-type sensor cell filled with the buffer solution, time course of resonant frequency change (ΔFs) was determined. A decrease of ΔFs clearly showed the uptake of MBP-SpnR onto the AHL-immobilized electrode. Furthermore, no binding affinity was observed after the heat-inactivation of MBP-SpnR at 80ºC. These results suggest that MBP-SpnR possesses a specific affinity for AHL. MBP-SpnR was added to the culture medium as an AHL trap to study inhibitory effects on intracellularly accumulated prodigiosin. With approximately 2 µM MBP-SpnR, the amount of prodigiosin induced was half that of the control without any additives. In conclusion, the function of SpnR could be switched by adding it to the cell culture. Exogenously added MBP-SpnR possesses high affinity for AHL derived from cells and acts as an inhibitor of AHL-mediated QS.

Keywords: intracellular signaling, microbial biotechnology, quorum sensing, transcriptional regulator

Procedia PDF Downloads 266
988 Alternative Acidizing Fluids and Their Impact on the Southern Algerian Shale Formations

Authors: Rezki Akkal, Mohamed Khodja, Slimane Azzi

Abstract:

Acidification is a technique used in oil reservoirs to improve annual production, reduce the skin and increase the pressure of an oil well while eliminating the formation damage that occurs during the drilling process, completion and, amongst others, to create new channels allowing the easy circulation of oil around a producing well. This is achieved by injecting an acidizing fluid at a relatively low pressure to prevent fracturing formation. The treatment fluid used depends on the type and nature of the reservoir rock traversed as well as its petrophysical properties. In order to understand the interaction mechanisms between the treatment fluids used for the reservoir rock acidizing, several candidate wells for stimulation were selected in the large Hassi Messaoud deposit in southern Algeria. The stimulation of these wells is completed using different fluids composed mainly of HCl acid with other additives such as corrosion inhibitors, clay stabilizers and iron controllers. These treatment fluids are injected over two phases, namely with clean tube (7.5% HCl) and matrix aidizing with HCl (15%). The stimulation results obtained are variable according to the type of rock traversed and its mineralogical composition. These results show that there has been an increase in production flow and head pressure respectively from 1.99 m3 / h to 3.56 m3 / h and from 13 Kgf / cm2 to 20 kgf / cm2 in the sands formation having good petrophysical properties of (porosity = 16%) and low amount of clay (Vsh = 6%).

Keywords: acidizing, Hassi-Messaoud reservoir, tube clean, matrix stimulation

Procedia PDF Downloads 179
987 Using Human-Digestive Simulator to Harbor Encapsulated Lactobacillus casei 01 along with Pasteurized-Purple-Rice Drinks for Examination of the Health-Promoting Effects

Authors: Srivilai Worametrachanon, Arunee Apichartsrangkoon, Jiranat Techarang, Boonrak Phanchaisri

Abstract:

A human-digestive simulator consisted of four colon compartments, i.e., stomach, small intestine, proximal colon and distal colon used to harbor L. casei 01 plus either pasteurized ordinary-purple-rice drinks or germinated-purple-rice drinks. Accordingly, three treatment compositions had been set up and the effects of treatments on colon bacterial communities including their by-products were thoroughly examined. L. casei 01 plus purple-rice drinks gave rise to significantly high formation (P ≤ 0.05) of short-chain-fatty acids (SCFA) of which highest acetic acid was found followed by propionic and butyric acids, while the germinated-rice drink showed the greatest impact. Moreover, the effect was more pronounced upon prolonged fermentation. In addition, the influence of treatments on colon microbes was also demonstrated. Accordingly, desirable bacteria including colon Lactobacilli and Bifidobacteria were significantly increased (P ≤ 0.05) in both colons in comparison with the control and the effect was more prominent after adding purple-rice drink. On the other hand, undesirable Clostridia and coliforms were apparently diminished by the influence of treatment conditions, in which both compartments exhibited similar results.

Keywords: human-digestive simulator, Lactobacillus casei 01, Pasteurized-purple-rice drinks

Procedia PDF Downloads 220
986 Inhibitory Effect of Potential Bacillus Probiotic Strains against Pathogenic Bacteria and Yeast Isolated from Oral Cavity

Authors: Fdhila Walid, Bayar Sihem, Khouidi Bochra, Maâtouk Fethi, Ben Amor Feten, Hajer Hentati, Mahdhi Abdelkarim

Abstract:

The presence of resistant bacteria in the oral cavity can be the major cause of dental antibiotic prophylaxis failure. Multidrug efflux has been described for many organisms, including bacteria and fungi as part of their drugs resistance strategy. The potential use of probiotic bacteria can be considered as a new alternative in the prevention or cure of oral cavity diseases. In this study, different Bacillus strains isolated from the environment were isolated and characterized using biochemical and molecular procedures. The inhibitory activity against different pathogenic bacteria and yeast strains was tested using diffusion agar assay method. Our data revealed that the tested strains have an antimicrobial effect against the pathogenic strains such as Streptococcus mutants. The inhibitory effect was variable depending from the probiotic and pathogenic strains. The obtained result demonstrated that Bacillus can be used as a potential candidates probiotic and help in the prevention and treatment of oral infections, including dental caries, periodontal disease and halitosis. Our data, partly encourage the use of probiotic strains because they do not produce acid which can contribute to faster installation decay and these are spore-forming bacteria that can withstand the stress of the oral cavity (acids, alkalis, and salty foods).

Keywords: probiotic, pathogenic bacteria, yeast, oral cavity

Procedia PDF Downloads 376
985 Operation System for Aluminium-Air Cell: A Strategy to Harvest the Energy from Secondary Aluminium

Authors: Binbin Chen, Dennis Y. C. Leung

Abstract:

Aluminium (Al) -air cell holds a high volumetric capacity density of 8.05 Ah cm-3, benefit from the trivalence of Al ions. Additional benefits of Al-air cell are low price and environmental friendliness. Furthermore, the Al energy conversion process is characterized of 100% recyclability in theory. Along with a large base of raw material reserve, Al attracts considerable attentions as a promising material to be integrated within the global energy system. However, despite the early successful applications in military services, several problems exist that prevent the Al-air cells from widely civilian use. The most serious issue is the parasitic corrosion of Al when contacts with electrolyte. To overcome this problem, super-pure Al alloyed with various traces of metal elements are used to increase the corrosion resistance. Nevertheless, high-purity Al alloys are costly and require high energy consumption during production process. An alternative approach is to add inexpensive inhibitors directly into the electrolyte. However, such additives would increase the internal ohmic resistance and hamper the cell performance. So far these methods have not provided satisfactory solutions for the problem within Al-air cells. For the operation of alkaline Al-air cell, there are still other minor problems. One of them is the formation of aluminium hydroxide in the electrolyte. This process decreases ionic conductivity of electrolyte. Another one is the carbonation process within the gas diffusion layer of cathode, blocking the porosity of gas diffusion. Both these would hinder the performance of cells. The present work optimizes the above problems by building an Al-air cell operation system, consisting of four components. A top electrolyte tank containing fresh electrolyte is located at a high level, so that it can drive the electrolyte flow by gravity force. A mechanical rechargeable Al-air cell is fabricated with low-cost materials including low grade Al, carbon paper, and PMMA plates. An electrolyte waste tank with elaborate channel is designed to separate the hydrogen generated from the corrosion, which would be collected by gas collection device. In the first section of the research work, we investigated the performance of the mechanical rechargeable Al-air cell with a constant flow rate of electrolyte, to ensure the repeatability experiments. Then the whole system was assembled together and the feasibility of operating was demonstrated. During experiment, pure hydrogen is collected by collection device, which holds potential for various applications. By collecting this by-product, high utilization efficiency of aluminum is achieved. Considering both electricity and hydrogen generated, an overall utilization efficiency of around 90 % or even higher under different working voltages are achieved. Fluidic electrolyte could remove aluminum hydroxide precipitate and solve the electrolyte deterioration problem. This operation system provides a low-cost strategy for harvesting energy from the abundant secondary Al. The system could also be applied into other metal-air cells and is suitable for emergency power supply, power plant and other applications. The low cost feature implies great potential for commercialization. Further optimization, such as scaling up and optimization of fabrication, will help to refine the technology into practical market offerings.

Keywords: aluminium-air cell, high efficiency, hydrogen, mechanical recharge

Procedia PDF Downloads 283