Search results for: government data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27492

Search results for: government data

24612 Providing Health Promotion Information by Digital Animation to International Visitors in Japan: A Factorial Design View of Nurses

Authors: Mariko Nishikawa, Masaaki Yamanaka, Ayami Kondo

Abstract:

Background: International visitors to Japan are at a risk of travel-related illnesses or injury that could result in hospitalization in a country where the language and customs are unique. Over twelve million international visitors came to Japan in 2015, and more are expected leading up to the Tokyo Olympics. One aspect of this is the potentially greater demand on healthcare services by foreign visitors. Nurses who take care of them have anxieties and concerns of their knowledge of the Japanese health system. Objectives: An effective distribution of travel-health information is vital for facilitating care for international visitors. Our research investigates whether a four-minute digital animation (Mari Info Japan), designed and developed by the authors and applied to a survey of 513 nurses who take care of foreigners daily, could clarify travel health procedures, reduce anxieties, while making it enjoyable to learn. Methodology: Respondents to a survey were divided into two groups. The intervention group watched Mari Info Japan. The control group read a standard guidebook. The participants were requested to fill a two-page questionnaire called Mari Meter-X, STAI-Y in English and mark a face scale, before and after the interventions. The questions dealt with knowledge of health promotion, the Japanese healthcare system, cultural concerns, anxieties, and attitudes in Japan. Data were collected from an intervention group (n=83) and control group (n=83) of nurses in a hospital, Japan for foreigners from February to March, 2016. We analyzed the data using Text Mining Studio for open-ended questions and JMP for statistical significance. Results: We found that the intervention group displayed more confidence and less anxiety to take care of foreign patients compared to the control group. The intervention group indicated a greater comfort after watching the animation. However, both groups were most likely to be concerned about language, the cost of medical expenses, informed consent, and choice of hospital. Conclusions: From the viewpoint of nurses, the provision of travel-health information by digital animation to international visitors to Japan was more effective than traditional methods as it helped them be better prepared to treat travel-related diseases and injury among international visitors. This study was registered number UMIN000020867. Funding: Grant–in-Aid for Challenging Exploratory Research 2010-2012 & 2014-16, Japanese Government.

Keywords: digital animation, health promotion, international visitor, Japan, nurse

Procedia PDF Downloads 307
24611 The Effect of Corporate Social Responsibility in the National Commercial Bank in Saudi Arabia

Authors: Nada Azhar

Abstract:

The aim of the paper is to investigate the effect of corporate social responsibility (CSR) CSR on the National Commercial Bank (NCB) in Saudi Arabia. In order to achieve this, a case study was made of the CSR activities of this bank from the perspective of its branch managers. The NCB was chosen as it was one of the first Saudi banks to engage in CSR and currently has a wide range of CSR initiatives. A qualitative research method was used. Open-ended questionnaires were administered to eighty branch managers of the NCB, with fifty-five usable questionnaires returned and twenty managers were interviewed as part of the primary research. Data from both questionnaires and interviews were analysed using qualitative content analysis. Six themes emerged from the questionnaire findings were used to develop the interview questions. These themes are the following: Awareness of employees about CSR in the NCB; CSR activities as a type of investment; Government and media support; Increased employee loyalty in the NCB; Prestige and profit to the NCB; and View of CSR in Islam. This paper makes a theoretical contribution in that it investigates and increases understanding of the effect of CSR on the NCB in Saudi Arabia. In addition, it makes a practical contribution by making recommendations which can support the development of CSR in the NCB. A limitation of the paper is that it is a case study of only one bank. It is therefore recommended that future research could be conducted with other banks in Saudi Arabia, or indeed, with a range of other types of firm within the financial services area in Saudi Arabia. In this way, the same issues could be explored but with a greater potential generalisability of findings of CSR within the Saudi Arabian financial services industry. In addition, this paper takes a qualitative approach and it is suggested that future research be carried out using mixed methods, which could provide a greater depth of analysis.

Keywords: branch managers, corporate social responsibility, national commercial bank, Saudi Arabia

Procedia PDF Downloads 256
24610 Value Chain Network: A Social Network Analysis of the Value Chain Actors of Recycled Polymer Products in Lagos Metropolis, Nigeria

Authors: Olamide Shittu, Olayinka Akanle

Abstract:

Value Chain Analysis is a common method of examining the stages involved in the production of a product, mostly agricultural produce, from the input to the consumption stage including the actors involved in each stage. However, the Functional Institutional Analysis is the most common method in literature employed to analyze the value chain of products. Apart from studying the relatively neglected phenomenon of recycled polymer products in Lagos Metropolis, this paper adopted the use of social network analysis to attempt a grounded theory of the nature of social network that exists among the value chain actors of the subject matter. The study adopted a grounded theory approach by conducting in-depth interviews, administering questionnaires and conducting observations among the identified value chain actors of recycled polymer products in Lagos Metropolis, Nigeria. The thematic analysis of the collected data gave the researchers the needed background to formulate a truly representative network of the social relationships among the value chain actors of recycled polymer products in Lagos Metropolis. The paper introduced concepts such as Transient and Perennial Social Ties to explain the observed social relations among the actors. Some actors have more social capital than others as a result of the structural holes that exist in their triad network. Households and resource recoverers are at disadvantaged position in the network as they have high constraints in their relationships with other actors. The study attempted to provide a new perspective in the study of the environmental value chain by analyzing the network of actors to bring about policy action points and improve recycling in Nigeria. Government and social entrepreneurs can exploit the structural holes that exist in the network for the socio-economic and sustainable development of the state.

Keywords: recycled polymer products, social network analysis, social ties, value chain analysis

Procedia PDF Downloads 410
24609 Using Learning Apps in the Classroom

Authors: Janet C. Read

Abstract:

UClan set collaboration with Lingokids to assess the Lingokids learning app's impact on learning outcomes in classrooms in the UK for children with ages ranging from 3 to 5 years. Data gathered during the controlled study with 69 children includes attitudinal data, engagement, and learning scores. Data shows that children enjoyment while learning was higher among those children using the game-based app compared to those children using other traditional methods. It’s worth pointing out that engagement when using the learning app was significantly higher than other traditional methods among older children. According to existing literature, there is a direct correlation between engagement, motivation, and learning. Therefore, this study provides relevant data points to conclude that Lingokids learning app serves its purpose of encouraging learning through playful and interactive content. That being said, we believe that learning outcomes should be assessed with a wider range of methods in further studies. Likewise, it would be beneficial to assess the level of usability and playability of the app in order to evaluate the learning app from other angles.

Keywords: learning app, learning outcomes, rapid test activity, Smileyometer, early childhood education, innovative pedagogy

Procedia PDF Downloads 71
24608 A New Proposed Framework for the Development of Interface Design for Malaysian Interactive Courseware

Authors: Norfadilah Kamaruddin

Abstract:

This paper introduces a new proposed framework for the development process of interface design for Malaysian interactive courseware by exploring four established model in the recent research literature, existing Malaysian government guidelines and Malaysian developers practices. In particular, the study looks at the stages and practices throughout the development process. Significant effects of each of the stages are explored and documented, and significant interrelationships among them suggested. The results of analysis are proposed as potential model that helps in establishing and designing a new version of Malaysian interactive courseware.

Keywords: development processes, interaction with interface, interface design, social sciences

Procedia PDF Downloads 379
24607 Maintaining Discipline in Tertiary Institutions in Nigeria

Authors: Ipenyi Peter

Abstract:

Discipline is an issue that tends to undermine the provision of quality education in tertiary institutions in Nigeria. This is because the overall goals of tertiary institutions, as enunciated in the National Policy of Education, can hardly be achieved by all the stakeholders without strict conformity and adherence to the rules and regulations and the ideals of the entire society. The adherence is essential for the general welfare of the society. This paper critically X-rayed the causes of indiscipline in tertiary institutions in Nigeria. Such courses include laxity in home control and parental supervision, school, teacher and societal factors as well as government influence. The paper recommended among others such strategies as enculturation, acculturation as well as the acquisition of a certain number of generic skills for dealing with discipline and ethical issues in tertiary institutions in Nigeria.

Keywords: discipline, education, tertiary institutions, society

Procedia PDF Downloads 541
24606 Intrusion Detection System Using Linear Discriminant Analysis

Authors: Zyad Elkhadir, Khalid Chougdali, Mohammed Benattou

Abstract:

Most of the existing intrusion detection systems works on quantitative network traffic data with many irrelevant and redundant features, which makes detection process more time’s consuming and inaccurate. A several feature extraction methods, such as linear discriminant analysis (LDA), have been proposed. However, LDA suffers from the small sample size (SSS) problem which occurs when the number of the training samples is small compared with the samples dimension. Hence, classical LDA cannot be applied directly for high dimensional data such as network traffic data. In this paper, we propose two solutions to solve SSS problem for LDA and apply them to a network IDS. The first method, reduce the original dimension data using principal component analysis (PCA) and then apply LDA. In the second solution, we propose to use the pseudo inverse to avoid singularity of within-class scatter matrix due to SSS problem. After that, the KNN algorithm is used for classification process. We have chosen two known datasets KDDcup99 and NSLKDD for testing the proposed approaches. Results showed that the classification accuracy of (PCA+LDA) method outperforms clearly the pseudo inverse LDA method when we have large training data.

Keywords: LDA, Pseudoinverse, PCA, IDS, NSL-KDD, KDDcup99

Procedia PDF Downloads 227
24605 Homelessness and Disaster Mitigation: An Exploratory Study into How Casualties Can Be Reduced with the Homeless

Authors: Blythe Maltby

Abstract:

Homeless populations are one of the sections of society most vulnerable to the effects of natural disasters. Channels of communication to these populations are limited as they lack access to mainstream modes of emergency notification, often being the last to know about state emergencies. This study aims to answer if there is a way that cities and policies be designed to help reduce casualty rates to the homeless during state emergencies, such as earthquake and tsunami preparations. The study used a qualitative research approach, namely by speaking to levels of government, homelessness charities and workers and others about preparations and their experiences with the response of state emergencies. The proposed paper may help countries identify the gaps in their preparations to help facilitate better resources to look after these vulnerable populations.

Keywords: accessibility, disaster mitigation, homeless, Vancouver

Procedia PDF Downloads 223
24604 Studies of Rule Induction by STRIM from the Decision Table with Contaminated Attribute Values from Missing Data and Noise — in the Case of Critical Dataset Size —

Authors: Tetsuro Saeki, Yuichi Kato, Shoutarou Mizuno

Abstract:

STRIM (Statistical Test Rule Induction Method) has been proposed as a method to effectively induct if-then rules from the decision table which is considered as a sample set obtained from the population of interest. Its usefulness has been confirmed by simulation experiments specifying rules in advance, and by comparison with conventional methods. However, scope for future development remains before STRIM can be applied to the analysis of real-world data sets. The first requirement is to determine the size of the dataset needed for inducting true rules, since finding statistically significant rules is the core of the method. The second is to examine the capacity of rule induction from datasets with contaminated attribute values created by missing data and noise, since real-world datasets usually contain such contaminated data. This paper examines the first problem theoretically, in connection with the rule length. The second problem is then examined in a simulation experiment, utilizing the critical size of dataset derived from the first step. The experimental results show that STRIM is highly robust in the analysis of datasets with contaminated attribute values, and hence is applicable to realworld data.

Keywords: rule induction, decision table, missing data, noise

Procedia PDF Downloads 396
24603 Measuring Digital Literacy in the Chilean Workforce

Authors: Carolina Busco, Daniela Osses

Abstract:

The development of digital literacy has become a fundamental element that allows for citizen inclusion, access to quality jobs, and a labor market capable of responding to the digital economy. There are no methodological instruments available in Chile to measure the workforce’s digital literacy and improve national policies on this matter. Thus, the objective of this research is to develop a survey to measure digital literacy in a sample of 200 Chilean workers. Dimensions considered in the instrument are sociodemographics, access to infrastructure, digital education, digital skills, and the ability to use e-government services. To achieve the research objective of developing a digital literacy model of indicators and a research instrument for this purpose, along with an exploratory analysis of data using factor analysis, we used an empirical, quantitative-qualitative, exploratory, non-probabilistic, and cross-sectional research design. The research instrument is a survey created to measure variables that make up the conceptual map prepared from the bibliographic review. Before applying the survey, a pilot test was implemented, resulting in several adjustments to the phrasing of some items. A validation test was also applied using six experts, including their observations on the final instrument. The survey contained 49 items that were further divided into three sets of questions: sociodemographic data; a Likert scale of four values ranked according to the level of agreement; iii) multiple choice questions complementing the dimensions. Data collection occurred between January and March 2022. For the factor analysis, we used the answers to 12 items with the Likert scale. KMO showed a value of 0.626, indicating a medium level of correlation, whereas Bartlett’s test yielded a significance value of less than 0.05 and a Cronbach’s Alpha of 0.618. Taking all factor selection criteria into account, we decided to include and analyze four factors that together explain 53.48% of the accumulated variance. We identified the following factors: i) access to infrastructure and opportunities to develop digital skills at the workplace or educational establishment (15.57%), ii) ability to solve everyday problems using digital tools (14.89%), iii) online tools used to stay connected with others (11.94%), and iv) residential Internet access and speed (11%). Quantitative results were discussed within six focus groups using heterogenic selection criteria related to the most relevant variables identified in the statistical analysis: upper-class school students; middle-class university students; Ph.D. professors; low-income working women, elderly individuals, and a group of rural workers. The digital divide and its social and economic correlations are evident in the results of this research. In Chile, the items that explain the acquisition of digital tools focus on access to infrastructure, which ultimately puts the first filter on the development of digital skills. Therefore, as expressed in the literature review, the advance of these skills is radically different when sociodemographic variables are considered. This increases socioeconomic distances and exclusion criteria, putting those who do not have these skills at a disadvantage and forcing them to seek the assistance of others.

Keywords: digital literacy, digital society, workforce digitalization, digital skills

Procedia PDF Downloads 67
24602 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services

Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme

Abstract:

Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.

Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing

Procedia PDF Downloads 113
24601 Regression Approach for Optimal Purchase of Hosts Cluster in Fixed Fund for Hadoop Big Data Platform

Authors: Haitao Yang, Jianming Lv, Fei Xu, Xintong Wang, Yilin Huang, Lanting Xia, Xuewu Zhu

Abstract:

Given a fixed fund, purchasing fewer hosts of higher capability or inversely more of lower capability is a must-be-made trade-off in practices for building a Hadoop big data platform. An exploratory study is presented for a Housing Big Data Platform project (HBDP), where typical big data computing is with SQL queries of aggregate, join, and space-time condition selections executed upon massive data from more than 10 million housing units. In HBDP, an empirical formula was introduced to predict the performance of host clusters potential for the intended typical big data computing, and it was shaped via a regression approach. With this empirical formula, it is easy to suggest an optimal cluster configuration. The investigation was based on a typical Hadoop computing ecosystem HDFS+Hive+Spark. A proper metric was raised to measure the performance of Hadoop clusters in HBDP, which was tested and compared with its predicted counterpart, on executing three kinds of typical SQL query tasks. Tests were conducted with respect to factors of CPU benchmark, memory size, virtual host division, and the number of element physical host in cluster. The research has been applied to practical cluster procurement for housing big data computing.

Keywords: Hadoop platform planning, optimal cluster scheme at fixed-fund, performance predicting formula, typical SQL query tasks

Procedia PDF Downloads 232
24600 Model Predictive Controller for Pasteurization Process

Authors: Tesfaye Alamirew Dessie

Abstract:

Our study focuses on developing a Model Predictive Controller (MPC) and evaluating it against a traditional PID for a pasteurization process. Utilizing system identification from the experimental data, the dynamics of the pasteurization process were calculated. Using best fit with data validation, residual, and stability analysis, the quality of several model architectures was evaluated. The validation data fit the auto-regressive with exogenous input (ARX322) model of the pasteurization process by roughly 80.37 percent. The ARX322 model structure was used to create MPC and PID control techniques. After comparing controller performance based on settling time, overshoot percentage, and stability analysis, it was found that MPC controllers outperform PID for those parameters.

Keywords: MPC, PID, ARX, pasteurization

Procedia PDF Downloads 163
24599 The Role of Universities in Saudi Arabia in Environmental Awareness

Authors: Hamad Albadr

Abstract:

With the growth that has occurred in the orientation of universities from liability cognitive and maintain the culture of the community to liability functional creating graduates to work according to the needs of the community development; representing the university in today's world, the prime mover of the wheel of development in the community and find appropriate solutions to the problems they are facing and adapt to the demands of the changing environment. This paper deals with the role of Saudi universities as institutions, government agencies, non-governmental organizations and the extent of its responsibility to the environmental awareness of the community members in various segments, where it will use the research methodology descriptive and analytical, to gather information, data and analysis answers the study sample consisting of 1500 people from the staff of the Saudi universities: The members of the faculty, and members of the administrative and technical bodies, and current students, 500 of them are responsible for employment in the labor sector and graduates. Where will review the paper to identify the extent to which the objectives of the academic programs in Saudi universities to the needs of the community, and the extent to which the course content submitted to the characteristics of the local environment for the community and how he benefited them to ensure its conformity with the changing needs of society, and how to address the research presented in academic programs to the needs of society and its problems , and the extent to which graduate students to deal enough of social responsibility and commitment to community service and the preservation of the environment, and the availability of a clear policy to serve the community with the academic programs, and how to encourage faculty, staff and students to participate in community service. And the availability of counseling services for school students for vocational guidance, scientific, environmental, and the contribution of Academic Programs publishes scientific and technical culture and the environmental community members.

Keywords: universities in Saudi Arabia, environmental awareness, academic programs, environmental community

Procedia PDF Downloads 314
24598 Level of Knowledge, Attitude, Perceived Behavior Control, Subjective Norm and Behavior of Household Solid Waste towards Zero Waste Management among Malaysian Consumer

Authors: M. J. Zuroni, O. Syuhaily, M. A. Afida Mastura, M. S. Roslina, A. K. Nurul Aini

Abstract:

The impact of country development has caused an increase of solid waste. The increase in population causes of excess usage thus effecting the sustainable environment. Zero waste management involves maximizing practices of recycling and minimizing residual waste. This paper seeks to analyze the relationship between knowledge, attitude, perceived behavior control, subjective norm and behavior of household solid waste towards household solid waste management among urban households in 8 states that have been implemented and enforced regulations under the Solid Waste Management and Public Cleansing Act 2007 (Act 672) in Malaysia. A total of respondents are 605 and we used a purposive sampling for location and simple sampling for sample size. Data collected by using self-administered questionnaire and were analyzed using SPSS software. The Pearson Correlation Test is to examine the relationship between four variables. Results show that knowledge scores are high because they have an awareness of the importance of managing solid waste. For attitude, perceived behavior control, subjective norm and behavioral scores at a moderate level in solid waste management activities. The findings show that there is a significant relationship between knowledge and behavior of household solid waste (r = 0.136 **, p = 0.001), there is a significant relationship between attitude and behavior (r = 0.238 **, p = 0.000), there is a significant relationship between perceived behavior control and behavior (r = 0.516 **, p = 0.000) and there is a significant relationship between subjective norm and behavior (r = 0.494 **, p = 0.000). The conclusion is that there is a relationship between knowledge, attitude, perceived behavior control and subjective norm toward the behavior of household solid waste management. Therefore, in the findings of the study, all parties including the government should work together to enhance the knowledge, attitude, perceived behavior control and behavior of household solid waste management in other states that have not implemented and enforced regulations under the Solid Waste and Public Cleansing Management Act 2007 (Act 672).

Keywords: solid waste management, knowledge, attitude, perceived behavior control, subjective norm, behavior

Procedia PDF Downloads 333
24597 Point Estimation for the Type II Generalized Logistic Distribution Based on Progressively Censored Data

Authors: Rana Rimawi, Ayman Baklizi

Abstract:

Skewed distributions are important models that are frequently used in applications. Generalized distributions form a class of skewed distributions and gain widespread use in applications because of their flexibility in data analysis. More specifically, the Generalized Logistic Distribution with its different types has received considerable attention recently. In this study, based on progressively type-II censored data, we will consider point estimation in type II Generalized Logistic Distribution (Type II GLD). We will develop several estimators for its unknown parameters, including maximum likelihood estimators (MLE), Bayes estimators and linear estimators (BLUE). The estimators will be compared using simulation based on the criteria of bias and Mean square error (MSE). An illustrative example of a real data set will be given.

Keywords: point estimation, type II generalized logistic distribution, progressive censoring, maximum likelihood estimation

Procedia PDF Downloads 198
24596 Omni: Data Science Platform for Evaluate Performance of a LoRaWAN Network

Authors: Emanuele A. Solagna, Ricardo S, Tozetto, Roberto dos S. Rabello

Abstract:

Nowadays, physical processes are becoming digitized by the evolution of communication, sensing and storage technologies which promote the development of smart cities. The evolution of this technology has generated multiple challenges related to the generation of big data and the active participation of electronic devices in society. Thus, devices can send information that is captured and processed over large areas, but there is no guarantee that all the obtained data amount will be effectively stored and correctly persisted. Because, depending on the technology which is used, there are parameters that has huge influence on the full delivery of information. This article aims to characterize the project, currently under development, of a platform that based on data science will perform a performance and effectiveness evaluation of an industrial network that implements LoRaWAN technology considering its main parameters configuration relating these parameters to the information loss.

Keywords: Internet of Things, LoRa, LoRaWAN, smart cities

Procedia PDF Downloads 148
24595 Upsouth: Digitally Empowering Rangatahi (Youth) and Whaanau (Families) to Build Skills in Critical and Creative Thinking to Achieve More Active Citizenship in Aotearoa New Zealand

Authors: Ayla Hoeta

Abstract:

In a post-colonial Aotearoa New Zealand, solutions by rangatahi (youth) for rangatahi are essential as is civic participation and building economic agency in an increasingly tough economic climate. Upsouth was an online community crowdsourcing platform developed by The Southern Initiative, in collaboration with Itsnoon that provides rangatahi and whānau (family) a safe space to share lived experience, thoughts and ideas about local kaupapa (issues/topics) of importance to them. The target participants were Māori indigenous peoples and Pacifica groups, aged 14 - 21 years. In the Aotearoa New Zealand context, this participant group is not likely to engage in traditional consultation processes despite being an essential constituent in helping shape better local communities, whānau and futures. The Upsouth platform was active for two years from 2018-2019 where it completed 42 callups with 4300+ participants. The web platform collates the ideas, voices, feedback, and content of users around a callup that has been commissioned by a sponsor, such as Auckland Council, Z Energy or Auckland Transport. A callup may be about a pressing challenge in a community such as climate change, a new housing development, homelessness etc. Each callup was funded by the sponsor with Upsouths main point of difference being that participants are given koha (money donation) through digital wallets for their ideas. Depending on the quality of what participants upload, the koha varies between small micropayments and larger payments. This encouraged participants to develop creative and critical thinking - upskilling for future focussed jobs, enterprise and democratic skills while earning pocket money at the same time. Upsouth enables youth-led action and voice, and empowers them to be a part of a reciprocal and creative economy. Rangatahi are encouraged to express themselves culturally, creatively, freely and in a way they are free to choose - for example, spoken word, song, dance, video, drawings, and/or poems. This challenges and changes what is considered acceptable as community engagement feedback by the local government. Many traditional engagement platforms are not as consultative, do not accept diverse types of feedback, nor incentivise this valuable expression of feedback. Upsouth is also empowering for rangatahi, since it allows them the opportunity to express their opinions directly to the government. Upsouth gained national and international recognition for the way it engages with youth: winning the Supreme Award and the Accessibility and Transparency Award at Auckland Council’s 2018 Engagement Awards, becoming a finalist in the 2018 Digital Equity and Accessibility category of International Data Corporation’s Smart City Asia and Pacific Awards. This paper will fully contextualize the challenges of rangatahi and whānau civic engagement in Aotearoa New Zealand and then present a reflective case study of the Upsouth project, with examples from some of the callups. This is intended to form part of the Divided Cities 22 conference New Ground sub-theme as a critical reflection on a design intervention, which was conceived and implemented by the lead author to overcome the post-colonial divisions of Māori, Pacifica and minority ethnic rangatahi in Aotearoa New Zealand.

Keywords: rangatahi, youth empowerment, civic engagement, enabling, relating, digital platform, participation

Procedia PDF Downloads 81
24594 Cybervetting and Online Privacy in Job Recruitment – Perspectives on the Current and Future Legislative Framework Within the EU

Authors: Nicole Christiansen, Hanne Marie Motzfeldt

Abstract:

In recent years, more and more HR professionals have been using cyber-vetting in job recruitment in an effort to find the perfect match for the company. These practices are growing rapidly, accessing a vast amount of data from social networks, some of which is privileged and protected information. Thus, there is a risk that the right to privacy is becoming a duty to manage your private data. This paper investigates to which degree a job applicant's fundamental rights are protected adequately in current and future legislation in the EU. This paper argues that current data protection regulations and forthcoming regulations on the use of AI ensure sufficient protection. However, even though the regulation on paper protects employees within the EU, the recruitment sector may not pay sufficient attention to the regulation as it not specifically targeting this area. Therefore, the lack of specific labor and employment regulation is a concern that the social partners should attend to.

Keywords: AI, cyber vetting, data protection, job recruitment, online privacy

Procedia PDF Downloads 86
24593 Sequential Pattern Mining from Data of Medical Record with Sequential Pattern Discovery Using Equivalent Classes (SPADE) Algorithm (A Case Study : Bolo Primary Health Care, Bima)

Authors: Rezky Rifaini, Raden Bagus Fajriya Hakim

Abstract:

This research was conducted at the Bolo primary health Care in Bima Regency. The purpose of the research is to find out the association pattern that is formed of medical record database from Bolo Primary health care’s patient. The data used is secondary data from medical records database PHC. Sequential pattern mining technique is the method that used to analysis. Transaction data generated from Patient_ID, Check_Date and diagnosis. Sequential Pattern Discovery Algorithms Using Equivalent Classes (SPADE) is one of the algorithm in sequential pattern mining, this algorithm find frequent sequences of data transaction, using vertical database and sequence join process. Results of the SPADE algorithm is frequent sequences that then used to form a rule. It technique is used to find the association pattern between items combination. Based on association rules sequential analysis with SPADE algorithm for minimum support 0,03 and minimum confidence 0,75 is gotten 3 association sequential pattern based on the sequence of patient_ID, check_Date and diagnosis data in the Bolo PHC.

Keywords: diagnosis, primary health care, medical record, data mining, sequential pattern mining, SPADE algorithm

Procedia PDF Downloads 401
24592 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea

Authors: Jaehyung Jung, Kiman Kim, Heesang Eum

Abstract:

Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.

Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell

Procedia PDF Downloads 220
24591 Estimation of Reservoirs Fracture Network Properties Using an Artificial Intelligence Technique

Authors: Reda Abdel Azim, Tariq Shehab

Abstract:

The main objective of this study is to develop a subsurface fracture map of naturally fractured reservoirs by overcoming the limitations associated with different data sources in characterising fracture properties. Some of these limitations are overcome by employing a nested neuro-stochastic technique to establish inter-relationship between different data, as conventional well logs, borehole images (FMI), core description, seismic attributes, and etc. and then characterise fracture properties in terms of fracture density and fractal dimension for each data source. Fracture density is an important property of a system of fracture network as it is a measure of the cumulative area of all the fractures in a unit volume of a fracture network system and Fractal dimension is also used to characterize self-similar objects such as fractures. At the wellbore locations, fracture density and fractal dimension can only be estimated for limited sections where FMI data are available. Therefore, artificial intelligence technique is applied to approximate the quantities at locations along the wellbore, where the hard data is not available. It should be noted that Artificial intelligence techniques have proven their effectiveness in this domain of applications.

Keywords: naturally fractured reservoirs, artificial intelligence, fracture intensity, fractal dimension

Procedia PDF Downloads 255
24590 Simulations to Predict Solar Energy Potential by ERA5 Application at North Africa

Authors: U. Ali Rahoma, Nabil Esawy, Fawzia Ibrahim Moursy, A. H. Hassan, Samy A. Khalil, Ashraf S. Khamees

Abstract:

The design of any solar energy conversion system requires the knowledge of solar radiation data obtained over a long period. Satellite data has been widely used to estimate solar energy where no ground observation of solar radiation is available, yet there are limitations on the temporal coverage of satellite data. Reanalysis is a “retrospective analysis” of the atmosphere parameters generated by assimilating observation data from various sources, including ground observation, satellites, ships, and aircraft observation with the output of NWP (Numerical Weather Prediction) models, to develop an exhaustive record of weather and climate parameters. The evaluation of the performance of reanalysis datasets (ERA-5) for North Africa against high-quality surface measured data was performed using statistical analysis. The estimation of global solar radiation (GSR) distribution over six different selected locations in North Africa during ten years from the period time 2011 to 2020. The root means square error (RMSE), mean bias error (MBE) and mean absolute error (MAE) of reanalysis data of solar radiation range from 0.079 to 0.222, 0.0145 to 0.198, and 0.055 to 0.178, respectively. The seasonal statistical analysis was performed to study seasonal variation of performance of datasets, which reveals the significant variation of errors in different seasons—the performance of the dataset changes by changing the temporal resolution of the data used for comparison. The monthly mean values of data show better performance, but the accuracy of data is compromised. The solar radiation data of ERA-5 is used for preliminary solar resource assessment and power estimation. The correlation coefficient (R2) varies from 0.93 to 99% for the different selected sites in North Africa in the present research. The goal of this research is to give a good representation for global solar radiation to help in solar energy application in all fields, and this can be done by using gridded data from European Centre for Medium-Range Weather Forecasts ECMWF and producing a new model to give a good result.

Keywords: solar energy, solar radiation, ERA-5, potential energy

Procedia PDF Downloads 211
24589 Preparation of Papers: Impacts of COVIDSAFE Practices and CO₂ Feedback Devices on Indoor Air Quality in Classrooms

Authors: Chun Yu, Tahlia M. Farrant, Max G. Marschall

Abstract:

Most of Australia’s school classrooms are equipped with operable windows and occupant-controlled air-conditioners that do not provide fresh air. This can result in insufficient ventilation and high indoor CO₂ levels, which comes at a detriment to occupant productivity and health. This paper reports on the results of an in-situ study capturing indoor CO₂ levels in classrooms at a school in Victoria, Australia. The study consisted of 3 measurement periods: First, CO₂ levels pre-pandemic were measured, finding that the readings exceeded the recommended ASHRAE threshold of 1000 ppm more than 50% of the time, with levels often rising as high as 5000 ppm. Then, after the staff had been informed of the poor indoor air quality and the Victorian government had put COVIDSAFE measures in place, a second data set was captured; the impact was significant, with now only about 30% of readings above the ASHRAE threshold, and values rarely exceeding 2500 ppm. Finally, devices were installed that gave the occupants visual feedback when CO₂ levels were high, thus prompting them to open the windows; this further improved the air quality, with now less than 20% of readings above the threshold and values rarely exceeding 1500 ppm. The study suggests that, while relying on occupants to operate windows can lead to poor indoor air quality due to insufficient ventilation, it is possible to considerably influence occupant behavior through education and feedback devices. While these interventions alone did not mitigate the problem of inadequate ventilation entirely, they were sufficient to keep CO₂ levels within a generally healthy range. Considering the large energy savings that are possible by foregoing mechanical ventilation, it is evident that natural ventilation is a feasible operation method for school buildings in temperate climates, as long as classrooms are equipped with CO₂ feedback devices.

Keywords: COVID, CO₂, education, feedback devices, health, indoor air quality, natural ventilation, occupant behaviour

Procedia PDF Downloads 108
24588 Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data

Authors: Fan Gao, Lior Pachter

Abstract:

The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices, and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data.

Keywords: single-cell, ATAC-seq, bioinformatics, open chromatin landscape, chromatin interactome

Procedia PDF Downloads 155
24587 Examining Smallholder Farmers’ Perceptions of Climate Change and Barriers to Strategic Adaptation in Todee District, Liberia

Authors: Joe Dorbor Wuokolo

Abstract:

Thousands of smallholder farmers in Todee District, Montserrado county, are currently vulnerable to the negative impact of climate change. The district, which is the agricultural hot spot for the county, is faced with unfavorable changes in the daily temperature due to climate change. Farmers in the district have observed a dramatic change in the ratio of rainfall to sunshine, which has caused a chilling effect on their crop yields. However, there is a lack of documentation regarding how farmers perceive and respond to these changes and challenges. A study was conducted in the region to examine the perceptions of smallholder farmers regarding the negative impact of climate change, the adaptation strategies practice, and the barriers that hinder the process of advancing adaptation strategy. On purpose, a sample of 41 respondents from five towns was selected, including five town chiefs, five youth leaders, five women leaders, and sixteen community members. Women and youth leaders were specifically chosen to provide gender balance and enhance the quality of the investigation. Additionally, to validate the barriers farmers face during adaptation to climate change, this study interviewed eight experts from local and international organizations and government ministries and agencies involved in climate change and agricultural programs on what they perceived as the major barrier in both local and national level that impede farmers adaptation to climate change impact. SPSS was used to code the data, and descriptive statistics were used to analyze the data. The weighted average index (WAI) was used to rank adaptation strategies and the perceived importance of adaptation practices among farmers. On a scale from 0 to 3, 0 indicates the least important technique, and 3 indicates the most effective technique. In addition, the Problem Confrontation Index (PCI) was used to rank the barriers that prevented farmers from implementing adaptation measures. According to the findings, approximately 60% of all respondents considered the use of irrigation systems to be the most effective adaptation strategy, with drought-resistant varieties making up 30% of the total. Additionally, 80% of respondents placed a high value on drought-resistant varieties, while 63% percent placed it on irrigation practices. In addition, 78% of farmers ranked and indicated that unpredictability of the weather is the most significant barrier to their adaptation strategies, followed by the high cost of farm inputs and lack of access to financing facilities. 80% of respondents believe that the long-term changes in precipitation (rainfall) and temperature (hotness) are accelerating. This suggests that decision-makers should adopt policies and increase the capacity of smallholder farmers to adapt to the negative impact of climate change in order to ensure sustainable food production.

Keywords: adaptation strategies, climate change, farmers’ perception, smallholder farmers

Procedia PDF Downloads 83
24586 Meta Mask Correction for Nuclei Segmentation in Histopathological Image

Authors: Jiangbo Shi, Zeyu Gao, Chen Li

Abstract:

Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.

Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations

Procedia PDF Downloads 140
24585 The Integration of Cleaner Production Innovation and Creativity for Supply Chain Sustainability of Bogor Batik SMEs

Authors: Sawarni Hasibuan, Juliza Hidayati

Abstract:

Competitiveness and sustainability issues not only put pressure on big companies, but also small and medium enterprises (SMEs). SMEs Batik Bogor is one of the local culture-based creative industries in Bogor city which is also dealing with the issue of sustainability. The purpose of this research is to develop framework of sustainability at SMEs Batik Indonesia case of SMEs Batik Bogor by integrating innovation of cleaner production in its supply chain. The approach used is desk study, field survey, in-depth interviews, and benchmarking best practices of SMEs sustainability. In-depth interviews involve stakeholders to identify the needs and standards of sustainability of SMEs Batik. Data analysis was done by benchmarking method, Multi Dimension Scaling (MDS) method, and Strength, Weakness, Opportunity, Threat (SWOT) analysis. The results recommend the framework of sustainability for SMEs Batik in Indonesia. The sustainability status of SMEs Batik Bogor is classified as Moderate Sustainable. Factors that support the sustainability of SMEs Batik Bogor such is a strong commitment of top management in adopting cleaner production innovation and creativity approach. Successful cleaner production innovations are implemented primarily in the substitution of dye materials from toxic to non-toxic, reducing the intensity of non-renewable energy use, as well as the reuse and recycle of solid waste. “Mosaic Batik” is one of the innovations of solid waste utilization of batik waste produced by company R&D center that gives benefit to three pillars of sustainability, that is financial benefit, environmental benefit, and social benefit. The sustainability of SMEs Batik Bogor cannot be separated from the support of Bogor City Government which proactively facilitates the promotion of sustainable innovation produced by SMEs Batik Bogor.

Keywords: cleaner production innovation, creativity, SMEs Batik, sustainability supply chain

Procedia PDF Downloads 280
24584 Feature Selection Approach for the Classification of Hydraulic Leakages in Hydraulic Final Inspection using Machine Learning

Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter

Abstract:

Manufacturing companies are facing global competition and enormous cost pressure. The use of machine learning applications can help reduce production costs and create added value. Predictive quality enables the securing of product quality through data-supported predictions using machine learning models as a basis for decisions on test results. Furthermore, machine learning methods are able to process large amounts of data, deal with unfavourable row-column ratios and detect dependencies between the covariates and the given target as well as assess the multidimensional influence of all input variables on the target. Real production data are often subject to highly fluctuating boundary conditions and unbalanced data sets. Changes in production data manifest themselves in trends, systematic shifts, and seasonal effects. Thus, Machine learning applications require intensive pre-processing and feature selection. Data preprocessing includes rule-based data cleaning, the application of dimensionality reduction techniques, and the identification of comparable data subsets. Within the used real data set of Bosch hydraulic valves, the comparability of the same production conditions in the production of hydraulic valves within certain time periods can be identified by applying the concept drift method. Furthermore, a classification model is developed to evaluate the feature importance in different subsets within the identified time periods. By selecting comparable and stable features, the number of features used can be significantly reduced without a strong decrease in predictive power. The use of cross-process production data along the value chain of hydraulic valves is a promising approach to predict the quality characteristics of workpieces. In this research, the ada boosting classifier is used to predict the leakage of hydraulic valves based on geometric gauge blocks from machining, mating data from the assembly, and hydraulic measurement data from end-of-line testing. In addition, the most suitable methods are selected and accurate quality predictions are achieved.

Keywords: classification, achine learning, predictive quality, feature selection

Procedia PDF Downloads 162
24583 Secure Data Sharing of Electronic Health Records With Blockchain

Authors: Kenneth Harper

Abstract:

The secure sharing of Electronic Health Records (EHRs) is a critical challenge in modern healthcare, demanding solutions to enhance interoperability, privacy, and data integrity. Traditional standards like Health Information Exchange (HIE) and HL7 have made significant strides in facilitating data exchange between healthcare entities. However, these approaches rely on centralized architectures that are often vulnerable to data breaches, lack sufficient privacy measures, and have scalability issues. This paper proposes a framework for secure, decentralized sharing of EHRs using blockchain technology, cryptographic tokens, and Non-Fungible Tokens (NFTs). The blockchain's immutable ledger, decentralized control, and inherent security mechanisms are leveraged to improve transparency, accountability, and auditability in healthcare data exchanges. Furthermore, we introduce the concept of tokenizing patient data through NFTs, creating unique digital identifiers for each record, which allows for granular data access controls and proof of data ownership. These NFTs can also be employed to grant access to authorized parties, establishing a secure and transparent data sharing model that empowers both healthcare providers and patients. The proposed approach addresses common privacy concerns by employing privacy-preserving techniques such as zero-knowledge proofs (ZKPs) and homomorphic encryption to ensure that sensitive patient information can be shared without exposing the actual content of the data. This ensures compliance with regulations like HIPAA and GDPR. Additionally, the integration of Fast Healthcare Interoperability Resources (FHIR) with blockchain technology allows for enhanced interoperability, enabling healthcare organizations to exchange data seamlessly and securely across various systems while maintaining data governance and regulatory compliance. Through real-world case studies and simulations, this paper demonstrates how blockchain-based EHR sharing can reduce operational costs, improve patient outcomes, and enhance the security and privacy of healthcare data. This decentralized framework holds great potential for revolutionizing healthcare information exchange, providing a transparent, scalable, and secure method for managing patient data in a highly regulated environment.

Keywords: blockchain, electronic health records (ehrs), fast healthcare interoperability resources (fhir), health information exchange (hie), hl7, interoperability, non-fungible tokens (nfts), privacy-preserving techniques, tokens, secure data sharing,

Procedia PDF Downloads 22