Search results for: drift flow model
17167 Thermomechanical Damage Modeling of F114 Carbon Steel
Authors: A. El Amri, M. El Yakhloufi Haddou, A. Khamlichi
Abstract:
The numerical simulation based on the Finite Element Method (FEM) is widely used in academic institutes and in the industry. It is a useful tool to predict many phenomena present in the classical manufacturing forming processes such as fracture. But, the results of such numerical model depend strongly on the parameters of the constitutive behavior model. The influences of thermal and mechanical loads cause damage. The temperature and strain rate dependent materials’ properties and their modelling are discussed. A Johnson-Cook Model of damage has been selected for the numerical simulations. Virtual software called the ABAQUS 6.11 is used for finite element analysis. This model was introduced in order to give information concerning crack initiation during thermal and mechanical loads.Keywords: thermo-mechanical fatigue, failure, numerical simulation, fracture, damage
Procedia PDF Downloads 39317166 Motor Controller Implementation Using Model Based Design
Authors: Cau Tran, Tu Nguyen, Tien Pham
Abstract:
Model-based design (MBD) is a mathematical and visual technique for addressing design issues in the fields of communications, signal processing, and complicated control systems. It is utilized in several automotive, aerospace, industrial, and motion control applications. Virtual models are at the center of the software development process with model based design. A method used in the creation of embedded software is model-based design. In this study, the LAT motor is modeled in a simulation environment, and the LAT motor control is designed with a cascade structure, a speed and current control loop, and a controller that is used in the next part. A PID structure serves as this controller. Based on techniques and motor parameters that match the design goals, the PID controller is created for the model using traditional design principles. The MBD approach will be used to build embedded software for motor control. The paper will be divided into three distinct sections. The first section will introduce the design process and the benefits and drawbacks of the MBD technique. The design of control software for LAT motors will be the main topic of the next section. The experiment's results are the subject of the last section.Keywords: model based design, limited angle torque, intellectual property core, hardware description language, controller area network, user datagram protocol
Procedia PDF Downloads 9417165 A Physical Treatment Method as a Prevention Method for Barium Sulfate Scaling
Authors: M. A. Salman, G. Al-Nuwaibit, M. Safar, M. Rughaibi, A. Al-Mesri
Abstract:
Barium sulfate (BaSO₄) is a hard scaling usually precipitates on the surface of equipment in many industrial systems, as oil and gas production, desalination and cooling and boiler operation. It is a scale that extremely resistance to both chemical and mechanical cleaning. So, BaSO₄ is a problematic and expensive scaling. Although barium ions are present in most natural waters at a very low concentration as low as 0.008 mg/l, it could result of scaling problems in the presence of high concentration of sulfate ion or when mixing with incompatible waters as in oil produced water. The scaling potential of BaSO₄ using seawater at the intake of seven desalination plants in Kuwait, brine water and Kuwait oil produced water was calculated and compared then the best location in regards of barium sulfate scaling was reported. Finally, a physical treatment method (magnetic treatment method) and chemical treatment method were used to control BaSO₄ scaling using saturated solutions at different operating temperatures, flow velocities, feed pHs and different magnetic strengths. The results of the two methods were discussed, and the more economical one with the reasonable performance was recommended, which is the physical treatment method.Keywords: magnetic field strength, flow velocity, retention time, barium sulfate
Procedia PDF Downloads 26717164 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process
Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai
Abstract:
An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.Keywords: stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling
Procedia PDF Downloads 44817163 Gender Based of Sustainable Food Self-Resilience for Village Using Dynamic System Model
Authors: Kholil, Laksanto Utomo
Abstract:
The food needs of the Indonesian people will continue increase year to year due to the increase of population growth. For ensuring food securityand and resilience, the government has developed a program food self-resilience village since 2006. Food resilience is a complex system, consisting of subsystem availability, distribution and consumption of the sufficiency of food consumed both in quantity and quality. Low access, and limited assets to food sources is the dominant factor vulnerable of food. Women have a major role in supporting the productive activities of the family to meet food sufficiency and resilience. The purpose of this paper is to discuss the model of food self-resilience village wich gender responsive by using a dynamic system model. Model will be developed into 3 level: family, vilage, and regency in accordance with the concept of village food resilience model wich has been developed by ministry of agriculture. Model development based on the results of experts discussion and field study. By some scenarios and simulation models we will able to develop appropriate policy strategies for family food resilience. The result of study show that food resilience was influenced by many factors: goverment policies, technology, human resource, and in the same time it will be a feed back for goverment policies and number of poor family.Keywords: food availability, food sufficiency, gender, model dynamic, law enfrocement
Procedia PDF Downloads 53417162 A Model of Knowledge Management Culture Change
Authors: Reza Davoodi, Hamid Abbasi, Heidar Norouzi, Gholamabbas Alipourian
Abstract:
A dynamic model shaping a process of knowledge management (KM) culture change is suggested. It is aimed at providing effective KM of employees for obtaining desired results in an organization. The essential requirements for obtaining KM culture change are determined. The proposed model realizes these requirements. Dynamics of the model are expressed by a change of its parameters. It is adjusted to the dynamic process of KM culture change. Building the model includes elaboration and integration of interconnected components. The “Result” is a central component of the model. This component determines a desired organizational goal and possible directions of its attainment. The “Confront” component engenders constructive confrontation in an organization. For this reason, the employees are prompted toward KM culture change with the purpose of attaining the desired result. The “Assess” component realizes complex assessments of employee proposals by management and peers. The proposals are directed towards attaining the desired result in an organization. The “Reward” component sets the order of assigning rewards to employees based on the assessments of their proposals.Keywords: knowledge management, organizational culture change, employee, result
Procedia PDF Downloads 40717161 Multilayer Perceptron Neural Network for Rainfall-Water Level Modeling
Authors: Thohidul Islam, Md. Hamidul Haque, Robin Kumar Biswas
Abstract:
Floods are one of the deadliest natural disasters which are very complex to model; however, machine learning is opening the door for more reliable and accurate flood prediction. In this research, a multilayer perceptron neural network (MLP) is developed to model the rainfall-water level relation, in a subtropical monsoon climatic region of the Bangladesh-India border. Our experiments show promising empirical results to forecast the water level for 1 day lead time. Our best performing MLP model achieves 98.7% coefficient of determination with lower model complexity which surpasses previously reported results on similar forecasting problems.Keywords: flood forecasting, machine learning, multilayer perceptron network, regression
Procedia PDF Downloads 17217160 A Research Agenda for Learner Models for Adaptive Educational Digital Learning Environments
Authors: Felix Böck
Abstract:
Nowadays, data about learners and their digital activities are collected, which could help educational institutions to better understand learning processes, improve them and be able to provide better learning assistance. In this research project, custom knowledge- and data-driven recommendation algorithms will be used to offer students in higher education integrated learning assistance. The pre-requisite for this is a learner model that is as comprehensive as possible, which should first be created and then kept up-to-date largely automatically for being able to individualize and personalize the learning experience. In order to create such a learner model, a roadmap is presented that describes the individual phases up to the creation and evaluation of the finished model. The methodological process for the research project is disclosed, and the research question of how learners can be supported in their learning with personalized, customized learning recommendations is explored.Keywords: research agenda, user model, learner model, higher education, adaptive educational digital learning environments, personalized learning paths, recommendation system, adaptation, personalization
Procedia PDF Downloads 1617159 Flood Risk Assessment, Mapping Finding the Vulnerability to Flood Level of the Study Area and Prioritizing the Study Area of Khinch District Using and Multi-Criteria Decision-Making Model
Authors: Muhammad Karim Ahmadzai
Abstract:
Floods are natural phenomena and are an integral part of the water cycle. The majority of them are the result of climatic conditions, but are also affected by the geology and geomorphology of the area, topography and hydrology, the water permeability of the soil and the vegetation cover, as well as by all kinds of human activities and structures. However, from the moment that human lives are at risk and significant economic impact is recorded, this natural phenomenon becomes a natural disaster. Flood management is now a key issue at regional and local levels around the world, affecting human lives and activities. The majority of floods are unlikely to be fully predicted, but it is feasible to reduce their risks through appropriate management plans and constructions. The aim of this Case Study is to identify, and map areas of flood risk in the Khinch District of Panjshir Province, Afghanistan specifically in the area of Peshghore, causing numerous damages. The main purpose of this study is to evaluate the contribution of remote sensing technology and Geographic Information Systems (GIS) in assessing the susceptibility of this region to flood events. Panjsher is facing Seasonal floods and human interventions on streams caused floods. The beds of which have been trampled to build houses and hotels or have been converted into roads, are causing flooding after every heavy rainfall. The streams crossing settlements and areas with high touristic development have been intensively modified by humans, as the pressure for real estate development land is growing. In particular, several areas in Khinch are facing a high risk of extensive flood occurrence. This study concentrates on the construction of a flood susceptibility map, of the study area, by combining vulnerability elements, using the Analytical Hierarchy Process/ AHP. The Analytic Hierarchy Process, normally called AHP, is a powerful yet simple method for making decisions. It is commonly used for project prioritization and selection. AHP lets you capture your strategic goals as a set of weighted criteria that you then use to score projects. This method is used to provide weights for each criterion which Contributes to the Flood Event. After processing of a digital elevation model (DEM), important secondary data were extracted, such as the slope map, the flow direction and the flow accumulation. Together with additional thematic information (Landuse and Landcover, topographic wetness index, precipitation, Normalized Difference Vegetation Index, Elevation, River Density, Distance from River, Distance to Road, Slope), these led to the final Flood Risk Map. Finally, according to this map, the Priority Protection Areas and Villages and the structural and nonstructural measures were demonstrated to Minimize the Impacts of Floods on residential and Agricultural areas.Keywords: flood hazard, flood risk map, flood mitigation measures, AHP analysis
Procedia PDF Downloads 11717158 Micro-Hydrokinetic for Remote Rural Electrification
Authors: S. P. Koko, K. Kusakana, H. J. Vermaak
Abstract:
Standalone micro-hydrokinetic river (MHR) system is one of the promising technologies to be used for remote rural electrification. It simply requires the flow of water instead of elevation or head, leading to expensive civil works. This paper demonstrates an economic benefit offered by a standalone MHR system when compared to the commonly used standalone systems such as solar, wind and diesel generator (DG) at the selected study site in Kwazulu Natal. Wind speed and solar radiation data of the selected rural site have been taken from national aeronautics and space administration (NASA) surface meteorology database. The hybrid optimization model for electric renewable (HOMER) software was used to determine the most feasible solution when using MHR, solar, wind or DG system to supply 5 rural houses. MHR system proved to be the best cost-effective option to consider at the study site due to its low cost of energy (COE) and low net present cost (NPC).Keywords: economic analysis, micro-hydrokinetic, rural-electrification, cost of energy (COE), net present cost (NPC)
Procedia PDF Downloads 43217157 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis
Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera
Abstract:
Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.Keywords: log-linear model, multi spectral, residuals, spatial error model
Procedia PDF Downloads 29717156 Numerical and Experimental Investigation of the Aerodynamic Performances of Counter-Rotating Rotors
Authors: Ibrahim Beldjilali, Adel Ghenaiet
Abstract:
The contra-rotating axial machine is a promising solution for several applications, where high pressure and efficiencies are needed. Also, they allow reducing the speed of rotation, the radial spacing and a better flexibility of use. However, this requires a better understanding of their operation, including the influence of second rotor on the overall aerodynamic performances. This work consisted of both experimental and numerical studies to characterize this counter-rotating fan, especially the analysis of the effects of the blades stagger angle and the inter-distance between the rotors. The experimental study served to validate the computational fluid dynamics model (CFD) used in the simulations. The numerical study permitted to cover a wider range of parameter and deeper investigation on flow structures details, including the effects of blade stagger angle and inter-distance, associated with the interaction between the rotors. As a result, there is a clear improvement in aerodynamic performance compared with a conventional machine.Keywords: aerodynamic performance, axial fan, counter rotating rotors, CFD, experimental study
Procedia PDF Downloads 15917155 A Prospective Evaluation of Thermal Radiation Effects on Magneto-Hydrodynamic Transport of a Nanofluid Traversing a Spongy Medium
Authors: Azad Hussain, Shoaib Ali, M. Y. Malik, Saba Nazir, Sarmad Jamal
Abstract:
This article reports a fundamental numerical investigation to analyze the impact of thermal radiations on MHD flow of differential type nanofluid past a porous plate. Here, viscosity is taken as function of temperature. Energy equation is deliberated in the existence of viscous dissipation. The mathematical terminologies of nano concentration, velocity and temperature are first cast into dimensionless expressions via suitable conversions and then solved by using Shooting technique to obtain the numerical solutions. Graphs has been plotted to check the convergence of constructed solutions. At the end, the influence of effective parameters on nanoparticle concentration, velocity and temperature fields are also deliberated in a comprehensive way. Moreover, the physical measures of engineering importance such as the Sherwood number, Skin friction and Nusselt number are also calculated. It is perceived that the thermal radiation enhances the temperature for both Vogel's and Reynolds' models but the normal stress parameter causes a reduction in temperature profile.Keywords: MHD flow, differential type nanofluid, Porous medium, variable viscosity, thermal radiation
Procedia PDF Downloads 24317154 Sildenafil Citrate (Viagra) Suppositories Are Promising Approach for Treatment of Unexplained Infertility
Authors: Shahinaz El-Shourbagy El-Shourbagy, Ahmed M. E Ossman Ossman, Ashraf El-Mohamady El-Mohamady
Abstract:
Objective: To investigate if there is a role of sildenafil citrate (Viagra) in the treatment of infertile couples for idiopathic cause. Design: An observational study. Setting: Infertility outpatient clinic of Tanta University Hospital Egypt. Patient(s): 50 unexplained infertility women {endometrial thickness (EM) and the mean resistance index (RI)} compared to 50 fertile control group attended for check-up in the same period and receiving no treatment. Intervention(s): unexplained infertility women were given 25 mg of sildenafil citrate suppositories four times per day for seven days starting from the 5th day of the menstrual cycle for three cycles. Main Outcome Measures: EM and RI of endometrial spiral artery were assessed by transvaginal color-pulsed Doppler ultrasound in unexplained infertility women before and after sildenafil citrate treatment and compared with control. The conception rate and pregnancy outcome were recorded in the two groups. Result(s): Women with unexplained infertility had significantly thinner endometrium and a higher spiral artery resistance index, meaning lower peri-implantation blood flow than the fertile controls. Sildenafil citrate treated women showed a statistically significant increase in endometrial thickness (p < 0.001) and a significant decrease in the mean spiral artery resistance index (p < 0.001) giving a better conception rate. Conclusion: Sildenafil citrate suppositories treatment enhance the endometrial blood flow through decreasing spiral artery resistance index 'RI' and consequently improve endometrial growth and receptivity in cases of unexplained infertility thus giving a better conception rate.Keywords: Unexplained infertility, endometrial blood flow, endome¬trial receptivity, color-pulsed Doppler ultrasound; RI (resis¬tance index, Sildenafil citrate (Viagra)
Procedia PDF Downloads 21717153 A Low Order Thermal Envelope Model for Heat Transfer Characteristics of Low-Rise Residential Buildings
Authors: Nadish Anand, Richard D. Gould
Abstract:
A simplistic model is introduced for determining the thermal characteristics of a Low-rise Residential (LRR) building and then predicts the energy usage by its Heating Ventilation & Air Conditioning (HVAC) system according to changes in weather conditions which are reflected in the Ambient Temperature (Outside Air Temperature). The LRR buildings are treated as a simple lump for solving the heat transfer problem and the model is derived using the lumped capacitance model of transient conduction heat transfer from bodies. Since most contemporary HVAC systems have a thermostat control which will have an offset temperature and user defined set point temperatures which define when the HVAC system will switch on and off. The aim is to predict without any error the Body Temperature (i.e. the Inside Air Temperature) which will estimate the switching on and off of the HVAC system. To validate the mathematical model derived from lumped capacitance we have used EnergyPlus simulation engine, which simulates Buildings with considerable accuracy. We have predicted through the low order model the Inside Air Temperature of a single house kept in three different climate zones (Detroit, Raleigh & Austin) and different orientations for summer and winter seasons. The prediction error from the model for the same day as that of model parameter calculation has showed an error of < 10% in winter for almost all the orientations and climate zones. Whereas the prediction error is only <10% for all the orientations in the summer season for climate zone at higher latitudes (Raleigh & Detroit). Possible factors responsible for the large variations are also noted in the work, paving way for future research.Keywords: building energy, energy consumption, energy+, HVAC, low order model, lumped capacitance
Procedia PDF Downloads 26617152 Calibrations and Effect of Different Operating Conditions on the Performance of a Fluid Power Control System with Servo Solenoid Valve
Authors: Tahany W. Sadak, Fouly, A. Anwer, M. Rizk
Abstract:
The current investigation presents a study on the hydraulic performance of an electro-hydraulic servo solenoid valve controlled linear piston used in hydraulic systems. Advanced methods have been used to measure and record laboratory experiments, to ensure accurate analysis and evaluation. Experiments have been conducted under different values of temperature (28, 40 and 50 °C), supply pressure (10, 20, 30, 40 and 50 bar), system stiffness (32 N/mm), and load (0.0 & 5560 N). It is concluded that increasing temperature of hydraulic oil increases the quantity of flow rate, so it achieves an increase of the quantity of flow by 5.75 % up to 48.8 % depending on operating conditions. The values of pressure decay at low temperature are less than the values at high temperature. The frequency increases with the increase of the temperature. When we connect the springs to the system, it decreases system frequency. These results are very useful in the process of packing and manufacturing of fluid products, where the properties are not affected by 50 °C, so energy and time are saved.Keywords: electro-hydraulic servo valve, fluid power control system, system stiffness, static and dynamic performance
Procedia PDF Downloads 15517151 Design, Analysis and Simulation of a Lightweight Fire-Resistant Door
Authors: Zainab Fadhil Al Toki, Nader Ghareeb
Abstract:
This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire resistance doors. Fire-rated door specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model, and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers
Procedia PDF Downloads 5117150 Noise and Thermal Analyses of Memristor-Based Phase Locked Loop Integrated Circuit
Authors: Naheem Olakunle Adesina
Abstract:
The memristor is considered as one of the promising candidates for mamoelectronic engineering and applications. Owing to its high compatibility with CMOS, nanoscale size, and low power consumption, memristor has been employed in the design of commonly used circuits such as phase-locked loop (PLL). In this paper, we designed a memristor-based loop filter (LF) together with other components of PLL. Following this, we evaluated the noise-rejection feature of loop filter by comparing the noise levels of input and output signals of the filter. Our SPICE simulation results showed that memristor behaves like a linear resistor at high frequencies. The result also showed that loop filter blocks the high-frequency components from phase frequency detector so as to provide a stable control voltage to the voltage controlled oscillator (VCO). In addition, we examined the effects of temperature on the performance of the designed phase locked loop circuit. A critical temperature, where there is frequency drift of VCO as a result of variations in control voltage, is identified. In conclusion, the memristor is a suitable choice for nanoelectronic systems owing to a small area, low power consumption, dense nature, high switching speed, and endurance. The proposed memristor-based loop filter, together with other components of the phase locked loop, can be designed using memristive emulator and EDA tools in current CMOS technology and simulated.Keywords: Fast Fourier Transform, hysteresis curve, loop filter, memristor, noise, phase locked loop, voltage controlled oscillator
Procedia PDF Downloads 18617149 Value Co-Creation Model for Relationships Management
Authors: Kolesnik Nadezda A.
Abstract:
The research aims to elaborate inter-organizational network relationships management model to maximize value co-creation. We propose a network management framework that requires evaluation of network partners with respect to their position and role in network; and elaboration of appropriate relationship development strategy with partners in network. Empirical research and approval is based on the case study method, including structured in-depth interviews with the companies from b2b market.Keywords: inter-organizational networks, value co-creation, model, B2B market
Procedia PDF Downloads 45617148 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models
Authors: Phanida Phukoetphim, Asaad Y. Shamseldin
Abstract:
In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics
Procedia PDF Downloads 33917147 A Data-Driven Agent Based Model for the Italian Economy
Authors: Michele Catalano, Jacopo Di Domenico, Luca Riccetti, Andrea Teglio
Abstract:
We develop a data-driven agent based model (ABM) for the Italian economy. We calibrate the model for the initial condition and parameters. As a preliminary step, we replicate the Monte-Carlo simulation for the Austrian economy. Then, we evaluate the dynamic properties of the model: the long-run equilibrium and the allocative efficiency in terms of disequilibrium patterns arising in the search and matching process for final goods, capital, intermediate goods, and credit markets. In this perspective, we use a randomized initial condition approach. We perform a robustness analysis perturbing the system for different parameter setups. We explore the empirical properties of the model using a rolling window forecast exercise from 2010 to 2022 to observe the model’s forecasting ability in the wake of the COVID-19 pandemic. We perform an analysis of the properties of the model with a different number of agents, that is, with different scales of the model compared to the real economy. The model generally displays transient dynamics that properly fit macroeconomic data regarding forecasting ability. We stress the model with a large set of shocks, namely interest policy, fiscal policy, and exogenous factors, such as external foreign demand for export. In this way, we can explore the most exposed sectors of the economy. Finally, we modify the technology mix of the various sectors and, consequently, the underlying input-output sectoral interdependence to stress the economy and observe the long-run projections. In this way, we can include in the model the generation of endogenous crisis due to the implied structural change, technological unemployment, and potential lack of aggregate demand creating the condition for cyclical endogenous crises reproduced in this artificial economy.Keywords: agent-based models, behavioral macro, macroeconomic forecasting, micro data
Procedia PDF Downloads 6917146 Entropy Production in Mixed Convection in a Horizontal Porous Channel Using Darcy-Brinkman Formulation
Authors: Amel Tayari, Atef Eljerry, Mourad Magherbi
Abstract:
The paper reports a numerical investigation of the entropy generation analysis due to mixed convection in laminar flow through a channel filled with porous media. The second law of thermodynamics is applied to investigate the entropy generation rate. The Darcy-Brinkman Model is employed. The entropy generation due to heat transfer and friction dissipations has been determined in mixed convection by solving numerically the continuity, momentum and energy equations, using a control volume finite element method. The effects of Darcy number, modified Brinkman number and the Rayleigh number on averaged entropy generation and averaged Nusselt number are investigated. The Rayleigh number varied between 103 ≤ Ra ≤ 105 and the modified Brinkman number ranges between 10-5 ≤ Br≤ 10-1 with fixed values of porosity and Reynolds number at 0.5 and 10 respectively. The Darcy number varied between 10-6 ≤ Da ≤10.Keywords: entropy generation, porous media, heat transfer, mixed convection, numerical methods, darcy, brinkman
Procedia PDF Downloads 41117145 Mathematical Modeling to Reach Stability Condition within Rosetta River Mouth, Egypt
Authors: Ali Masria , Abdelazim Negm, Moheb Iskander, Oliver C. Saavedra
Abstract:
Estuaries play an important role in exchanging water and providing a navigational pathway for ships. These zones are very sensitive and vulnerable to any interventions in coastal dynamics. Almost major of these inlets experience coastal problems such as severe erosion, and accretion. Rosetta promontory, Egypt is an example of this environment. It suffers from many coastal problems as erosion problem along the coastline and siltation problem inside the inlet. It is due to lack of water and sediment resources as a side effect of constructing the Aswan High dam. The shoaling of the inlet leads to hindering the navigation process of fishing boats, negative impacts to estuarine and salt marsh habitat and decrease the efficiency of the cross section to transfer the flow during emergencies to the sea. This paper aims to reach a new condition of stability of Rosetta Promontory by using coastal measures to control the sediment entering, and causes shoaling inside the inlet. These coastal measures include modifying the inlet cross section by using centered jetties, eliminate the coastal dynamic in the entrance using boundary jetties. This target is achieved by using a hydrodynamic model Coastal Modeling System (CMS). Extensive field data collection (hydrographic surveys, wave data, tide data, and bed morphology) is used to build and calibrate the model. About 20 scenarios were tested to reach a suitable solution that mitigate the coastal problems at the inlet. The results show that 360 m jetty in the eastern bank with system of sand bypass from the leeside of the jetty can stabilize the estuary.Keywords: Rosetta promontory, erosion, sedimentation, inlet stability
Procedia PDF Downloads 58717144 Reaction Rate Behavior of a Methane-Air Mixture over a Platinum Catalyst in a Single Channel Catalytic Reactor
Authors: Doo Ki Lee, Kumaresh Selvakumar, Man Young Kim
Abstract:
Catalytic combustion is an environmentally friendly technique to combust fuels in gas turbines. In this paper, the behavior of surface reaction rate on catalytic combustion is studied with respect to the heterogeneous oxidation of methane-air mixture in a catalytic reactor. Plug flow reactor (PFR), the simplified single catalytic channel assists in investigating the catalytic combustion phenomenon over the Pt catalyst by promoting the desired chemical reactions. The numerical simulation with multi-step elementary surface reactions is governed by the availability of free surface sites onto the catalytic surface and thereby, the catalytic combustion characteristics are demonstrated by examining the rate of the reaction for lean fuel mixture. Further, two different surface reaction mechanisms are adopted and compared for surface reaction rates to indicate the controlling heterogeneous reaction for better fuel conversion. The performance of platinum catalyst under heterogeneous reaction is analyzed under the same temperature condition, where the catalyst with the higher kinetic rate of reaction would have a maximum catalytic activity for enhanced methane catalytic combustion.Keywords: catalytic combustion, heterogeneous reaction, plug flow reactor, surface reaction rate
Procedia PDF Downloads 27317143 Modelling of Pervaporation Separation of Butanol from Aqueous Solutions Using Polydimethylsiloxane Mixed Matrix Membranes
Authors: Arian Ebneyamini, Hoda Azimi, Jules Thibaults, F. Handan Tezel
Abstract:
In this study, a modification of Hennepe model for pervaporation separation of butanol from aqueous solutions using Polydimethylsiloxane (PDMS) mixed matrix membranes has been introduced and validated by experimental data. The model was compared to the original Hennepe model and few other models which are applicable for membrane gas separation processes such as Maxwell, Lewis Nielson and Pal. Theoretical modifications for non-ideal interface morphology have been offered to predict the permeability in case of interface void, interface rigidification and pore-blockage. The model was in a good agreement with experimental data.Keywords: butanol, PDMS, modeling, pervaporation, mixed matrix membranes
Procedia PDF Downloads 22117142 Estimation of the Pore Electrical Conductivity Using Dielectric Sensors
Authors: Fethi Bouksila, Magnus Persson, Ronny Berndtsson, Akissa Bahri
Abstract:
Under salinity conditions, we evaluate the performance of Hilhost (2000) model to predict pore electrical conductivity ECp from dielectric permittivity and bulk electrical conductivity (ECa) using Time and Frequency Domain Reflectometry sensors (TDR, FDR). Using FDR_WET sensor, RMSE of ECp was 4.15 dS m-1. By replacing the standard soil parameter (K0) in Hilhost model by K0-ECa relationship, the RMSE of ECp decreased to 0.68 dS m-1. WET sensor could give similar accuracy to estimate ECp than TDR if calibrated values of K0 were used instead of standard values in Hilhost model.Keywords: hilhost model, soil salinity, time domain reflectometry, frequency domain reflectometry, dielectric methods
Procedia PDF Downloads 13517141 A Dynamic Column Adsorption Study of Methyl Blue on Synthesis onto Synthesized Chitosan Immobilized Sawdust Cellulose Nanocrystals
Authors: Opeyemi A. Oyewo, Seshibe Makgato
Abstract:
This paper presents the synthesis, characterization, and application of pelletized chitosan immobilized sawdust cellulose nanocrystals (PCCN) in a fixed-bed column for the continuous adsorption of methyl blue (MB) from water. The product was characterized using FT-IR, XRD, and SEM analysis. Microstructural examination revealed that the pellets are porous and spherical. XRD examination revealed phases that can be attributed to the presence of chitosan in PCCN. The effects of starting concentration, bed depth, and flow rate on synthetic water were explored. To identify MB breakthrough behaviour, performance indices such as bed volume, adsorbent exhaustion rate, and service time were investigated. Furthermore, the breakthrough data were incorporated into both the Thomas and Bohart-Adams models. The Thomas model was suitable for describing MB breakthrough curves. However, more research with diverse water matrices may be required to assess the resilience of PCCN.Keywords: adsorption, dynamic, methyl blue, pelletization
Procedia PDF Downloads 3117140 Data Model to Predict Customize Skin Care Product Using Biosensor
Authors: Ashi Gautam, Isha Shukla, Akhil Seghal
Abstract:
Biosensors are analytical devices that use a biological sensing element to detect and measure a specific chemical substance or biomolecule in a sample. These devices are widely used in various fields, including medical diagnostics, environmental monitoring, and food analysis, due to their high specificity, sensitivity, and selectivity. In this research paper, a machine learning model is proposed for predicting the suitability of skin care products based on biosensor readings. The proposed model takes in features extracted from biosensor readings, such as biomarker concentration, skin hydration level, inflammation presence, sensitivity, and free radicals, and outputs the most appropriate skin care product for an individual. This model is trained on a dataset of biosensor readings and corresponding skin care product information. The model's performance is evaluated using several metrics, including accuracy, precision, recall, and F1 score. The aim of this research is to develop a personalised skin care product recommendation system using biosensor data. By leveraging the power of machine learning, the proposed model can accurately predict the most suitable skin care product for an individual based on their biosensor readings. This is particularly useful in the skin care industry, where personalised recommendations can lead to better outcomes for consumers. The developed model is based on supervised learning, which means that it is trained on a labeled dataset of biosensor readings and corresponding skin care product information. The model uses these labeled data to learn patterns and relationships between the biosensor readings and skin care products. Once trained, the model can predict the most suitable skin care product for an individual based on their biosensor readings. The results of this study show that the proposed machine learning model can accurately predict the most appropriate skin care product for an individual based on their biosensor readings. The evaluation metrics used in this study demonstrate the effectiveness of the model in predicting skin care products. This model has significant potential for practical use in the skin care industry for personalised skin care product recommendations. The proposed machine learning model for predicting the suitability of skin care products based on biosensor readings is a promising development in the skin care industry. The model's ability to accurately predict the most appropriate skin care product for an individual based on their biosensor readings can lead to better outcomes for consumers. Further research can be done to improve the model's accuracy and effectiveness.Keywords: biosensors, data model, machine learning, skin care
Procedia PDF Downloads 9717139 An Equivalent Circuit Model Approach for Battery Pack Simulation in a Hybrid Electric Vehicle System Powertrain
Authors: Suchitra Sivakumar, Hajime Shingyouchi, Toshinori Okajima, Kyohei Yamaguchi, Jin Kusaka
Abstract:
The progressing need for powertrain electrification calls for more accurate and reliable simulation models. A battery pack serves as the most vital component for energy storage in an electrified powertrain. Hybrid electric vehicles (HEV) do not behave the same way as they age, and there are several environmental factors that account for the degradation of the battery on a system level. Therefore, in this work, a battery model was proposed to study the state of charge (SOC) variation and the internal dynamic changes that contribute to aging and performance degradation in HEV batteries. An equivalent circuit battery model (ECM) is built using MATLAB Simulink to investigate the output characteristics of the lithium-ion battery. The ECM comprises of circuit elements like a voltage source, a series resistor and a parallel RC network connected in series. A parameter estimation study is conducted on the ECM to study the dependencies of the circuit elements with the state of charge (SOC) and the terminal voltage of the battery. The battery model is extended to simulate the temperature dependence of the individual battery cell and the battery pack with the environment. The temperature dependence model accounts for the heat loss due to internal resistance build up in the battery pack during charging, discharging, and due to atmospheric temperature. The model was validated for a lithium-ion battery pack with an independent drive cycle showing a voltage accuracy of 4% and SOC accuracy of about 2%.Keywords: battery model, hybrid electric vehicle, lithium-ion battery, thermal model
Procedia PDF Downloads 29817138 4P-Model of Information Terrorism
Authors: Nataliya Venelinova
Abstract:
The paper proposes a new interdisciplinary model of reconsidering the role of mass communication effects by coverage of terrorism. The idea of 4P model is based on the synergy, created by the information strategy of threat, predominantly used by terrorist groups, the effects of mediating the symbolic action of the terrorist attacks or the taking of responsibility of any attacks, and the reshaped public perception for security after the attacks being mass communicated. The paper defines the mass communication cycle of terrorism, which leads not only to re-agenda setting of the societies, but also spirally amplifying the effect of propagating fears by over-informing on terrorism attacks. This finally results in the outlining of the so called 4P-model of information terrorism: mass propaganda, panic, paranoia and pandemic.Keywords: information terrorism, mass communication cycle, public perception, security
Procedia PDF Downloads 173