Search results for: digital transformation artificial intelligence
3806 Effects of Sn and Al on Phase Stability and Mechanical Properties of Metastable Beta Ti Alloys
Authors: Yonosuke Murayama
Abstract:
We have developed and studied a metastable beta Ti alloy, which shows super-elasticity and low Young’s modulus according to the phase stability of its beta phase. The super-elasticity and low Young’s modulus are required in a wide range of applications in various industrial fields. For example, the metallic implant with low Young’s modulus and non-toxicity is desirable because the large difference of Young’s modulus between the human bone and the implant material may cause a stress-shielding phenomenon. We have investigated the role of Sn and Al in metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys. The metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys form during quenching from the beta field at high temperature. While Cr and V act as beta stabilizers, Sn and Al are considered as elements to suppress the athermal omega phase produced during quenching. The athermal omega phase degrades the properties of super-elasticity and Young’s modulus. Although Al and Sn as single elements are considered as an alpha stabilizer and neutral, respectively, Sn and Al acted also as beta stabilizers when added simultaneously with beta stabilized element of Cr or V in this experiment. The quenched microstructure of Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys shifts from martensitic structure to beta single-phase structure with increasing Cr or V. The Young’s modulus of Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys decreased and then increased with increasing Cr or V, each showing its own minimum value of Young's modulus respectively. The composition of the alloy with the minimum Young’s modulus is a near border composition where the quenched microstructure shifts from martensite to beta. The border composition of Ti-Cr-Sn and Ti-V-Sn alloys required only less amount of each beta stabilizer, Cr or V, than Ti-Cr-Al and Ti-V-Al alloys. This indicates that the effect of Sn as a beta stabilizer is stronger than Al. Sn and Al influenced the competitive relation between stress-induced martensitic transformation and slip deformation. Thus, super-elastic properties of metastable beta Ti-Cr-Sn, Ti-Cr-Al, Ti-V-Sn, and Ti-V-Al alloys varied depending on the alloyed element, Sn or Al.Keywords: metastable beta Ti alloy, super-elasticity, low Young’s modulus, stress-induced martensitic transformation, beta stabilized element
Procedia PDF Downloads 1483805 The Nexus of Decentralized Policy, social Heterogeneity and Poverty in Equitable Forest Benefit Sharing in the Lowland Community Forestry Program of Nepal
Authors: Dhiraj Neupane
Abstract:
Decentralized policy and practices have largely concentrated on the transformation of decision-making authorities from central to local institutions (or people) in the developing world. Such policy and practices always aimed for the equitable and efficient management of resources in the line of poverty reduction. The transformation of forest decision-making autonomy has also glorified as the best forest management alternatives to maximize the forest benefits and improve the livelihood of local people living nearby the forests. However, social heterogeneity and poor decision-making capacity of local institutions (or people) pose a nexus while managing the resources and sharing the forest benefits among the user households despite the policy objectives. The situation is severe in the lowland of Nepal, where forest resources have higher economic potential and user households have heterogeneous socio-economic conditions. The study discovered that utilizing the power of decision-making autonomy, user households were putting low values of timber considering the equitable access of timber to all user households as it is the most valuable product of community forest. Being the society is heterogeneous by socio-economic conditions, households of better economic conditions were always taking higher amount of forest benefits. The low valuation of timber has negative consequences on equitable benefit sharing and poor support to livelihood improvement of user households. Moreover, low valuation has possibility to increase the local demands of timber and increase the human pressure on forests.Keywords: decentralized forest policy, Nepal, poverty, social heterogeneity, Terai
Procedia PDF Downloads 2893804 Heritage Tourism and the Changing Rural Landscape: Case Study of Cultural Landscape of Honghe Hani Rice Terraces
Authors: Yan Wang; Mathis Stock
Abstract:
The World Heritage Site of Honghe Hani rice terrace, also a marginal rural region in Southern China, is undergoing rapid change because of urbanization and heritage tourism. Influenced by out-migration and changing ways of living in the urbanization process, the place sees a tendency of losing its rice terrace landscape, traditional housings and other forms of cultural traditions. However, heritage tourism tends to keep the past, valorize them for tourism purposes and diversifies rural livelihood strategies. The place stands at this development trajectories, where the same resources are subjected to different uses by different actors. The research seeks to answer the questions of how the site is transformed and co-constructed by different institutions, practices and actors, and the how heritage tourism affects local livelihood. The research aims to describe the transformation of villages, rice terraces, and cultural traditions, analyze the place-making process, and assess the role of heritage tourism in local livelihood transition. The research uses a mixed of methods including direct observation, participant observation, interviews; collects various data of images, words, narratives, and statistics, and analyze them qualitatively and qualitatively. Theoretically, it is hoped that the research would reexamine the concept of heritage, the world heritage practice from UNESCO, reveal the conflicts it entails in development and brings more thoughts from a functional perspective on heritage in relation to rural development. Practically, it is also anticipated that the research could access the linkage between heritage tourism and local livelihood, and generate concrete suggestions on how tourism could engage locals and improve their livelihood.Keywords: cultural landscape, Hani rice terraces, heritage tourism, livelihood strategy, place making, rural development, transformation
Procedia PDF Downloads 2333803 Direct Current Grids in Urban Planning for More Sustainable Urban Energy and Mobility
Authors: B. Casper
Abstract:
The energy transition towards renewable energies and drastically reduced carbon dioxide emissions in Germany drives multiple sectors into a transformation process. Photovoltaic and on-shore wind power are predominantly feeding in the low and medium-voltage grids. The electricity grid is not laid out to allow an increasing feed-in of power in low and medium voltage grids. Electric mobility is currently in the run-up phase in Germany and still lacks a significant amount of charging stations. The additional power demand by e-mobility cannot be supplied by the existing electric grids in most cases. The future demands in heating and cooling of commercial and residential buildings are increasingly generated by heat-pumps. Yet the most important part in the energy transition is the storage of surplus energy generated by photovoltaic and wind power sources. Water electrolysis is one way to store surplus energy known as power-to-gas. With the vehicle-to-grid technology, the upcoming fleet of electric cars could be used as energy storage to stabilize the grid. All these processes use direct current (DC). The demand of bi-directional flow and higher efficiency in the future grids can be met by using DC. The Flexible Electrical Networks (FEN) research campus at RWTH Aachen investigates interdisciplinary about the advantages, opportunities, and limitations of DC grids. This paper investigates the impact of DC grids as a technological innovation on the urban form and urban life. Applying explorative scenario development, analyzation of mapped open data sources on grid networks and research-by-design as a conceptual design method, possible starting points for a transformation to DC medium voltage grids could be found. Several fields of action have emerged in which DC technology could become a catalyst for future urban development: energy transition in urban areas, e-mobility, and transformation of the network infrastructure. The investigation shows a significant potential to increase renewable energy production within cities with DC grids. The charging infrastructure for electric vehicles will predominantly be using DC in the future because fast and ultra fast charging can only be achieved with DC. Our research shows that e-mobility, combined with autonomous driving has the potential to change the urban space and urban logistics fundamentally. Furthermore, there are possible win-win-win solutions for the municipality, the grid operator and the inhabitants: replacing overhead transmission lines by underground DC cables to open up spaces in contested urban areas can lead to a positive example of how the energy transition can contribute to a more sustainable urban structure. The outlook makes clear that target grid planning and urban planning will increasingly need to be synchronized.Keywords: direct current, e-mobility, energy transition, grid planning, renewable energy, urban planning
Procedia PDF Downloads 1293802 Quality Assurance in Translation Crowdsourcing: The TED Open Translation Project
Authors: Ya-Mei Chen
Abstract:
The participatory culture enabled by Web 2.0 technologies has led to the emergence of online translation crowdsourcing, which mainly relies on the collective intelligence of volunteer translators. Due to the fact that many volunteer translators do not have formal translator training, concerns have been raised about the quality of crowdsourced translations. Some empirical research has been done to examine the translation quality of for-profit crowdsourcing initiatives. However, quality assurance of non-profit translation crowdsourcing has rarely been explored in detail. Using the TED Open Translation Project as a case study, this paper investigates how the translation-review-approval method adopted by TED can (1) direct the volunteer translators’ use of translation strategies as well as the reviewers’ adoption of revising strategies and (2) shape the final translation products. To well examine the actual effect of TED’s translation-review-approval method, this paper will focus on its two major quality assurance mechanisms, that is, TED’s style guidelines and quality review. Based on an anonymous questionnaire, this research will first explore whether the volunteer translators and reviewers are aware of the style guidelines and whether their use of translation strategies is similar to that advised in the guidelines. The questionnaire, which will be posted online, will consist of two parts: demographic information and translation strategies. The invitations to complete it will then be distributed through TED Translator Facebook groups. With an aim to investigate if the style guidelines have any substantial impacts on actual subtitling practices, a comparison will be made between the original English subtitles of 20 TED talks (each around 5 to 7 minutes) and their Chinese subtitle translations to identify regularly adopted strategies. Concerning the function of the reviewing stage, a comparative study will be conducted between the drafts of Chinese subtitles for 10 short English talks and the revised versions of these drafts so as to examine the actual revising strategies and their effect on translation quality. According to the results obtained from the questionnaire and textual comparisons, this paper will provide in-depth analysis of quality assurance of the TED Open Translation Project. It is hoped that this research, through a detailed investigation of non-profit translation crowdsourcing, can enable translation researchers and practitioners to have a better understanding of quality control in translation crowdsourcing in the digital age.Keywords: quality assurance, TED, translation crowdsourcing, volunteer translators
Procedia PDF Downloads 2323801 Inversely Designed Chipless Radio Frequency Identification (RFID) Tags Using Deep Learning
Authors: Madhawa Basnayaka, Jouni Paltakari
Abstract:
Fully passive backscattering chipless RFID tags are an emerging wireless technology with low cost, higher reading distance, and fast automatic identification without human interference, unlike already available technologies like optical barcodes. The design optimization of chipless RFID tags is crucial as it requires replacing integrated chips found in conventional RFID tags with printed geometric designs. These designs enable data encoding and decoding through backscattered electromagnetic (EM) signatures. The applications of chipless RFID tags have been limited due to the constraints of data encoding capacity and the ability to design accurate yet efficient configurations. The traditional approach to accomplishing design parameters for a desired EM response involves iterative adjustment of design parameters and simulating until the desired EM spectrum is achieved. However, traditional numerical simulation methods encounter limitations in optimizing design parameters efficiently due to the speed and resource consumption. In this work, a deep learning neural network (DNN) is utilized to establish a correlation between the EM spectrum and the dimensional parameters of nested centric rings, specifically square and octagonal. The proposed bi-directional DNN has two simultaneously running neural networks, namely spectrum prediction and design parameters prediction. First, spectrum prediction DNN was trained to minimize mean square error (MSE). After the training process was completed, the spectrum prediction DNN was able to accurately predict the EM spectrum according to the input design parameters within a few seconds. Then, the trained spectrum prediction DNN was connected to the design parameters prediction DNN and trained two networks simultaneously. For the first time in chipless tag design, design parameters were predicted accurately after training bi-directional DNN for a desired EM spectrum. The model was evaluated using a randomly generated spectrum and the tag was manufactured using the predicted geometrical parameters. The manufactured tags were successfully tested in the laboratory. The amount of iterative computer simulations has been significantly decreased by this approach. Therefore, highly efficient but ultrafast bi-directional DNN models allow rapid and complicated chipless RFID tag designs.Keywords: artificial intelligence, chipless RFID, deep learning, machine learning
Procedia PDF Downloads 523800 Improved Technology Portfolio Management via Sustainability Analysis
Authors: Ali Al-Shehri, Abdulaziz Al-Qasim, Abdulkarim Sofi, Ali Yousef
Abstract:
The oil and gas industry has played a major role in improving the prosperity of mankind and driving the world economy. According to the International Energy Agency (IEA) and Integrated Environmental Assessment (EIA) estimates, the world will continue to rely heavily on hydrocarbons for decades to come. This growing energy demand mandates taking sustainability measures to prolong the availability of reliable and affordable energy sources, and ensure lowering its environmental impact. Unlike any other industry, the oil and gas upstream operations are energy-intensive and scattered over large zonal areas. These challenging conditions require unique sustainability solutions. In recent years there has been a concerted effort by the oil and gas industry to develop and deploy innovative technologies to: maximize efficiency, reduce carbon footprint, reduce CO2 emissions, and optimize resources and material consumption. In the past, the main driver for research and development (R&D) in the exploration and production sector was primarily driven by maximizing profit through higher hydrocarbon recovery and new discoveries. Environmental-friendly and sustainable technologies are increasingly being deployed to balance sustainability and profitability. Analyzing technology and its sustainability impact is increasingly being used in corporate decision-making for improved portfolio management and allocating valuable resources toward technology R&D.This paper articulates and discusses a novel workflow to identify strategic sustainable technologies for improved portfolio management by addressing existing and future upstream challenges. It uses a systematic approach that relies on sustainability key performance indicators (KPI’s) including energy efficiency quotient, carbon footprint, and CO2 emissions. The paper provides examples of various technologies including CCS, reducing water cuts, automation, using renewables, energy efficiency, etc. The use of 4IR technologies such as Artificial Intelligence, Machine Learning, and Data Analytics are also discussed. Overlapping technologies, areas of collaboration and synergistic relationships are identified. The unique sustainability analyses provide improved decision-making on technology portfolio management.Keywords: sustainability, oil& gas, technology portfolio, key performance indicator
Procedia PDF Downloads 1843799 The Integration of ICT in the Teaching and Learning of French Language in Some Selected Schools in Nigeria: Prospects and Challenges
Authors: Oluyomi A. Abioye
Abstract:
The 21st century has been witnessing a lot of technological advancements and innovations, and Information and Communication Technology (ICT) happens to be one of them. Education is the cornerstone of any nation and the language in which it is delivered is the bedrock of any development. The French language is our choice in this study. French is a language of reference on the national and international scenes; however its teaching is clouded with myriads of problems. The output of students’ academic performance depends on to a large extent on the teaching and learning the process. The methodology employed goes a long way in contributing to the effectiveness of the teaching and learning the process. Therefore, with the integration of ICT, French teaching has to align with and adapt to this new digital era. An attempt is made to define the concept of ICT. Some of the challenges encountered in the teaching of French language are highlighted. Then it discusses the existing methods of French teaching and the integration of ICT in the teaching and learning of the same language. Then some prospects and challenges of ICT in the teaching and learning of French are discussed. Data collected from questionnaires administered among some students of some selected schools are analysed. Our findings revealed that only very few schools in Nigeria have the electronic and computer-mediated facilities to teach the French language. The paper concludes by encouraging 'savoir-faire' of ICT by the French teachers, an openness of students to this digital technology and adequate provision of electronic and computer-mediated gadgets by the Nigerian government to its educational institutions.Keywords: French language in Nigeria, integration of ICT, prospects and challenges, teaching and learning
Procedia PDF Downloads 3523798 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 2783797 Creating Gameful Experience as an Innovative Approach in the Digital Era: A Double-Mediation Model of Instructional Support, Group Engagement and Flow
Authors: Mona Hoyng
Abstract:
In times of digitalization nowadays, the use of games became a crucial new way for digital game-based learning (DGBL) in higher education. In this regard, the development of a gameful experience (GE) among students is decisive when examining DGBL as the GE is a necessary precondition determining the effectiveness of games. In this regard, the purpose of this study is to provide deeper insights into the GE and to empirically investigate whether and how these meaningful learning experiences within games, i.e., GE, among students are created. Based on the theory of experience and flow theory, a double-mediation model was developed considering instructional support, group engagement, and flow as determinants of students’ GE. Based on data of 337 students taking part in a business simulation game at two different universities in Germany, regression-based statistical mediation analysis revealed that instructional support promoted students’ GE. This relationship was further sequentially double mediated by group engagement and flow. Consequently, in the context of DGBL, meaningful learning experiences within games in terms of GE are created and promoted through appropriate instructional support, as well as high levels of group engagement and flow among students.Keywords: gameful experience, instructional support, group engagement, flow, education, learning
Procedia PDF Downloads 1373796 Hydrodynamic and Water Quality Modelling to Support Alternative Fuels Maritime Operations Incident Planning & Impact Assessments
Authors: Chow Jeng Hei, Pavel Tkalich, Low Kai Sheng Bryan
Abstract:
Due to the growing demand for sustainability in the maritime industry, there has been a significant increase in focus on alternative fuels such as biofuels, liquefied natural gas (LNG), hydrogen, methanol and ammonia to reduce the carbon footprint of vessels. Alternative fuels offer efficient transportability and significantly reduce carbon dioxide emissions, a critical factor in combating global warming. In an era where the world is determined to tackle climate change, the utilization of methanol is projected to witness a consistent rise in demand, even during downturns in the oil and gas industry. Since 2022, there has been an increase in methanol loading and discharging operations for industrial use in Singapore. These operations were conducted across various storage tank terminals at Jurong Island of varying capacities, which are also used to store alternative fuels for bunkering requirements. The key objective of this research is to support the green shipping industries in the transformation to new fuels such as methanol and ammonia, especially in evolving the capability to inform risk assessment and management of spills. In the unlikely event of accidental spills, a highly reliable forecasting system must be in place to provide mitigation measures and ahead planning. The outcomes of this research would lead to an enhanced metocean prediction capability and, together with advanced sensing, will continuously build up a robust digital twin of the bunkering operating environment. Outputs from the developments will contribute to management strategies for alternative marine fuel spills, including best practices, safety challenges and crisis management. The outputs can also benefit key port operators and the various bunkering, petrochemicals, shipping, protection and indemnity, and emergency response sectors. The forecasted datasets provide a forecast of the expected atmosphere and hydrodynamic conditions prior to bunkering exercises, enabling a better understanding of the metocean conditions ahead and allowing for more refined spill incident management planningKeywords: clean fuels, hydrodynamics, coastal engineering, impact assessments
Procedia PDF Downloads 723795 The Classification Accuracy of Finance Data through Holder Functions
Authors: Yeliz Karaca, Carlo Cattani
Abstract:
This study focuses on the local Holder exponent as a measure of the function regularity for time series related to finance data. In this study, the attributes of the finance dataset belonging to 13 countries (India, China, Japan, Sweden, France, Germany, Italy, Australia, Mexico, United Kingdom, Argentina, Brazil, USA) located in 5 different continents (Asia, Europe, Australia, North America and South America) have been examined.These countries are the ones mostly affected by the attributes with regard to financial development, covering a period from 2012 to 2017. Our study is concerned with the most important attributes that have impact on the development of finance for the countries identified. Our method is comprised of the following stages: (a) among the multi fractal methods and Brownian motion Holder regularity functions (polynomial, exponential), significant and self-similar attributes have been identified (b) The significant and self-similar attributes have been applied to the Artificial Neuronal Network (ANN) algorithms (Feed Forward Back Propagation (FFBP) and Cascade Forward Back Propagation (CFBP)) (c) the outcomes of classification accuracy have been compared concerning the attributes that have impact on the attributes which affect the countries’ financial development. This study has enabled to reveal, through the application of ANN algorithms, how the most significant attributes are identified within the relevant dataset via the Holder functions (polynomial and exponential function).Keywords: artificial neural networks, finance data, Holder regularity, multifractals
Procedia PDF Downloads 2483794 A Hybrid Genetic Algorithm and Neural Network for Wind Profile Estimation
Authors: M. Saiful Islam, M. Mohandes, S. Rehman, S. Badran
Abstract:
Increasing necessity of wind power is directing us to have precise knowledge on wind resources. Methodical investigation of potential locations is required for wind power deployment. High penetration of wind energy to the grid is leading multi megawatt installations with huge investment cost. This fact appeals to determine appropriate places for wind farm operation. For accurate assessment, detailed examination of wind speed profile, relative humidity, temperature and other geological or atmospheric parameters are required. Among all of these uncertainty factors influencing wind power estimation, vertical extrapolation of wind speed is perhaps the most difficult and critical one. Different approaches have been used for the extrapolation of wind speed to hub height which are mainly based on Log law, Power law and various modifications of the two. This paper proposes a Artificial Neural Network (ANN) and Genetic Algorithm (GA) based hybrid model, namely GA-NN for vertical extrapolation of wind speed. This model is very simple in a sense that it does not require any parametric estimations like wind shear coefficient, roughness length or atmospheric stability and also reliable compared to other methods. This model uses available measured wind speeds at 10m, 20m and 30m heights to estimate wind speeds up to 100m. A good comparison is found between measured and estimated wind speeds at 30m and 40m with approximately 3% mean absolute percentage error. Comparisons with ANN and power law, further prove the feasibility of the proposed method.Keywords: wind profile, vertical extrapolation of wind, genetic algorithm, artificial neural network, hybrid machine learning
Procedia PDF Downloads 4923793 Denoising of Motor Unit Action Potential Based on Tunable Band-Pass Filter
Authors: Khalida S. Rijab, Mohammed E. Safi, Ayad A. Ibrahim
Abstract:
When electrical electrodes are mounted on the skin surface of the muscle, a signal is detected when a skeletal muscle undergoes contraction; the signal is known as surface electromyographic signal (EMG). This signal has a noise-like interference pattern resulting from the temporal and spatial summation of action potentials (AP) of all active motor units (MU) near electrode detection. By appropriate processing (Decomposition), the surface EMG signal may be used to give an estimate of motor unit action potential. In this work, a denoising technique is applied to the MUAP signals extracted from the spatial filter (IB2). A set of signals from a non-invasive two-dimensional grid of 16 electrodes from different types of subjects, muscles, and sex are recorded. These signals will acquire noise during recording and detection. A digital fourth order band- pass Butterworth filter is used for denoising, with a tuned band-pass frequency of suitable choice of cutoff frequencies is investigated, with the aim of obtaining a suitable band pass frequency. Results show an improvement of (1-3 dB) in the signal to noise ratio (SNR) have been achieved, relative to the raw spatial filter output signals for all cases that were under investigation. Furthermore, the research’s goal included also estimation and reconstruction of the mean shape of the MUAP.Keywords: EMG, Motor Unit, Digital Filter, Denoising
Procedia PDF Downloads 4053792 Sterols Regulate the Activity of Phospholipid Scramblase by Interacting through Putative Cholesterol Binding Motif
Authors: Muhasin Koyiloth, Sathyanarayana N. Gummadi
Abstract:
Biological membranes are ordered association of lipids, proteins, and carbohydrates. Lipids except sterols possess asymmetric distribution across the bilayer. Eukaryotic membranes possess a group of lipid translocators called scramblases that disrupt phospholipid asymmetry. Their action is implicated in cell activation during wound healing and phagocytic clearance of apoptotic cells. Cholesterol is one of the major membrane lipids distributed evenly on both the leaflet and can directly influence the membrane fluidity through the ordering effect. The fluidity has an impact on the activity of several membrane proteins. The palmitoylated phospholipid scramblases localized to the lipid raft which is characterized by a higher number of sterols. Here we propose that cholesterol can interact with scramblases through putative CRAC motif and can modulate their activity. To prove this, we reconstituted phospholipid scramblase 1 of C. elegans (SCRM-1) in proteoliposomes containing different amounts of cholesterol (Liquid ordered/Lo). We noted that the presence of cholesterol reduced the scramblase activity of wild-type SCRM-1. The interaction between SCRM-1 and cholesterol was confirmed by fluorescence spectroscopy using NBD-Chol. Also, we observed loss of such interaction when one of I273 in the CRAC motif mutated to Asp. Interestingly, the point mutant has partially retained scramblase activity in Lo vesicles. The current study elucidated the important interaction between cholesterol and SCRM-1 to fine-tune its activity in artificial membranes.Keywords: artificial membranes, CRAC motif, plasma membrane, PL scramblase
Procedia PDF Downloads 1803791 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 973790 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence
Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács
Abstract:
The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility
Procedia PDF Downloads 1203789 Future of Nanotechnology in Digital MacDraw
Authors: Pejman Hosseinioun, Abolghasem Ghasempour, Elham Gholami, Hamed Sarbazi
Abstract:
Considering the development in global semiconductor technology, it is anticipated that gadgets such as diodes and resonant transistor tunnels (RTD/RTT), Single electron transistors (SET) and quantum cellular automata (QCA) will substitute CMOS (Complementary Metallic Oxide Semiconductor) gadgets in many applications. Unfortunately, these new technologies cannot disembark the common Boolean logic efficiently and are only appropriate for liminal logic. Therefor there is no doubt that with the development of these new gadgets it is necessary to find new MacDraw technologies which are compatible with them. Resonant transistor tunnels (RTD/RTT) and circuit MacDraw with enhanced computing abilities are candida for accumulating Nano criterion in the future. Quantum cellular automata (QCA) are also advent Nano technological gadgets for electrical circuits. Advantages of these gadgets such as higher speed, smaller dimensions, and lower consumption loss are of great consideration. QCA are basic gadgets in manufacturing gates, fuses and memories. Regarding the complex Nano criterion physical entity, circuit designers can focus on logical and constructional design to decrease complication in MacDraw. Moreover Single electron technology (SET) is another noteworthy gadget considered in Nano technology. This article is a survey in future of Nano technology in digital MacDraw.Keywords: nano technology, resonant transistor tunnels, quantum cellular automata, semiconductor
Procedia PDF Downloads 2693788 Digital Game Fostering Spatial Abilities for Children with Special Needs
Authors: Pedro Barros, Ana Breda, Eugenio Rocha, M. Isabel Santos
Abstract:
As visual and spatial awareness develops, children apprehension of the concept of direction, (relative) distance and (relative) location materializes. Here we present the educational inclusive digital game ORIESPA, under development by the Thematic Line Geometrix, for children aged between 6 and 10 years old, aiming the improvement of their visual and spatial awareness. Visual-spatial abilities are of crucial importance to succeed in many everyday life tasks. Unavoidable in the technological age we are living in, they are essential in many fields of study as, for instance, mathematics.The game, set on a 2D/3D environment, focusses in tasks/challenges on the following categories (1) static orientation of the subject and object, requiring an understanding of the notions of up–down, left–right, front–back, higher-lower or nearer-farther; (2) interpretation of perspectives of three-dimensional objects, requiring the understanding of 2D and 3D representations of three-dimensional objects; and (3) orientation of the subject in real space, requiring the reading and interpreting of itineraries. In ORIESPA, simpler tasks are based on a quadrangular grid, where the front-back and left-right directions and the rotations of 90º, 180º and 270º play the main requirements. The more complex ones are produced on a cubic grid adding the up and down movements. In the first levels, the game's mechanics regarding the reading and interpreting maps (from point A to point B) is based on map routes, following a given set of instructions. In higher levels, the player must produce a list of instructions taking the game character to the desired destination, avoiding obstacles. Being an inclusive game the user has the possibility to interact through the mouse (point and click with a single button), the keyboard (small set of well recognized keys) or a Kinect device (using simple gesture moves). The character control requires the action on buttons corresponding to movements in 2D and 3D environments. Buttons and instructions are also complemented with text, sound and sign language.Keywords: digital game, inclusion, itinerary, spatial ability
Procedia PDF Downloads 1833787 Prediction of Changes in Optical Quality by Tissue Redness after Pterygium Surgery
Authors: Mohd Radzi Hilmi, Mohd Zulfaezal Che Azemin, Khairidzan Mohd Kamal, Azrin Esmady Ariffin, Mohd Izzuddin Mohd Tamrin, Norfazrina Abdul Gaffur, Tengku Mohd Tengku Sembok
Abstract:
Purpose: The purpose of this study is to predict optical quality changes after pterygium surgery using tissue redness grading. Methods: Sixty-eight primary pterygium participants were selected from patients who visited an ophthalmology clinic. We developed a semi-automated computer program to measure the pterygium fibrovascular redness from digital pterygium images. The outcome of this software is a continuous scale grading of 1 (minimum redness) to 3 (maximum redness). The region of interest (ROI) was selected manually using the software. Reliability was determined by repeat grading of all 68 images and its association with contrast sensitivity function (CSF) and visual acuity (VA) was examined. Results: The mean and standard deviation of redness of the pterygium fibrovascular images was 1.88 ± 0.55. Intra- and inter-grader reliability estimates were high with intraclass correlation ranging from 0.97 to 0.98. The new grading was positively associated with CSF (p<0.01) and VA (p<0.01). The redness grading was able to predict 25% and 23% of the variance in the CSF and the VA respectively. Conclusions: The new grading of pterygium fibrovascular redness can be reliably measured from digital images and show a good correlation with CSF and VA. The redness grading can be used in addition to the existing pterygium grading.Keywords: contrast sensitivity, pterygium, redness, visual acuity
Procedia PDF Downloads 5173786 Perceived Effectiveness of Academic Leadership Development Program in the Digital Age: The Contribution of Motivational Factors and Peer Interaction
Authors: Dinh Ngoc Bich Khuyen, Chang Zhu
Abstract:
Due to the radical changes and complexities within academic institutions, leadership development addressed to academic leaders in the digital age has become more important. Unfortunately, studies on outcome assessment of leadership development and its related factors have not been evaluated rigorously. The current study investigated the contribution of peer interaction and two subscales of motivation to the effectiveness of the leadership development programs perceived by learners in a diverse context. Of 73 participants, the majority of workshop attendees were junior and middle-level leaders from both European universities and Chinese universities who participated in the leadership development programs organized under an EU project. PLS-SEM was employed to validate the instrument and answer the research questions, respectively. The finding reveals that self-growth and peer interaction significantly contribute to perceived effectiveness, whereas networking motivator shows non-significant impact. Besides, the new contribution of these findings is to show that peer interaction fully mediates the relationship between self-growth and perceived effectiveness. To this end, the findings highlight the importance of dispositional factors regarding the quality of the leadership development program in HE contexts and the potential of such program to enhance the knowledge and capacities of academic leaders regarding university governance and leadership.Keywords: higher education, leadership development, effectiveness, middle-level leaders, junior-level leaders
Procedia PDF Downloads 1853785 Smart Defect Detection in XLPE Cables Using Convolutional Neural Networks
Authors: Tesfaye Mengistu
Abstract:
Power cables play a crucial role in the transmission and distribution of electrical energy. As the electricity generation, transmission, distribution, and storage systems become smarter, there is a growing emphasis on incorporating intelligent approaches to ensure the reliability of power cables. Various types of electrical cables are employed for transmitting and distributing electrical energy, with cross-linked polyethylene (XLPE) cables being widely utilized due to their exceptional electrical and mechanical properties. However, insulation defects can occur in XLPE cables due to subpar manufacturing techniques during production and cable joint installation. To address this issue, experts have proposed different methods for monitoring XLPE cables. Some suggest the use of interdigital capacitive (IDC) technology for online monitoring, while others propose employing continuous wave (CW) terahertz (THz) imaging systems to detect internal defects in XLPE plates used for power cable insulation. In this study, we have developed models that employ a custom dataset collected locally to classify the physical safety status of individual power cables. Our models aim to replace physical inspections with computer vision and image processing techniques to classify defective power cables from non-defective ones. The implementation of our project utilized the Python programming language along with the TensorFlow package and a convolutional neural network (CNN). The CNN-based algorithm was specifically chosen for power cable defect classification. The results of our project demonstrate the effectiveness of CNNs in accurately classifying power cable defects. We recommend the utilization of similar or additional datasets to further enhance and refine our models. Additionally, we believe that our models could be used to develop methodologies for detecting power cable defects from live video feeds. We firmly believe that our work makes a significant contribution to the field of power cable inspection and maintenance. Our models offer a more efficient and cost-effective approach to detecting power cable defects, thereby improving the reliability and safety of power grids.Keywords: artificial intelligence, computer vision, defect detection, convolutional neural net
Procedia PDF Downloads 1153784 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area
Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya
Abstract:
In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area
Procedia PDF Downloads 2743783 The Human Process of Trust in Automated Decisions and Algorithmic Explainability as a Fundamental Right in the Exercise of Brazilian Citizenship
Authors: Paloma Mendes Saldanha
Abstract:
Access to information is a prerequisite for democracy while also guiding the material construction of fundamental rights. The exercise of citizenship requires knowing, understanding, questioning, advocating for, and securing rights and responsibilities. In other words, it goes beyond mere active electoral participation and materializes through awareness and the struggle for rights and responsibilities in the various spaces occupied by the population in their daily lives. In times of hyper-cultural connectivity, active citizenship is shaped through ethical trust processes, most often established between humans and algorithms. Automated decisions, so prevalent in various everyday situations, such as purchase preference predictions, virtual voice assistants, reduction of accidents in autonomous vehicles, content removal, resume selection, etc., have already found their place as a normalized discourse that sometimes does not reveal or make clear what violations of fundamental rights may occur when algorithmic explainability is lacking. In other words, technological and market development promotes a normalization for the use of automated decisions while silencing possible restrictions and/or breaches of rights through a culturally modeled, unethical, and unexplained trust process, which hinders the possibility of the right to a healthy, transparent, and complete exercise of citizenship. In this context, the article aims to identify the violations caused by the absence of algorithmic explainability in the exercise of citizenship through the construction of an unethical and silent trust process between humans and algorithms in automated decisions. As a result, it is expected to find violations of constitutionally protected rights such as privacy, data protection, and transparency, as well as the stipulation of algorithmic explainability as a fundamental right in the exercise of Brazilian citizenship in the era of virtualization, facing a threefold foundation called trust: culture, rules, and systems. To do so, the author will use a bibliographic review in the legal and information technology fields, as well as the analysis of legal and official documents, including national documents such as the Brazilian Federal Constitution, as well as international guidelines and resolutions that address the topic in a specific and necessary manner for appropriate regulation based on a sustainable trust process for a hyperconnected world.Keywords: artificial intelligence, ethics, citizenship, trust
Procedia PDF Downloads 673782 Characterization of Shrinkage-Induced Cracking of Clay Soils
Authors: Ahmad El Hajjar, Joanna Eid, Salima Bouchemella, Tariq Ouahbi, Benoit Duchemin, Said Taibi
Abstract:
In our present society, raw earth presents an alternative as an energy-saving building material for dealing with climate and environmental issues. Nevertheless, it has a sensitivity to water, due to the presence of fines, which has a direct effect on its consistency. This can be expressed during desiccation, by shrinkage deformations resulting in cracking that begins once the internal tensile stresses developed, due to suction, exceed the tensile strength of the material. This work deals with the evolution of the strain of clay samples, from the beginning of shrinkage until the initiation of crack, using the DIC (Digital Image Correlation) technique. In order to understand the origin of cracking, desiccation is studied for different boundary conditions and depending on the intrinsic characteristics of the material. On the other hand, a study of restrained shrinkage is carried out on the ring test to investigate the ultimate tensile strength from which the crack begins in the dough of clay. The purpose of this test is to find the type of reinforcement adapted to thwart in the cracking of the material. A microscopic analysis of the damaged area is necessary to link the macroscopic mechanisms of cracking to the various physicochemical phenomena at the microscopic scale in order to understand the different microstructural mechanisms and their impact on the macroscopic shrinkage.Keywords: clayey soil, shrinkage, strain, cracking, digital image correlation
Procedia PDF Downloads 1623781 Geo Spatial Database for Railway Assets Management
Authors: Muhammad Umar
Abstract:
Safety and Assets management is considering a backbone of every department. GIS in the Railway become very important to Manage Assets and Security through Digital Maps and Web based GIS Maps. It provides a complete frame of work to the organization for the management of assets. Pakistan Railway is the most common and safest mode of traveling in Pakistan. Due to ever-increasing demand of transporting huge amount of information generated from various sources and this information must be accurate. This creates problems for Passengers and Administration that causes finical and time loss. GIS Solve this problem by Digital Maps & Database. It provides you a real time Spatial and Statistical analysis that helps you to communicate and exchange the information in a sophisticated way to the users. GIS Based Web system provides a facility to different end user to make query at a time as per requirements. This GIS System provides an advancement in an organization for a complete Monitoring, Safety and Decision System for tracks, Stations and Junctions that further use for the Analysis of different areas i.e. analysis of tracks, junctions and Stations in case of reconstruction, Rescue for rail accidents and Natural disasters .This Research work helps to reduce the financial loss and reduce human mistakes helps you provide a complete security and Management system of assets.Keywords: Geographical Information System (GIS) for assets management, geo spatial database, railway assets management, Pakistan
Procedia PDF Downloads 4943780 Pilot Induced Oscillations Adaptive Suppression in Fly-By-Wire Systems
Authors: Herlandson C. Moura, Jorge H. Bidinotto, Eduardo M. Belo
Abstract:
The present work proposes the development of an adaptive control system which enables the suppression of Pilot Induced Oscillations (PIO) in Digital Fly-By-Wire (DFBW) aircrafts. The proposed system consists of a Modified Model Reference Adaptive Control (M-MRAC) integrated with the Gain Scheduling technique. The PIO oscillations are detected using a Real Time Oscillation Verifier (ROVER) algorithm, which then enables the system to switch between two reference models; one in PIO condition, with low proneness to the phenomenon and another one in normal condition, with high (or medium) proneness. The reference models are defined in a closed loop condition using the Linear Quadratic Regulator (LQR) control methodology for Multiple-Input-Multiple-Output (MIMO) systems. The implemented algorithms are simulated in software implementations with state space models and commercial flight simulators as the controlled elements and with pilot dynamics models. A sequence of pitch angles is considered as the reference signal, named as Synthetic Task (Syntask), which must be tracked by the pilot models. The initial outcomes show that the proposed system can detect and suppress (or mitigate) the PIO oscillations in real time before it reaches high amplitudes.Keywords: adaptive control, digital Fly-By-Wire, oscillations suppression, PIO
Procedia PDF Downloads 1363779 Flat-Top Apodization of Laser Beams by Means of Acousto-Optics
Authors: Sergey I. Chizhikov, Vladimir Y. Molchanov, Konstantin B. Yushkov
Abstract:
We demonstrate a method for adaptive spatial shaping of laser beams by means of acousto-optic Bragg diffraction. Transformation of the angular spectrum during Bragg diffraction is used to convert Gaussian intensity distribution into a flat-top one. Theoretical model is supported by the experiment.Keywords: acousto-optics, flat top, beam shaping, Bragg diffraction
Procedia PDF Downloads 6313778 The Effect of Technology on International Marketing Trading Researches and Analysis
Authors: Omil Nady Mahrous Maximous
Abstract:
The article deals with the use of modern information technologies to achieve pro-ecological marketing goals in company-customer relationships. The purpose of the article is to show the possibilities of implementing modern information technologies. In B2C relationships, marketing departments face challenges stemming from the need to quickly segment customers and the current fragmentation of data across many systems, which significantly hinders the achievement of marketing goals. Thus, Article proposes the use of modern IT solutions in the field of marketing activities of companies, taking into account their environmental goals. As a result, its importance for the economic and social development of the emerging countries has increased. While traditional companies emphasize profit maximization as a core business principle, social enterprises must solve social problems at the expense of profit. This rationale gives social enterprises an edge over traditional businesses by meeting the needs of those at the bottom of the pyramid. This also represents a major challenge for social business, since social business acts on the one hand for the benefit of the public and on the other strives for financial stability. Otherwise, the company is unlikely to be fired from the company. Cultures play a role in business communication and research. Using the example of language in international relations, the article presents the problem of the articulation of research cultures in management and linguistics and of cultures as such. After an overview of current research on language in international relations, this article presents the approach to communication in international economy from a linguistic point of view and tries to explain the problems of communication in business starting from linguistic research. A step towards interdisciplinary research that brings together research in the fields of management and linguistics.Keywords: international marketing, marketing mix, marketing research, small and medium-sized enterprises, strategic marketing, B2B digital marketing strategy, digital marketing, digital marketing maturity model, SWOT analysis consumer behavior, experience, experience marketing, marketing employee organizational performance, internal marketing, internal customer, direct marketing, mobile phones mobile marketing, Sms advertising
Procedia PDF Downloads 493777 Reading and Writing Memories in Artificial and Human Reasoning
Authors: Ian O'Loughlin
Abstract:
Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.Keywords: artificial reasoning, human memory, machine learning, neural networks
Procedia PDF Downloads 273