Search results for: array electronic scanning
1609 Influence of Sr(BO2)2 Doping on Superconducting Properties of (Bi,Pb)-2223 Phase
Authors: N. G. Margiani, I. G. Kvartskhava, G. A. Mumladze, Z. A. Adamia
Abstract:
Chemical doping with different elements and compounds at various amounts represents the most suitable approach to improve the superconducting properties of bismuth-based superconductors for technological applications. In this paper, the influence of partial substitution of Sr(BO2)2 for SrO on the phase formation kinetics and transport properties of (Bi,Pb)-2223 HTS has been studied for the first time. Samples with nominal composition Bi1.7Pb0.3Sr2-xCa2Cu3Oy[Sr(BO2)2]x, x=0, 0.0375, 0.075, 0.15, 0.25, were prepared by the standard solid state processing. The appropriate mixtures were calcined at 845 oC for 40 h. The resulting materials were pressed into pellets and annealed at 837 oC for 30 h in air. Superconducting properties of undoped (reference) and Sr(BO2)2-doped (Bi,Pb)-2223 compounds were investigated through X-ray diffraction (XRD), resistivity (ρ) and transport critical current density (Jc) measurements. The surface morphology changes in the prepared samples were examined by scanning electron microscope (SEM). XRD and Jc studies have shown that the low level Sr(BO2)2 doping (x=0.0375-0.075) to the Sr-site promotes the formation of high-Tc phase and leads to the enhancement of current carrying capacity in (Bi,Pb)-2223 HTS. The doped sample with x=0.0375 has the best performance compared to other prepared samples. The estimated volume fraction of (Bi,Pb)-2223 phase increases from ~25 % for reference specimen to ~70 % for x=0.0375. Moreover, strong increase in the self-field Jc value was observed for this dopant amount (Jc=340 A/cm2), compared to an undoped sample (Jc=110 A/cm2). Pronounced enhancement of superconducting properties of (Bi,Pb)-2223 superconductor can be attributed to the acceleration of high-Tc phase formation as well as the improvement of inter-grain connectivity by small amounts of Sr(BO2)2 dopant.Keywords: bismuth-based superconductor, critical current density, phase formation, Sr(BO₂)₂ doping
Procedia PDF Downloads 2441608 Phosphate Bonded Hemp (Cannabis sativa) Fibre Composites
Authors: Stephen O. Amiandamhen, Martina Meinken, Luvuyo Tyhoda
Abstract:
The properties of Hemp (Cannabis sativa) in phosphate bonded composites were investigated in this research. Hemp hurds were collected from the Hemporium institute for research, South Africa. The hurds were air-dried and shredded using a hammer mill. The shives were screened into different particle sizes and were treated separately with 5% solution of acetic anhydride and sodium hydroxide. The binding matrix was prepared using a reactive magnesia, phosphoric acid, class S fly ash and unslaked lime. The treated and untreated hemp fibers were mixed thoroughly in different ratios with the inorganic matrix. Boric acid and excess water were used to retard and control the rate of the reaction and the setting of the binder. The Hemp composite was formed in a rectangular mold and compressed at room temperature at a pressure of 100KPa. After de-molding the composites, they were cured in a conditioning room for 96 h. Physical and mechanical tests were conducted to evaluate the properties of the composites. A central composite design (CCD) was used to determine the best conditions to optimize the performance of the composites. Thereafter, these combinations were applied in the production of the composites, and the properties were evaluated. Scanning electron microscopy (SEM) was used to carry out the advance examination of the behavior of the composites while X-ray diffractometry (XRD) was used to analyze the reaction pathway in the composites. The results revealed that all properties of phosphate bonded Hemp composites exceeded the LD-1 grade classification of particle boards. The proposed product can be used for ceiling, partitioning, wall claddings and underlayment.Keywords: CCD, fly ash, magnesia, phosphate bonded hemp composites, phosphoric acid, unslaked lime
Procedia PDF Downloads 4351607 Obtaining Bioactive Mg-hydroxyapatite Composite Ceramics From Phosphate Rock For Medical Applications
Authors: Sara Mercedes Barroso Pinzón, Antonio Javier Sanchéz Herencia, Begoña Ferrari, Álvaro Jesús Castro
Abstract:
The current need for durable implants and bone substitutes characterised by biocompatibility, bioactivity and mechanical properties, without immunological rejection, is a major challenge for scientists. Hydroxyapatite (HAp) has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure gives it very low mechanical and biological properties. In this sense, the objective of the research is to address the synthesis of hydroxyapatite with Mg from phosphate rock from sedimentary deposits in the central-eastern region of Colombia, taking advantage of the release of the species contained as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with mineralogical species of magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); as well as the evaluation of the surface physicochemical properties of zeta potential (PZC), with the aim of studying the surface behaviour of the microconstituents present in the phosphate rock and to elucidate the synergistic mechanism between the minerals and establish the optimum conditions for the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on the morphometric parameters, mechanical and biological properties of the designed materials is evaluated.Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials
Procedia PDF Downloads 511606 Waste-Based Surface Modification to Enhance Corrosion Resistance of Aluminium Bronze Alloy
Authors: Wilson Handoko, Farshid Pahlevani, Isha Singla, Himanish Kumar, Veena Sahajwalla
Abstract:
Aluminium bronze alloys are well known for their superior abrasion, tensile strength and non-magnetic properties, due to the co-presence of iron (Fe) and aluminium (Al) as alloying elements and have been commonly used in many industrial applications. However, continuous exposure to the marine environment will accelerate the risk of a tendency to Al bronze alloys parts failures. Although a higher level of corrosion resistance properties can be achieved by modifying its elemental composition, it will come at a price through the complex manufacturing process and increases the risk of reducing the ductility of Al bronze alloy. In this research, the use of ironmaking slag and waste plastic as the input source for surface modification of Al bronze alloy was implemented. Microstructural analysis conducted using polarised light microscopy and scanning electron microscopy (SEM) that is equipped with energy dispersive spectroscopy (EDS). An electrochemical corrosion test was carried out through Tafel polarisation method and calculation of protection efficiency against the base-material was determined. Results have indicated that uniform modified surface which is as the result of selective diffusion process, has enhanced corrosion resistance properties up to 12.67%. This approach has opened a new opportunity to access various industrial utilisations in commercial scale through minimising the dependency on natural resources by transforming waste sources into the protective coating in environmentally friendly and cost-effective ways.Keywords: aluminium bronze, waste-based surface modification, tafel polarisation, corrosion resistance
Procedia PDF Downloads 2361605 Influence of the Substitution of C for Mg and Ni on the Microstructure and Hydrogen Storage Characteristics of Mg2Ni Alloys
Authors: Sajad Haghanifar, Seyed-Farshid Kashani Bozorg
Abstract:
Nano-crystalline Mg2Ni-based powder was produced by mechanical alloying technique using binary and ternary powder mixtures with stoichiometric compositions of Mg2Ni, Mg1.9C0.1Ni and Mg2C0.1Ni0.9. The structures and morphologies of the milled products were studied by XRD, SEM and HRTEM. Their electrochemical hydrogen storage characteristics were investigated in 6 M KOH solution. X-Ray diffraction, scanning and transmission electron microscopy of the milled products showed the formation of Mg2Ni-based nano-crystallites after 5, 15 and 30 h of milling using the initial powder mixtures of Mg1.9C0.1Ni, Mg2Ni and Mg2C0.1Ni0.9, respectively. It was found that partial substitution of C for Mg has beneficial effect on the formation kinetic of nano-crystalline Mg2Ni. Contrary to this, partial substitution of C for Ni was resulted in retardation of formation kinetic of nano-crystalline Mg2Ni. In addition, the negative electrode made from Mg1.9C0.1Ni ternary milled product after 30 hour of milling exhibited the highest initial discharge capacity and longest discharge life. Thus, partial substitution of C for Mg is beneficial to electrode properties of the Mg2Ni-based crystallites. The relation between the discharge capacity and cycling number of mechanically alloyed products was proposed on the basis of the fact that the degradation of discharge capacity was mainly caused by the oxidation of magnesium and nickel. The experimental data fitted the deduced equation well.Keywords: Mg2Ni, hydrogen absorbing materials, electrochemical properties, nano-crystalline, amorphous, mechanical alloying, carbon
Procedia PDF Downloads 4351604 Correlation Between Ore Mineralogy and the Dissolution Behavior of K-Feldspar
Authors: Adrian Keith Caamino, Sina Shakibania, Lena Sunqvist-Öqvist, Jan Rosenkranz, Yousef Ghorbani
Abstract:
Feldspar minerals are one of the main components of the earth’s crust. They are tectosilicate, meaning that they mainly contain aluminum and silicon. Besides aluminum and silicon, they contain either potassium, sodium, or calcium. Accordingly, feldspar minerals are categorized into three main groups: K-feldspar, Na-feldspar, and Ca-feldspar. In recent years, the trend to use K-feldspar has grown tremendously, considering its potential to produce potash and alumina. However, the feldspar minerals, in general, are difficult to decompose for the dissolution of their metallic components. Several methods, including intensive milling, leaching under elevated pressure and temperature, thermal pretreatment, and the use of corrosive leaching reagents, have been proposed to improve its low dissolving efficiency. In this study, as part of the POTASSIAL EU project, to overcome the low dissolution efficiency of the K-feldspar components, mechanical activation using intensive milling followed by leaching using hydrochloric acid (HCl) was practiced. Grinding operational parameters, namely time, rotational speed, and ball-to-sample weight ratio, were studied using the Taguchi optimization method. Then, the mineralogy of the grinded samples was analyzed using a scanning electron microscope (SEM) equipped with automated quantitative mineralogy. After grinding, the prepared samples were subjected to HCl leaching. In the end, the dissolution efficiency of the main elements and impurities of different samples were correlated to the mineralogical characterization results. K-feldspar component dissolution is correlated with ore mineralogy, which provides insight into how to best optimize leaching conditions for selective dissolution. Further, it will have an effect on purifying steps taken afterward and the final value recovery proceduresKeywords: K-feldspar, grinding, automated mineralogy, impurity, leaching
Procedia PDF Downloads 771603 Hydrometallurgical Treatment of Smelted Low-Grade WEEE
Authors: Ewa Rudnik
Abstract:
Poster shows a comparison of hydrometallurgical routes of copper recovery from low-grade e-waste. Electronic scrap was smelted to produce Cu–Zn–Ag alloy. The alloy was then treated in the following ways: (a) anodic dissolution with simultaneous metal electrodeposition using ammoniacal and sulfuric acid solutions. This resulted in the separation of metals, where lead, silver and tin accumulated mainly in the slimes, while copper was transferred to the electrolyte and then recovered on the cathode. The best conditions of the alloy treatment were obtained in the sulfuric acid, where the final product was metal of high purity (99% Cu) at the current efficiency of 90%. (b) leaching in ammoniacal solutions of various compositions and then copper electrowinning. Alloy was leached in chloride, carbonate, sulfate and thiosulfate baths. This resulted in the separation of the metals, wherein copper and zinc were transferred to the electrolyte, while metallic tin and silver as well as lead salts remained in the slimes. Copper was selectively recovered from the ammoniacal solutions by the electrolysis, leaving zinc ions in the electrolyte. The best conditions of the alloy treatment were obtained in the ammonia-carbonate system, where the final product was copper of high purity (99.9%) at the current efficiency of 60%. Thiosulfate solution was not applicable for the leaching of the copper alloy due to secondary reactions of the formation of copper (I) thiosulfate complexes and precipitation of copper (I) sulfide.Keywords: alloy, electrolysis, e-waste, leaching
Procedia PDF Downloads 3721602 Effect of Laminating Sequence of MWCNTs and Fe₂O₃ Filled Nanocomposites on Emi Shielding Effectiveness
Authors: Javeria Ahmad, Ayesha Maryam, Zahid Rizwan, Nadeem Nasir, Yasir Nawab, Hafiz Shehbaz Ahmad
Abstract:
Mitigation of electromagnetic interference (EMI) through thin, lightweight, and cost-effective materials is critical for electronic appliances as well as human health. The present research work discusses the design of composites that are suitable to minimize EMI through various stacking sequences. The carbon fibers reinforced composite structures impregnated with dielectric (MWCNTs) and magnetic nanofillers (Fe₂O₃) were developed to investigate their microwave absorption properties. The composite structure comprising a single type of nanofillers, each of MWCNTs & Fe₂O₃, was developed, and then their layers were stacked over each other with various stacking sequences to investigate the best stacking sequence, which presents good microwave absorption characteristics. A vector network analyzer (VNA) was used to analyze the microwave absorption properties of these developed composite structures. The composite structures impregnated with the layers of a dielectric nanofiller and sandwiched between the layers of a magnetic nanofiller show the highest EMI shielding value of 59 dB and a dielectric conductivity of 35 S/cm in the frequency range of 0.1 to 13.6 GHz. The results also demonstrate that the microwave absorption properties of the developed composite structures were dominant over reflection properties. The absence of an external peak in X-ray diffraction (XRD), marked the purity of the added nanofillers.Keywords: nanocomposites, microwave absorption, EMI shielding, skin depth, reflection loss
Procedia PDF Downloads 521601 Adsorption and Selective Determination Ametryne in Food Sample Using of Magnetically Separable Molecular Imprinted Polymers
Authors: Sajjad Hussain, Sabir Khan, Maria Del Pilar Taboada Sotomayor
Abstract:
This work demonstrates the synthesis of magnetic molecularly imprinted polymers (MMIPs) for determination of a selected pesticide (ametryne) using high performance liquid chromatography (HPLC). Computational simulation can assist the choice of the most suitable monomer for the synthesis of polymers. The (MMIPs) were polymerized at the surface of Fe3O4@SiO2 magnetic nanoparticles (MNPs) using 2-vinylpyradine as functional monomer, ethylene-glycol-dimethacrylate (EGDMA) is a cross-linking agent and 2,2-Azobisisobutyronitrile (AIBN) used as radical initiator. Magnetic non-molecularly imprinted polymer (MNIPs) was also prepared under the same conditions without analyte. The MMIPs were characterized by scanning electron microscopy (SEM), Brunauer, Emmett and Teller (BET) and Fourier transform infrared spectroscopy (FTIR). Pseudo first order and pseudo second order model were applied to study kinetics of adsorption and it was found that adsorption process followed the pseudo first order kinetic model. Adsorption equilibrium data was fitted to Freundlich and Langmuir isotherms and the sorption equilibrium process was well described by Langmuir isotherm mode. The selectivity coefficients (α) of MMIPs for ametryne with respect to atrazine, ciprofloxacin and folic acid were 4.28, 12.32, and 14.53 respectively. The spiked recoveries ranged between 91.33 and 106.80% were obtained. The results showed high affinity and selectivity of MMIPs for pesticide ametryne in the food samples.Keywords: molecularly imprinted polymer, pesticides, magnetic nanoparticles, adsorption
Procedia PDF Downloads 4861600 Doxorubicin and Cyclosporine Loaded PLGA Nanoparticles to Combat Multidrug Resistance
Authors: Senthil Rajan Dharmalingam, Shamala Nadaraju, Srinivasan Ramamurthy
Abstract:
Doxorubicin is the most widely used anticancer drugs in chemotherapy treatment. However, problems related to the development of multidrug resistance (MDR) and acute cardiotoxicity have led researchers to investigate alternative forms of administering doxorubicin for cancer therapy. Several methods have been attempted to overcome MDR, including the co-administration of a chemosensitizer inhibiting the efflux caused by ATP binding cassette transporters with anticancer drugs, and the bypass of the efflux mechanism. Co encapsulation of doxorubicin (Dox) and cyclosporine A (CSA) into poly (DL-lactide-co-glycolide) nanoparticles was emulsification-solvent evaporation method using polyvinyl alcohol as emulsion stabilizers. The Dox-CSA loaded nanoparticles were evaluated for particle size, zeta potential and PDI by light scattering analysis and thermal characterizations by differential scanning calorimetry (DSC). Loading efficiency (LE %) and in-vitro dissolution samples were evaluated by developed and validated HPLC method. The optimum particle size obtained is 298.6.8±39.4 nm and polydispersity index (PDI) is 0.098±0.092. Zeta potential is found to be -29.9±4.23. Optimum pH to increase Dox LE% was found 7.1 which gave 42.5% and 58.9% increase of LE% for pH 6.6 and pH 8.6 compared respectively. LE% achieved for Dox is 0.07±0.01 % and CSA is 0.09±0.03%. Increased volume of PVA and weight of PLGA shows increase in size of nanoparticles. DSC thermograms showed shift in the melting peak for the nanoparticles compared to Dox and CSA indicating encapsulation of drugs. In conclusion, these preliminary studies showed the feasibility of PLGA nanoparticles to entrap Dox and CSA and require future in-vivo studies to be performed to establish its potential.Keywords: doxorubicin, cyclosporine, PLGA, nanoparticles
Procedia PDF Downloads 4601599 Particle Size Dependent Enhancement of Compressive Strength and Carbonation Efficiency in Steel Slag Cementitious Composites
Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Chin Ren Jie, Yip Chun Chieh
Abstract:
The utilization of industrial by-products, such as steel slag in cementitious materials, not only mitigates environmental impact but also enhances material properties. This study investigates the dual influence of steel slag particle size on the compressive strength and carbonation efficiency of cementitious composites. Through a systematic experimental approach, steel slag particles were incorporated into cement at varying sizes, and the resulting composites were subjected to mechanical and carbonation tests. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) are conducted in this paper. The findings reveal a positive correlation between increased particle size and compressive strength, attributed to the improved interfacial transition zone and packing density. Conversely, smaller particle sizes exhibited enhanced carbonation efficiency, likely due to the increased surface area facilitating the carbonation reaction. The presence of higher silica and calcium content in finer particles was confirmed by EDX, which contributed to the accelerated carbonation process. This study underscores the importance of particle size optimization in designing sustainable cementitious materials with balanced mechanical performance and carbon sequestration potential. The insights gained from the advanced analytical techniques offer a comprehensive understanding of the mechanisms at play, paving the way for the strategic use of steel slag in eco-friendly construction practices.Keywords: steel slag, carbonation efficiency, particle size enhancement, compressive strength
Procedia PDF Downloads 621598 Effect of Friction Pressure on the Properties of Friction Welded Aluminum–Ceramic Dissimilar Joints
Authors: Fares Khalfallah, Zakaria Boumerzoug, Selvarajan Rajakumar, Elhadj Raouache
Abstract:
The ceramic-aluminum bond is strongly present in industrial tools, due to the need to combine the properties of metals, such as ductility, thermal and electrical conductivity, with ceramic properties like high hardness, corrosion and wear resistance. In recent years, some joining techniques have been developed to achieve a good bonding between these materials such as brazing, diffusion bonding, ultrasonic joining and friction welding. In this work, AA1100 aluminum alloy rods were welded with Alumina 99.9 wt% ceramic rods, by friction welding. The effect of friction pressure on mechanical and structural properties of welded joints was studied. The welding was performed by direct friction welding machine. The welding samples were rotated at a constant rotational speed of 900 rpm, friction time of 4 sec, forging strength of 18 MPa, and forging time of 3 sec. Three different friction pressures were applied to 20, 34 and 45 MPa. The three-point bending test and Vickers microhardness measurements were used to evaluate the strength of the joints and investigate the mechanical properties of the welding area. The microstructure of joints was examined by optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that bending strength increased, and then decreased after reaching a maximum value, with increasing friction pressure. The SEM observation shows that the increase in friction pressure led to the appearance of cracks in the microstructure of the interface area, which is decreasing the bending strength of joints.Keywords: welding of ceramic to aluminum, friction welding, alumina, AA1100 aluminum alloy
Procedia PDF Downloads 1301597 Fabrication of a New Electrochemical Sensor Based on New Nanostructured Molecularly Imprinted Polypyrrole for Selective and Sensitive Determination of Morphine
Authors: Samaneh Nabavi, Hadi Shirzad, Arash Ghoorchian, Maryam Shanesaz, Reza Naderi
Abstract:
Morphine (MO), the most effective painkiller, is considered the reference by which analgesics are assessed. It is very necessary for the biomedical applications to detect and maintain the MO concentrations in the blood and urine with in safe ranges. To date, there are many expensive techniques for detecting MO. Recently, many electrochemical sensors for direct determination of MO were constructed. The molecularly imprinted polymer (MIP) is a polymeric material, which has a built-in functionality for the recognition of a particular chemical substance with its complementary cavity.This paper reports a sensor for MO using a combination of a molecularly imprinted polymer (MIP) and differential-pulse voltammetry (DPV). Electropolymerization of MO doped polypyrrole yielded poor quality, but a well-doped, nanostructure and increased impregnation has been obtained in the pH=12. Above a pH of 11, MO is in the anionic forms. The effect of various experimental parameters including pH, scan rate and accumulation time on the voltammetric response of MO was investigated. At the optimum conditions, the concentration of MO was determined using DPV in a linear range of 7.07 × 10−6 to 2.1 × 10−4 mol L−1 with a correlation coefficient of 0.999, and a detection limit of 13.3 × 10-8 mol L−1, respectively. The effect of common interferences on the current response of MO namely ascorbic acid (AA) and uric acid (UA) is studied. The modified electrode can be used for the determination of MO spiked into urine samples, and excellent recovery results were obtained. The nanostructured polypyrrole films were characterized by field emission scanning electron microscopy (FESEM) and furrier transforms infrared (FTIR).Keywords: morphine detection, sensor, polypyrrole, nanostructure, molecularly imprinted polymer
Procedia PDF Downloads 4251596 Hydrothermal Synthesis of Hydrosodalite by Using Ultrasounds
Authors: B. Białecka, Z. Adamczyk, M. Cempa
Abstract:
The use of ultrasounds in zeolization of fly ash can increase the efficiency of this process. The molar ratios of the reagents, as well as the time and temperature of the synthesis, are the main parameters determining the type and properties of the zeolite formed. The aim of the work was to create hydrosodalite in a short time (8h), with low NaOH concentration (3 M) and in low temperature (80°C). A zeolite material contained in fly ash from hard coal combustion in one of Polish Power Plant was subjected to hydrothermal alkaline synthesis. The phase composition of the ash consisted mainly of glass, mullite, quartz, and hematite. The dominant chemical components of the ash were SiO₂ (over 50%mas.) and Al₂O₃ (more than 28%mas.), whereas the contents of the remaining components, except Fe₂O₃ (6.34%mas.), did not exceed 4% mas. The hydrothermal synthesis of the zeolite material was carried out in the following conditions: 3M-solution of NaOH, synthesis time – 8 hours, 40 kHz-frequency ultrasounds during the first two hours of synthesis. The mineral components of the input ash as well as product after synthesis were identified in microscopic observations, in transmitted light, using X-ray diffraction (XRD) and electron scanning microscopy (SEM/EDS). The chemical composition of the input ash was identified by the method of X-ray fluorescence (XRF). The obtained material apart from phases found in the initial fly ash sample, also contained new phases, i.e., hydrosodalite and NaP-type zeolite. The chemical composition in micro areas of grains indicated their diversity: i) SiO₂ content was in the range 30-59%mas., ii) Al₂O₃ content was in the range 24-35%mas., iii) Na₂O content was in the range 6-15%mas. This clearly indicates that hydrosodalite forms hypertrophies with NaP type zeolite as well as relict grains of fly ash. A small amount of potassium in the examined grains is noteworthy, which may indicate the substitution of sodium with potassium. This is confirmed by the high value of the correlation coefficient between these two components.Keywords: fly ash, hydrosodalite, ultrasounds, zeolite
Procedia PDF Downloads 1521595 Quantum Information Scrambling and Quantum Chaos in Silicon-Based Fermi-Hubbard Quantum Dot Arrays
Authors: Nikolaos Petropoulos, Elena Blokhina, Andrii Sokolov, Andrii Semenov, Panagiotis Giounanlis, Xutong Wu, Dmytro Mishagli, Eugene Koskin, Robert Bogdan Staszewski, Dirk Leipold
Abstract:
We investigate entanglement and quantum information scrambling (QIS) by the example of a many-body Extended and spinless effective Fermi-Hubbard Model (EFHM and e-FHM, respectively) that describes a special type of quantum dot array provided by Equal1 labs silicon-based quantum computer. The concept of QIS is used in the framework of quantum information processing by quantum circuits and quantum channels. In general, QIS is manifest as the de-localization of quantum information over the entire quantum system; more compactly, information about the input cannot be obtained by local measurements of the output of the quantum system. In our work, we will first make an introduction to the concept of quantum information scrambling and its connection with the 4-point out-of-time-order (OTO) correlators. In order to have a quantitative measure of QIS we use the tripartite mutual information, in similar lines to previous works, that measures the mutual information between 4 different spacetime partitions of the system and study the Transverse Field Ising (TFI) model; this is used to quantify the dynamical spreading of quantum entanglement and information in the system. Then, we investigate scrambling in the quantum many-body Extended Hubbard Model with external magnetic field Bz and spin-spin coupling J for both uniform and thermal quantum channel inputs and show that it scrambles for specific external tuning parameters (e.g., tunneling amplitudes, on-site potentials, magnetic field). In addition, we compare different Hilbert space sizes (different number of qubits) and show the qualitative and quantitative differences in quantum scrambling as we increase the number of quantum degrees of freedom in the system. Moreover, we find a "scrambling phase transition" for a threshold temperature in the thermal case, that is, the temperature of the model that the channel starts to scramble quantum information. Finally, we make comparisons to the TFI model and highlight the key physical differences between the two systems and mention some future directions of research.Keywords: condensed matter physics, quantum computing, quantum information theory, quantum physics
Procedia PDF Downloads 1011594 Investigation of Heat Conduction through Particulate Filled Polymer Composite
Authors: Alok Agrawal, Alok Satapathy
Abstract:
In this paper, an attempt to determine the effective thermal conductivity (keff) of particulate filled polymer composites using finite element method (FEM) a powerful computational technique is made. A commercially available finite element package ANSYS is used for this numerical analysis. Three-dimensional spheres-in-cube lattice array models are constructed to simulate the microstructures of micro-sized particulate filled polymer composites with filler content ranging from 2.35 to 26.8 vol %. Based on the temperature profiles across the composite body, the keff of each composition is estimated theoretically by FEM. Composites with similar filler contents are than fabricated using compression molding technique by reinforcing micro-sized aluminium oxide (Al2O3) in polypropylene (PP) resin. Thermal conductivities of these composite samples are measured according to the ASTM standard E-1530 by using the Unitherm™ Model 2022 tester, which operates on the double guarded heat flow principle. The experimentally measured conductivity values are compared with the numerical values and also with those obtained from existing empirical models. This comparison reveals that the FEM simulated values are found to be in reasonable good agreement with the experimental data. Values obtained from the theoretical model proposed by the authors are also found to be in even closer approximation with the measured values within percolation limit. Further, this study shows that there is gradual enhancement in the conductivity of PP resin with increase in filler percentage and thereby its heat conduction capability is improved. It is noticed that with addition of 26.8 vol % of filler, the keff of composite increases to around 6.3 times that of neat PP. This study validates the proposed model for PP-Al2O3 composite system and proves that finite element analysis can be an excellent methodology for such investigations. With such improved heat conduction ability, these composites can find potential applications in micro-electronics, printed circuit boards, encapsulations etc.Keywords: analytical modelling, effective thermal conductivity, finite element method, polymer matrix composite
Procedia PDF Downloads 3221593 E-government Status and Impact on Development in the Arab Region
Authors: Sukaina Al-Nasrawi, Maysoun Ibrahim
Abstract:
Information and communication technologies (ICT) have affected recent public administration and governance. Electronic Government (e-government) services were developed to simplify government procedures and improve interaction with citizens on one hand and to create new governance models to empower citizens and involve them in the decision-making process while increasing transparency on another hand. It is worth noting that efficient governance models enable sustainable development at the social and economic levels. Currently, the status of e-government national strategies and implementation programs vary from one country to another. This variance in the development levels of e-government initiatives and applications noted the digital divide between countries of the same region, thereby highlighting the difficulty to reach regional integration. Many Arab countries realized the need for a well-articulated e-government strategy and launched national e-government initiatives. In selected Arab countries, the focus of e-government initiatives and programs shifted from the provision of services to advanced concepts such as open data initiatives. This paper aims at over viewing the e-government achievements of Arab countries and areas for enhancement, and share best practices in the area.of the best e-government programmes from the Arab region the world. It will also shed the light on the impact of the information society in general and e-government, in specific, on the social and economic development in the Arab region.Keywords: Information and Communication Technologies (ICT), services, e-government, development, Arab region, digital divide, citizens
Procedia PDF Downloads 2921592 Novel Poly Schiff Bases as Corrosion Inhibitors for Carbon Steel in Sour Petroleum Conditions
Authors: Shimaa A. Higazy, Olfat E. El-Azabawy, Ahmed M. Al-Sabagh, Notaila M. Nasser, Eman A. Khamis
Abstract:
In this work, two novel Schiff base polymers (PSB1 and PSB₂) with extra-high protective barrier features were facilely prepared via Polycondensation reactions. They were applied for the first time as effective corrosion inhibitors in the sour corrosive media of petroleum environments containing hydrogen sulfide (H₂S) gas. For studying the polymers' inhibitive action on the carbon steel, numerous corrosion testing methods including potentiodynamic polarization (PDP), open circuit potential, and electrochemical impedance spectroscopy (EIS) have been employed at various temperatures (298-328 K) in the oil wells formation water with H₂S concentrations of 100, 400, and 700 ppm as aggressive media. The activation energy (Ea) and other thermodynamic parameters were computed to describe the mechanism of adsorption. The corrosion morphological traits and steel samples' surfaces composition were analyzed by field emission scanning electron microscope and energy dispersive X-ray analysis. The PSB2 inhibited sour corrosion more effectively than PSB1 when subjected to electrochemical testing. The 100 ppm concentration of PSB2 exhibited 82.18 % and 81.14 % inhibition efficiencies at 298 K in PDP and EIS measurements, respectively. While at 328 K, the inhibition efficiencies were 61.85 % and 67.4 % at the same dosage and measurements. These poly Schiff bases exhibited fascinating performance as corrosion inhibitors in sour environment. They provide a great corrosion inhibition platform for the sustainable future environment.Keywords: schiff base polymers, corrosion inhibitors, sour corrosive media, potentiodynamic polarization, H₂S concentrations
Procedia PDF Downloads 1021591 Co-produced Databank of Tailored Messages to Support Enagagement to Digitial Health Interventions
Authors: Menna Brown, Tania Domun
Abstract:
Digital health interventions are effective across a wide array of health conditions spanning physical health, lifestyle behaviour change, and mental health and wellbeing; furthermore, they are rapidly increasing in volume within both the academic literature and society as commercial apps continue to proliferate the digital health market. However, adherence and engagement to digital health interventions remains problematic. Technology-based personalised and tailored reminder strategies can support engagement to digital health interventions. Interventions which support individuals’ mental health and wellbeing are of critical importance in the wake if the COVID-19 pandemic. Student and young person’s mental health has been negatively affected and digital resources continue to offer cost effective means to address wellbeing at a population level. Develop a databank of digital co-produced tailored messages to support engagement to a range of digital health interventions including those focused on mental health and wellbeing, and lifestyle behaviour change. Qualitative research design. Participants discussed their views of health and wellbeing, engagement and adherence to digital health interventions focused around a 12-week wellbeing intervention via a series of focus group discussions. They worked together to co-create content following a participatory design approach. Three focus group discussions were facilitated with (n=15) undergraduate students at one Welsh university to provide an empirically derived, co-produced, databank of (n=145) tailored messages. Messages were explored and categorised thematically, and the following ten themes emerged: Autonomy, Recognition, Guidance, Community, Acceptance, Responsibility, Encouragement, Compassion, Impact and Ease. The findings provide empirically derived, co-produced tailored messages. These have been made available for use, via ‘ACTivate your wellbeing’ a digital, automated, 12-week health and wellbeing intervention programme, based on acceptance and commitment therapy (ACT). The purpose of which is to support future research to evaluate the impact of thematically categorised tailored messages on engagement and adherence to digital health interventions.Keywords: digital health, engagement, wellbeing, participatory design, positive psychology, co-production
Procedia PDF Downloads 1211590 Large-Capacity Image Information Reduction Based on Single-Cue Saliency Map for Retinal Prosthesis System
Authors: Yili Chen, Xiaokun Liang, Zhicheng Zhang, Yaoqin Xie
Abstract:
In an effort to restore visual perception in retinal diseases, an electronic retinal prosthesis with thousands of electrodes has been developed. The image processing strategies of retinal prosthesis system converts the original images from the camera to the stimulus pattern which can be interpreted by the brain. Practically, the original images are with more high resolution (256x256) than that of the stimulus pattern (such as 25x25), which causes a technical image processing challenge to do large-capacity image information reduction. In this paper, we focus on developing an efficient image processing stimulus pattern extraction algorithm by using a single cue saliency map for extracting salient objects in the image with an optimal trimming threshold. Experimental results showed that the proposed stimulus pattern extraction algorithm performs quite well for different scenes in terms of the stimulus pattern. In the algorithm performance experiment, our proposed SCSPE algorithm have almost five times of the score compared with Boyle’s algorithm. Through experiment s we suggested that when there are salient objects in the scene (such as the blind meet people or talking with people), the trimming threshold should be set around 0.4max, in other situations, the trimming threshold values can be set between 0.2max-0.4max to give the satisfied stimulus pattern.Keywords: retinal prosthesis, image processing, region of interest, saliency map, trimming threshold selection
Procedia PDF Downloads 2491589 Electrospun Alginate Nanofibers Containing Spirulina Extract Double-Layered with Polycaprolactone Nanofibers
Authors: Seon Yeong Byeon, Hwa Sung Shin
Abstract:
Nanofibrous sheets are of interest in the beauty industries due to the properties of moisturizing, adhesion to skin and delivery of nutrient materials. The benefit and function of the cosmetic products should not be considered without safety thus a non-toxic manufacturing process is ideal when fabricating the products. In this study, we have developed cosmetic patches consisting of alginate and Spirulina extract, a marine resource which has antibacterial and antioxidant effects, without addition of harmful cross-linkers. The patches obtained their structural stabilities by layer-upon-layer electrospinning of an alginate layer on a formerly spread polycaprolactone (PCL) layer instead of crosslinking method. The morphological characteristics, release of Spirulina extract, water absorption, skin adhesiveness and cytotoxicity of the double-layered patches were assessed. The image of scanning electron microscopy (SEM) showed that the addition of Spirulina extract has made the fiber diameter of alginate layers thinner. Impregnation of Spirulina extract increased their hydrophilicity, moisture absorption ability and skin adhesive ability. In addition, wetting the pre-dried patches resulted in releasing the Spirulina extract within 30 min. The patches were detected to have no cytotoxicity in the human keratinocyte cell-based MTT assay, but rather showed increased cell viability. All the results indicate the bioactive and hydro-adhesive double-layered patches have an excellent applicability to bioproducts for personal skin care in the trend of ‘A mask pack a day’.Keywords: alginate, cosmetic patch, electrospun nanofiber, polycaprolactone, Spirulina extract
Procedia PDF Downloads 3471588 Synthesis of Zeolites from Bauxite and Kaolin: Effect of Synthesis Parameters on Competing Phases
Authors: Bright Kwakye-Awuah, Elizabeth Von-Kiti, Isaac Nkrumah, Baah Sefa-Ntiri, Craig D. Williams
Abstract:
Bauxite and kaolin from Ghana Bauxite Company mine site were used to synthesize zeolites. Bauxite served as the alumina source and kaolin the silica source. Synthesis variations include variation of aging time at constant crystallization time and variation of crystallization times at constant aging time. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR) were employed in the characterization of the raw samples as well as the synthesized samples. The results obtained showed that the transformations that occurred and the phase of the resulting products were coordinated by the aging time, crystallization time, alkaline concentration and Si/Al ratio of the system. Zeolites A, X, Y, analcime, Sodalite, and ZK-14 were some of the phases achieved. Zeolite LTA was achieved with short crystallization times of 3, 5, 18 and 24 hours and a maximum aging of 24 hours. Zeolite LSX was synthesized with 24 hr aging followed with 24 hr hydrothermal treatment whilst zeolite Y crystallized after 48 hr of aging and 24 hr crystallization. Prolonged crystallization time produced a mixed phased product. Prolonged aging times, on the other hand, did not yield any zeolite as the sample was amorphous. Increasing the alkaline content of the reaction mixture above 5M introduced sodalite phase in the final product. The properties of the final products were comparable to zeolites synthesized from pure chemical reagents.Keywords: bauxite, kaolin, aging, crystallization, zeolites
Procedia PDF Downloads 2211587 Solar Photocatalytic Hydrogen Production from Glycerol Reforming Using Ternary Cu/TiO2/Graphene
Authors: Tumelo W. P. Seadira, Thabang Ntho, Cornelius M. Masuku, Michael S. Scurrell
Abstract:
A ternary Cu/TiO2/rGO photocatalysts was prepared using solvothermal method. Firstly, pure anatase TiO2 hollow spheres were prepared with titanium butoxide, ethanol, ammonium sulphate, and urea via hydrothermal method; and Cu nanoparticles were subsequently loaded on the surface of the hollow spheres by wet impregnation. During the solvothermal process, the deposition and well dispersion of Cu-TiO2 hollow spheres composites onto the graphene oxide surface, as well as the reduction of graphene oxide to graphene were achieved. The morphological and structural properties of the prepared samples were characterized by Brunauer-Emmett-Tellet (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and UV-vis DRS, and photoelectrochemical. The activities of the prepared catalysts were tested for hydrogen production via simultaneous photocatalytic water-splitting and glycerol reforming under visible light irradiation. The excellent photocatalytic activity of the Cu-TiO2-hollow-spheres/rGO catalyst was attributed the rGO which acts as both storage and transferor of electrons generated at the Cu and TiO2 heterojunction, thus increasing the electron-hole pairs separation. This paper reports the preparation of photocatalyst which is highly active by coupling reduced graphene oxide with nano-structured TiO2 with high surface area that can efficiently harvest the visible light for effective water-splitting and glycerol photocatalytic reforming in order to achieve efficient hydrogen evolution.Keywords: glycerol reforming, hydrogen evolution, graphene oxide, Cu/TiO2-hollow-spheres/rGO
Procedia PDF Downloads 1571586 Consortium Blockchain-based Model for Data Management Applications in the Healthcare Sector
Authors: Teo Hao Jing, Shane Ho Ken Wae, Lee Jin Yu, Burra Venkata Durga Kumar
Abstract:
Current distributed healthcare systems face the challenge of interoperability of health data. Storing electronic health records (EHR) in local databases causes them to be fragmented. This problem is aggravated as patients visit multiple healthcare providers in their lifetime. Existing solutions are unable to solve this issue and have caused burdens to healthcare specialists and patients alike. Blockchain technology was found to be able to increase the interoperability of health data by implementing digital access rules, enabling uniformed patient identity, and providing data aggregation. Consortium blockchain was found to have high read throughputs, is more trustworthy, more secure against external disruptions and accommodates transactions without fees. Therefore, this paper proposes a blockchain-based model for data management applications. In this model, a consortium blockchain is implemented by using a delegated proof of stake (DPoS) as its consensus mechanism. This blockchain allows collaboration between users from different organizations such as hospitals and medical bureaus. Patients serve as the owner of their information, where users from other parties require authorization from the patient to view their information. Hospitals upload the hash value of patients’ generated data to the blockchain, whereas the encrypted information is stored in a distributed cloud storage.Keywords: blockchain technology, data management applications, healthcare, interoperability, delegated proof of stake
Procedia PDF Downloads 1381585 Physical Education Curricula and Teaching Methodologies for Children with Disabilities: Scoping Review
Authors: Xavier Mc Creanor, Rowena Naidoo, Verusia Chetty
Abstract:
The exclusion of children with disabilities from physical education presents notable health risks and hinders their overall development. Despite the acknowledged significance of inclusive education, there remains a limited understanding of effective teaching methodologies and curricula tailored to this demographic. In this scoping review, existing literature on physical education curricula and teaching methodologies for children with disabilities was systematically mapped. A comprehensive search across various electronic databases, including Google Scholar, EBSCOhost, the Cochrane Library, PubMed, and Science Direct, yielded 5,361 potential articles. Following the application of inclusion and exclusion criteria, 18 relevant studies were examined. The review highlighted persistent barriers to inclusion, such as inaccessible facilities and negative attitudes among educators. Noteworthy findings underscored the necessity for comprehensive training for physical education instructors and the adaptation of curricula to accommodate diverse learning needs better. The analysis identified significant themes, including the impact of legislative frameworks, educator preparedness, and cultural factors influencing participation. Structural changes and effective teaching strategies are imperative to cultivate inclusivity in physical education for children with disabilities. This review underscores the ongoing need for educators to develop professionally and adapt physical education curricula to enrich the educational experiences of children with disabilities.Keywords: children with disabilities, special needs education, physical education, curriculum, teaching methodologies
Procedia PDF Downloads 311584 Employee Happiness: The Influence of Providing Consumers with an Experience versus an Object
Authors: Wilson Bastos, Sigal G. Barsade
Abstract:
Much of what happens in the marketplace revolves around the provision and consumption of goods. Recent research has advanced a useful categorization of these goods—as experiential versus material—and shown that, from the consumers’ perspective, experiences (e.g., a theater performance) are superior to objects (e.g., an electronic gadget) in offering various social and psychological benefits. A common finding in this growing research stream is that consumers gain more happiness from the experiences they have than the objects they own. By focusing solely on those acquiring the experiential or material goods (the consumers), prior research has remained silent regarding another important group of individuals—those providing the goods (the employees). Do employees whose jobs are primarily focused on offering consumers an experience (vs. object) also gain more happiness from their occupation? We report evidence from four experiments supporting an experiential-employee advantage. Further, we use mediation and moderation tests to unearth the mechanism responsible for this effect. Results reveal that work meaningfulness is the primary driver of the experiential-employee advantage. Overall, our findings suggest that employees find it more meaningful to provide people with an experience as compared to a material object, which in turn shapes the happiness they derive from their jobs. We expect this finding to have implications on human development, and to be of relevance to researchers and practitioners interested in how to advance human condition in the workplace.Keywords: employee happiness, experiential versus material jobs, work meaningfulness
Procedia PDF Downloads 2721583 A Brief History of Kampo Extract Formulations for Prescription in Japan
Authors: Kazunari Ozaki, Mitsuru Kageyama, Kenki Miyazawa, Yoshio Nakamura
Abstract:
Background: Kampo (Japanese Traditional medicine) is a medicine traditionally practiced in Japan, based on ancient Chinese medicine. Most Kampo doctors have used decoction of crude drug pieces for treatment. 93% of the Kampo drugs sold in Japan are Kampo products nowadays. Of all Kampo products, 81% of them are Kampo extract formulations for prescription, which is prepared in powdered or granulated form from medicinal crude drug extracts mixed with appropriate excipient. Physicians with medical license for Western medicine prescribe these Kampo extract formulations for prescription in Japan. Objectives: Our study aims at presenting a brief history of Kampo extract formulations for prescription in Japan. Methods: Systematic searches for relevant studies were conducted using not only printed journals but also electronic journals from the bibliographic databases, such as PubMed/Medline, Ichushi-Web, and university/institutional websites, as well as search engines, such as Google and Google Scholar. Results: The first commercialization of Kampo extract formulations for general use (or OTC (over-the-counter) Kampo extract formulation) was achieved after 1957. The number of drugs has been subsequentially increased, reaching 148 Kampo extract formulation for prescription currently. Conclusion: We provide a history of Kampo extract formulations for prescription in Japan. The originality of this research is that it analyzes the background history of Kampo in parallel with relevant transitions in the government and insurance systems.Keywords: health insurance system, history, Kampo, Kampo extract formulation for prescription, OTC Kampo extract formulation, pattern corresponding prescription (Ho-sho-so-tai) system
Procedia PDF Downloads 2861582 Application of Thermal Dimensioning Tools to Consider Different Strategies for the Disposal of High-Heat-Generating Waste
Authors: David Holton, Michelle Dickinson, Giovanni Carta
Abstract:
The principle of geological disposal is to isolate higher-activity radioactive wastes deep inside a suitable rock formation to ensure that no harmful quantities of radioactivity reach the surface environment. To achieve this, wastes will be placed in an engineered underground containment facility – the geological disposal facility (GDF) – which will be designed so that natural and man-made barriers work together to minimise the escape of radioactivity. Internationally, various multi-barrier concepts have been developed for the disposal of higher-activity radioactive wastes. High-heat-generating wastes (HLW, spent fuel and Pu) provide a number of different technical challenges to those associated with the disposal of low-heat-generating waste. Thermal management of the disposal system must be taken into consideration in GDF design; temperature constraints might apply to the wasteform, container, buffer and host rock. Of these, the temperature limit placed on the buffer component of the engineered barrier system (EBS) can be the most constraining factor. The heat must therefore be managed such that the properties of the buffer are not compromised to the extent that it cannot deliver the required level of safety. The maximum temperature of a buffer surrounding a container at the centre of a fixed array of heat-generating sources, arises due to heat diffusing from neighbouring heat-generating wastes, incrementally contributing to the temperature of the EBS. A range of strategies can be employed for managing heat in a GDF, including the spatial arrangements or patterns of those containers; different geometrical configurations can influence the overall thermal density in a disposal facility (or area within a facility) and therefore the maximum buffer temperature. A semi-analytical thermal dimensioning tool and methodology have been applied at a generic stage to explore a range of strategies to manage the disposal of high-heat-generating waste. A number of examples, including different geometrical layouts and chequer-boarding, have been illustrated to demonstrate how these tools can be used to consider safety margins and inform strategic disposal options when faced with uncertainty, at a generic stage of the development of a GDF.Keywords: buffer, geological disposal facility, high-heat-generating waste, spent fuel
Procedia PDF Downloads 2861581 ZnS and Graphene Quantum Dots Nanocomposite as Potential Electron Acceptor for Photovoltaics
Authors: S. M. Giripunje, Shikha Jindal
Abstract:
Zinc sulphide (ZnS) quantum dots (QDs) were synthesized successfully via simple sonochemical method. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis revealed the average size of QDs of the order of 3.7 nm. The band gap of the QDs was tuned to 5.2 eV by optimizing the synthesis parameters. UV-Vis absorption spectra of ZnS QD confirm the quantum confinement effect. Fourier transform infrared (FTIR) analysis confirmed the formation of single phase ZnS QDs. To fabricate the diode, blend of ZnS QDs and P3HT was prepared and the heterojunction of PEDOT:PSS and the blend was formed by spin coating on indium tin oxide (ITO) coated glass substrate. The diode behaviour of the heterojunction was analysed, wherein the ideality factor was found to be 2.53 with turn on voltage 0.75 V and the barrier height was found to be 1.429 eV. ZnS-Graphene QDs nanocomposite was characterised for the surface morphological study. It was found that the synthesized ZnS QDs appear as quasi spherical particles on the graphene sheets. The average particle size of ZnS-graphene nanocomposite QDs was found to be 8.4 nm. From voltage-current characteristics of ZnS-graphene nanocomposites, it is observed that the conductivity of the composite increases by 104 times the conductivity of ZnS QDs. Thus the addition of graphene QDs in ZnS QDs enhances the mobility of the charge carriers in the composite material. Thus, the graphene QDs, with high specific area for a large interface, high mobility and tunable band gap, show a great potential as an electron-acceptors in photovoltaic devices.Keywords: graphene, heterojunction, quantum confinement effect, quantum dots(QDs), zinc sulphide(ZnS)
Procedia PDF Downloads 1541580 Determining Importance Level of Factors Affecting Selection of Online Shopping Website with AHP: A Research on Young Consumers
Authors: Nurullah Ekmekci, Omer Akkaya, Vural Cagliyan
Abstract:
Increased use of the Internet has resulted in the emergence of a new retail types called online shopping or electronic retail (e-retail). The rapid growth of the Internet has enabled customers to search information about the product and buy these products or services from e-retailers. Although this new form of shopping has grown in a remarkable way because of offering easiness to people, it is not an easy task to capture the success by distinguishing from competitors in this environment which millions of players takes place. For the success, e-retailers should determine the factors which the customers take notice while they are buying from e-retailers. This paper aims to identify the factors that provide preferability for the online shopping websites and the importance levels of these factors. These main criteria which have taken notice are Customer Service Performance (CSP), Website Performance (WSP), Criteria Related to Product (CRP), Ease of Payment (EP), Security/Privacy (SP), Ease of Return (ER), Delivery Service Performance (DSP) and Order Fulfillment Performance (OFP). It has benefited from Analytic Hierarchy Process to determine the priority of the criteria. Based on analysis, Security/Privacy (SP) criteria seems to be most important criterion with 22 % weight. Companies should attach importance to the security and privacy for making their online website more preferable among the online shoppers.Keywords: AHP (analytical hierarchy process), multi-criteria decision making, online shopping, shopping
Procedia PDF Downloads 240