Search results for: Deep learning based segmentation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33295

Search results for: Deep learning based segmentation

30415 Multi-Label Approach to Facilitate Test Automation Based on Historical Data

Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally

Abstract:

The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.

Keywords: machine learning, multi-class, multi-label, supervised learning, test automation

Procedia PDF Downloads 136
30414 Effects of Live Webcast-Assisted Teaching on Physical Assessment Technique Learning of Young Nursing Majors

Authors: Huey-Yeu Yan, Ching-Ying Lee, Hung-Ru Lin

Abstract:

Background: Physical assessment is a vital clinical nursing competence. The gap between conventional teaching method and the way e-generation students’ preferred could be bridged owing to the support of Internet technology, i.e. interacting with online media to manage learning works. Nursing instructors in the wake of new learning pattern of the e-generation students are challenged to actively adjust and make teaching contents and methods more versatile. Objective: The objective of this research is to explore the effects on teaching and learning with live webcast-assisted on a specific topic, Physical Assessment technique, on a designated group of young nursing majors. It’s hoped that, with a way of nursing instructing, more versatile learning resources may be provided to facilitate self-directed learning. Design: This research adopts a cross-sectional descriptive survey. The instructor demonstrated physical assessment techniques and operation procedures via live webcast broadcasted online to all students. It increased both the off-time interaction between teacher and students concerning teaching materials. Methods: A convenient sampling was used to recruit a total of 52 nursing-majors at a certain university. The nursing majors took two-hour classes of Physical Assessment per week for 18 weeks (36 hrs. in total). The instruction covered four units with live webcasting and then conducted an online anonymous survey of learning outcomes by questionnaire. The research instrument was the online questionnaire, covering three major domains—online media used, learning outcome evaluation and evaluation result. The data analysis was conducted via IBM SPSS Statistics Version 2.0. The descriptive statistics was undertaken to describe the analysis of basic data and learning outcomes. Statistical methods such as descriptive statistics, t-test, ANOVA, and Pearson’s correlation were employed in verification. Results: Results indicated the following five major findings. (1) learning motivation, about four fifth of the participants agreed the online instruction resources are very helpful in improving learning motivation and raising the learning interest. (2) learning needs, about four fifth of participants agreed it was helpful to plan self-directed practice after the instruction, and meet their needs of repetitive learning and/or practice at their leisure time. (3) learning effectiveness, about two third agreed it was helpful to reduce pre-exam anxiety, and improve their test scores. (4) course objects, about three fourth agreed that it was helpful to achieve the goal of ‘executing the complete Physical Assessment procedures with proper skills’. (5) finally, learning reflection, about all of participants agreed this experience of online instructing, learning, and practicing is beneficial to them, they recommend instructor to share with other nursing majors, and they will recommend it to fellow students too. Conclusions: Live webcasting is a low-cost, convenient, efficient and interactive resource to facilitate nursing majors’ motivation of learning, need of self-directed learning and practice, outcome of learning. When live webcasting is integrated into nursing teaching, it provides an opportunity of self-directed learning to promote learning effectiveness, as such to fulfill the teaching objective.

Keywords: innovative teaching, learning effectiveness, live webcasting, physical assessment technique

Procedia PDF Downloads 132
30413 Students' Perceptions of Social Media as a Means to Improve Their Language Skills

Authors: Bahia Braktia, Ana Marcela Montenegro Sanchez

Abstract:

Social media, such as Facebook, Twitter, and YouTube, has been used for teaching and learning for quite some time. These platforms have been proven to be a good tool to improve various language skills, students’ performance of the English language, motivation as well as trigger the authentic language interaction. However, little is known about the potential effects of social media usage on the learning performance of Arabic language learners. The present study explores the potential role that the social media technologies play in learning Arabic as a foreign language at a university in Southeast of United States. In order to investigate this issue, an online survey was administered to examine the perceptions and attitudes of American students learning Arabic. The research questions were: How does social media, specifically Facebook and Twitter, impact the students' Arabic language skills, and what is their attitude toward it? The preliminary findings of the study showed that students had a positive attitude toward the use of social media to enhance their Arabic language skills, and that they used a range of social media features to expose themselves to the Arabic language and communicate in Arabic with native Arabic speaking friends. More detailed findings will be shared in the light data analysis with the audience during the presentation.

Keywords: foreign language learning, social media, students’ perceptions, survey

Procedia PDF Downloads 217
30412 Input Data Balancing in a Neural Network PM-10 Forecasting System

Authors: Suk-Hyun Yu, Heeyong Kwon

Abstract:

Recently PM-10 has become a social and global issue. It is one of major air pollutants which affect human health. Therefore, it needs to be forecasted rapidly and precisely. However, PM-10 comes from various emission sources, and its level of concentration is largely dependent on meteorological and geographical factors of local and global region, so the forecasting of PM-10 concentration is very difficult. Neural network model can be used in the case. But, there are few cases of high concentration PM-10. It makes the learning of the neural network model difficult. In this paper, we suggest a simple input balancing method when the data distribution is uneven. It is based on the probability of appearance of the data. Experimental results show that the input balancing makes the neural networks’ learning easy and improves the forecasting rates.

Keywords: artificial intelligence, air quality prediction, neural networks, pattern recognition, PM-10

Procedia PDF Downloads 234
30411 Learning in Multicultural Workspaces: A Case of Aged Care

Authors: Robert John Godby

Abstract:

To be responsive now and in the future, workplaces must address the demands of multicultural teams as they become more common elements of the global labor force. This is especially the case for aged care due to the aging population, industry growth and migrant recruitment. This research identifies influences on and improvements for learning in these environments. Its unique contribution is to illuminate how culturally diverse workplaces can work and learn together more effectively. A mixed-methods approach was used to gather data about this topic in two phases. Firstly, the research methods included a survey of 102 aged care workers around Australia from two multi-site aged care organisations. The questionnaire elicited both quantitative and qualitative data about worker characteristics and perspectives on working and learning in aged care. Secondly, a case study of one aged care worksite was formulated drawing on worksite information and interviews with workers. A review of the literature suggests that learning in multicultural work environments is influenced by three main factors: 1) the individual workers themselves, 2) their interaction with each other and 3) the environment in which they work. There are various accounts of these three factors, how they are manifested and how they lead to a change in workers’ disposition, knowledge, or expertise when confronted with new circumstances. The study has found that a key individual factor influencing learning is cultural background. Their unique view of the world was shown to affect their approach to both their work and co-working. Interactional factors suggest that the high requirement for collaboration in aged care positively supports learning in this context; however, it can be hindered by cultural bias and spoken accent. The study also found that environmental factors, such as disruptions caused by the pandemic, were another key influence. For example, the need to wear face masks hindered the communication needed for workplace learning. This was especially challenging due to the diverse language backgrounds and abilities within the teams. Potential improvements for learning in multicultural aged care work environments were identified. These include more frequent and structured inter-peer learning (e.g. buddying), communication training (e.g. English language usage for both native and non-native speaking workers) and support for cross-cultural habitude (e.g. recognizing and adapting to cultural differences). Workplace learning in cross-cultural aged care environments is an area that is not extensively dealt with in the literature. This study addresses this gap and holds the potential to contribute practical insights to aged care and other diverse industries.

Keywords: cross-cultural learning, learning in aged care, migrant learning, workplace learning

Procedia PDF Downloads 163
30410 Fake News Detection Based on Fusion of Domain Knowledge and Expert Knowledge

Authors: Yulan Wu

Abstract:

The spread of fake news on social media has posed significant societal harm to the public and the nation, with its threats spanning various domains, including politics, economics, health, and more. News on social media often covers multiple domains, and existing models studied by researchers and relevant organizations often perform well on datasets from a single domain. However, when these methods are applied to social platforms with news spanning multiple domains, their performance significantly deteriorates. Existing research has attempted to enhance the detection performance of multi-domain datasets by adding single-domain labels to the data. However, these methods overlook the fact that a news article typically belongs to multiple domains, leading to the loss of domain knowledge information contained within the news text. To address this issue, research has found that news records in different domains often use different vocabularies to describe their content. In this paper, we propose a fake news detection framework that combines domain knowledge and expert knowledge. Firstly, it utilizes an unsupervised domain discovery module to generate a low-dimensional vector for each news article, representing domain embeddings, which can retain multi-domain knowledge of the news content. Then, a feature extraction module uses the domain embeddings discovered through unsupervised domain knowledge to guide multiple experts in extracting news knowledge for the total feature representation. Finally, a classifier is used to determine whether the news is fake or not. Experiments show that this approach can improve multi-domain fake news detection performance while reducing the cost of manually labeling domain labels.

Keywords: fake news, deep learning, natural language processing, multiple domains

Procedia PDF Downloads 77
30409 Exploring Key Elements of Successful Distance Learning Programs: A Case Study in Palau

Authors: Maiya Smith, Tyler Thorne

Abstract:

Background: The Pacific faces multiple healthcare crises, including high rates of noncommunicable diseases, infectious disease outbreaks, and susceptibility to natural disasters. These issues are expected to worsen in the coming decades, increasing the burden on an already understaffed healthcare system. Telehealth is not new to the Pacific, but improvements in technology and accessibility have increased its utility and have already proven to reduce costs and increase access to care in remote areas. Telehealth includes distance learning; a form of education that can help alleviate many healthcare issues by providing continuing education to healthcare professionals and upskilling staff, while decreasing costs. This study examined distance learning programs at the Ministry of Health in the Pacific nation of Palau and identified key elements to their successful distance learning programs. Methods: Staff at the Belau National Hospital in Koror, Palau as well as private practitioners were interviewed to assess distance learning programs utilized. This included physicians, IT personnel, public health members, and department managers of allied health. In total, 36 people were interviewed. Standardized questions and surveys were conducted in person throughout the month of July 2019. Results: Two examples of successful distance learning programs were identified. Looking at the factors that made these programs successful, as well as consulting with staff who undertook other distance learning programs, four factors for success were determined: having a cohort, having a facilitator, dedicated study time off from work, and motivation. Discussion: In countries as geographically isolated as the Pacific, with poor access to specialists and resources, telehealth has the potential to radically change how healthcare is delivered. Palau shares similar resources and issues as other countries in the Pacific and the lessons learned from their successful programs can be adapted to help other Pacific nations develop their own distance learning programs.

Keywords: distance learning, Pacific, Palau, telehealth

Procedia PDF Downloads 145
30408 Improve Student Performance Prediction Using Majority Vote Ensemble Model for Higher Education

Authors: Wade Ghribi, Abdelmoty M. Ahmed, Ahmed Said Badawy, Belgacem Bouallegue

Abstract:

In higher education institutions, the most pressing priority is to improve student performance and retention. Large volumes of student data are used in Educational Data Mining techniques to find new hidden information from students' learning behavior, particularly to uncover the early symptom of at-risk pupils. On the other hand, data with noise, outliers, and irrelevant information may provide incorrect conclusions. By identifying features of students' data that have the potential to improve performance prediction results, comparing and identifying the most appropriate ensemble learning technique after preprocessing the data, and optimizing the hyperparameters, this paper aims to develop a reliable students' performance prediction model for Higher Education Institutions. Data was gathered from two different systems: a student information system and an e-learning system for undergraduate students in the College of Computer Science of a Saudi Arabian State University. The cases of 4413 students were used in this article. The process includes data collection, data integration, data preprocessing (such as cleaning, normalization, and transformation), feature selection, pattern extraction, and, finally, model optimization and assessment. Random Forest, Bagging, Stacking, Majority Vote, and two types of Boosting techniques, AdaBoost and XGBoost, are ensemble learning approaches, whereas Decision Tree, Support Vector Machine, and Artificial Neural Network are supervised learning techniques. Hyperparameters for ensemble learning systems will be fine-tuned to provide enhanced performance and optimal output. The findings imply that combining features of students' behavior from e-learning and students' information systems using Majority Vote produced better outcomes than the other ensemble techniques.

Keywords: educational data mining, student performance prediction, e-learning, classification, ensemble learning, higher education

Procedia PDF Downloads 112
30407 Integrating Explicit Instruction and Problem-Solving Approaches for Efficient Learning

Authors: Slava Kalyuga

Abstract:

There are two opposing major points of view on the optimal degree of initial instructional guidance that is usually discussed in the literature by the advocates of the corresponding learning approaches. Using unguided or minimally guided problem-solving tasks prior to explicit instruction has been suggested by productive failure and several other instructional theories, whereas an alternative approach - using fully guided worked examples followed by problem solving - has been demonstrated as the most effective strategy within the framework of cognitive load theory. An integrated approach discussed in this paper could combine the above frameworks within a broader theoretical perspective which would allow bringing together their best features and advantages in the design of learning tasks for STEM education. This paper represents a systematic review of the available empirical studies comparing the above alternative sequences of instructional methods to explore effects of several possible moderating factors. The paper concludes that different approaches and instructional sequences should coexist within complex learning environments. Selecting optimal sequences depends on such factors as specific goals of learner activities, types of knowledge to learn, levels of element interactivity (task complexity), and levels of learner prior knowledge. This paper offers an outline of a theoretical framework for the design of complex learning tasks in STEM education that would integrate explicit instruction and inquiry (exploratory, discovery) learning approaches in ways that depend on a set of defined specific factors.

Keywords: cognitive load, explicit instruction, exploratory learning, worked examples

Procedia PDF Downloads 128
30406 Infrastructural Barriers to Engaged Learning in the South Pacific: A Mixed-Methods Study of Cook Islands Nurses' Attitudes towards Health Information Technology

Authors: Jonathan Frank, Michelle Salmona

Abstract:

We conducted quantitative and qualitative analyses of nurses’ perceived ease of use of electronic medical records and telemedicine in the Cook Islands. We examined antecedents of perceived ease of use through the lens of social construction of learning, and cultural diffusion. Our findings confirmed expected linkages between PEOU, attitudes and intentions. Interviews with nurses suggested infrastructural barriers to engaged learning. We discussed managerial implications of our findings, and areas of interest for future research.

Keywords: health information technology, ICT4D, TAM, developing countries

Procedia PDF Downloads 291
30405 Improving Students’ Participation in Group Tasks: Case Study of Adama Science and Technology University

Authors: Fiseha M. Guangul, Annissa Muhammed, Aja O. Chikere

Abstract:

Group task is one method to create the conducive environment for the active teaching-learning process. Performing group task with active involvement of students will benefit the students in many ways. However, in most cases all students do not participate actively in the group task, and hence the intended benefits are not acquired. This paper presents the improvements of students’ participation in the group task and learning from the group task by introducing different techniques to enhance students’ participation. For the purpose of this research Carpentry and Joinery II (WT-392) course from Wood Technology Department at Adama Science and Technology University was selected, and five groups were formed. Ten group tasks were prepared and the first five group tasks were distributed to the five groups in the first day without introducing the techniques that are used to enhance participation of students in the group task. On another day, the other five group tasks were distributed to the same groups and various techniques were introduced to enhance students’ participation in the group task. The improvements of students’ learning from the group task after the implementation of the techniques. After implementing the techniques the evaluation showed that significant improvements were obtained in the students’ participation and learning from the group task.

Keywords: group task, students participation, active learning, the evaluation method

Procedia PDF Downloads 217
30404 Data Poisoning Attacks on Federated Learning and Preventive Measures

Authors: Beulah Rani Inbanathan

Abstract:

In the present era, it is vivid from the numerous outcomes that data privacy is being compromised in various ways. Machine learning is one technology that uses the centralized server, and then data is given as input which is being analyzed by the algorithms present on this mentioned server, and hence outputs are predicted. However, each time the data must be sent by the user as the algorithm will analyze the input data in order to predict the output, which is prone to threats. The solution to overcome this issue is federated learning, where the models alone get updated while the data resides on the local machine and does not get exchanged with the other local models. Nevertheless, even on these local models, there are chances of data poisoning, and it is crystal clear from various experiments done by many people. This paper delves into many ways where data poisoning occurs and the many methods through which it is prevalent that data poisoning still exists. It includes the poisoning attacks on IoT devices, Edge devices, Autoregressive model, and also, on Industrial IoT systems and also, few points on how these could be evadible in order to protect our data which is personal, or sensitive, or harmful when exposed.

Keywords: data poisoning, federated learning, Internet of Things, edge computing

Procedia PDF Downloads 90
30403 Examining French Teachers’ Teaching and Learning Approaches in Some Selected Junior High Schools in Ghana

Authors: Paul Koffitse Agobia

Abstract:

In 2020 the Ministry of Education in Ghana and the National Council for Curriculum and Assessment (NaCCA) rolled out a new curriculum, Common Core Programme (CCP) for Basic 7 to 10, that lays emphasis on character building and values which are important to the Ghanaian society by providing education that will produce character–minded learners, with problem solving skills, who can play active roles in dealing with the increasing challenges facing Ghana and the global society. Therefore, learning and teaching approaches that prioritise the use of digital learning resources and active learning are recommended. The new challenge facing Ghanaian teachers is the ability to use new technologies together with the appropriate content pedagogical knowledge to help learners develop, aside the communication skills in French, the essential 21st century skills as recommended in the new curriculum. This article focusses on the pedagogical approaches that are recommended by NaCCA. The study seeks to examine French language teachers’ understanding of the recommended pedagogical approaches and how they use digital learning resources in class to foster the development of these essential skills and values. 54 respondents, comprised 30 teachers and 24 head teachers, were selected in 6 Junior High schools in rural districts (both private and public) and 6 from Junior High schools in an urban setting. The schools were selected in three regions: Volta, Central and Western regions. A class observation checklist and an interview guide were used to collect data for the study. The study reveals that some teachers adopt teaching techniques that do not promote active learning. They demonstrate little understanding of the core competences and values, therefore, fail to integrate them in their lessons. However, some other teachers, despite their lack of understanding of learning and teaching philosophies, adopted techniques that can help learners develop some of the core competences and values. In most schools, digital learning resources are not utilized, though teachers have smartphones or laptops.

Keywords: active learning, core competences, digital learning resources, pedagogical approach, values.

Procedia PDF Downloads 79
30402 Optimizing Quantum Machine Learning with Amplitude and Phase Encoding Techniques

Authors: Om Viroje

Abstract:

Quantum machine learning represents a frontier in computational technology, promising significant advancements in data processing capabilities. This study explores the significance of data encoding techniques, specifically amplitude and phase encoding, in this emerging field. By employing a comparative analysis methodology, the research evaluates how these encoding techniques affect the accuracy, efficiency, and noise resilience of quantum algorithms. Our findings reveal that amplitude encoding enhances algorithmic accuracy and noise tolerance, whereas phase encoding significantly boosts computational efficiency. These insights are crucial for developing robust quantum frameworks that can be effectively applied in real-world scenarios. In conclusion, optimizing encoding strategies is essential for advancing quantum machine learning, potentially transforming various industries through improved data processing and analysis.

Keywords: quantum machine learning, data encoding, amplitude encoding, phase encoding, noise resilience

Procedia PDF Downloads 30
30401 E-Immediacy in Saudi Higher Education Context: Female Students’ Perspectives

Authors: Samar Alharbi, Yota Dimitriadi

Abstract:

The literature on educational technology in Saudi Arabia reveals female learners’ unwillingness to study fully online courses in higher education despite the fact that Saudi universities have offered a variety of online degree programmes to undergraduate students in many regions of the country. The root causes keeping female students from successfully learning in online environments are limited social interaction, lack of motivation and difficulty with the use of e-learning platforms. E-immediacy remains an important method of online teaching to enhance students’ interaction and support their online learning. This study explored Saudi female students’ perceptions, as well as the experiences of lecturers’ immediacy behaviours in online environments, who participate in fully online courses using Blackboard at a Saudi university. Data were collected through interviews with focus groups. The three focus groups included five to seven students each. The female participants were asked about lecturers’ e-immediacy behaviours and which e-immediacy behaviours were important for an effective learning environment. A thematic analysis of the data revealed three main themes: the encouragement of student interaction, the incorporation of social media and addressing the needs of students. These findings provide lecturers with insights into instructional designs and strategies that can be adopted in using e-immediacy in effective ways, thus improving female learners’ interactions as well as their online learning experiences.

Keywords: e-learning, female students, higher education, immediacy

Procedia PDF Downloads 352
30400 Enhancing Inservice Education Training Effectiveness Using a Mobile Based E-Learning Model

Authors: Richard Patrick Kabuye

Abstract:

This study focuses on the addressing the enhancement of in-service training programs as a tool of transforming the existing traditional approaches of formal lectures/contact hours. This will be supported with a more versatile, robust, and remotely accessible means of mobile based e-learning, as a support tool for the traditional means. A combination of various factors in education and incorporation of the eLearning strategy proves to be a key factor in effective in-service education. Key factor needs to be factored in so as to maintain a credible co-existence of the programs, with the prevailing social, economic and political environments. Effective in-service education focuses on having immediate transformation of knowledge into practice for a good time period, active participation of attendees, enable before training planning, in training assessment and post training feedback training analysis which will yield knowledge to the trainers of the applicability of knowledge given out. All the above require a more robust approach to attain success in implementation. Incorporating mobile technology in eLearning will enable the above to be factored together in a more coherent manner, as it is evident that participants have to take time off their duties and attend to these training programs. Making it mobile, will save a lot of time since participants would be in position to follow certain modules while away from lecture rooms, get continuous program updates after completing the program, send feedback to instructors on knowledge gaps, and a wholly conclusive evaluation of the entire program on a learn as you work platform. This study will follow both qualitative and quantitative approaches in data collection, and this will be compounded incorporating a mobile eLearning application using Android.

Keywords: in service, training, mobile, e- learning, model

Procedia PDF Downloads 223
30399 An Interactive Voice Response Storytelling Model for Learning Entrepreneurial Mindsets in Media Dark Zones

Authors: Vineesh Amin, Ananya Agrawal

Abstract:

In a prolonged period of uncertainty and disruptions in the pre-said normal order, non-cognitive skills, especially entrepreneurial mindsets, have become a pillar that can reform the educational models to inform the economy. Dreamverse Learning Lab’s IVR-based storytelling program -Call-a-Kahaani- is an evolving experiment with an aim to kindle entrepreneurial mindsets in the remotest locations of India in an accessible and engaging manner. At the heart of this experiment is the belief that at every phase in our life’s story, we have a choice which brings us closer to achieving our true potential. This interactive program is thus designed using real-time storytelling principles to empower learners, ages 24 and below, to make choices and take decisions as they become more self-aware, practice grit, try new things through stories, guided activities, and interactions, simply over a phone call. This research paper highlights the framework behind an ongoing scalable, data-oriented, low-tech program to kindle entrepreneurial mindsets in media dark zones supported by iterative design and prototyping to reach 13700+ unique learners who made 59000+ calls for 183900+min listening duration to listen to content pieces of around 3 to 4 min, with the last monitored (March 2022) record of 34% serious listenership, within one and a half years of its inception. The paper provides an in-depth account of the technical development, content creation, learning, and assessment frameworks, as well as mobilization models which have been leveraged to build this end-to-end system.

Keywords: non-cognitive skills, entrepreneurial mindsets, speech interface, remote learning, storytelling

Procedia PDF Downloads 215
30398 The Effects of Drill and Practice Courseware on Students’ Achievement and Motivation in Learning English

Authors: Y. T. Gee, I. N. Umar

Abstract:

Students’ achievement and motivation in learning English in Malaysia is a worrying trend as it is lagging behind several other countries in Asia. Thus, necessary actions have to be taken by the parties concerned to overcome this problem. The purpose of this research was to study the effects of drill and practice courseware on students’ achievement and motivation in learning English language. A multimedia courseware was developed for this purpose. The independent variable was the drill and practice courseware while the dependent variables were the students’ achievement and motivation. Their achievement was measured using pre-test and post-test scores, while motivation was measured using a questionnaire adapted from Keller’s (1979) Instructional Materials Motivation Scale. A total of 60 students from three vernacular primary schools in a northern state in Malaysia were randomly selected in this study. The findings indicate: (1) a significant difference between the students’ pre-test and post-test scores after using the courseware, (2) no significant difference in the achievement score between male and female students after using the courseware, (3) a significant difference in motivation score between the female and the male students, and (4) while the female students scored significantly higher than the male students in the aspects of relevance, confidence and satisfaction, no significant difference in terms of attention was observed between them. Overall, the findings clearly indicate that although the female students are significantly more motivated than their male students, they are equally good in terms of achievement after learning from the courseware. Through this study, the drill and practice courseware is proven to influence the students’ learning and motivation.

Keywords: courseware, drill and practice, English learning, motivation

Procedia PDF Downloads 309
30397 Foreign Language Reading Comprehenmsion and the Linguistic Intervention Program

Authors: Silvia Hvozdíková, Eva Stranovská

Abstract:

The purpose of the article is to discuss the results of the research conducted during the period of two semesters paying attention to selected factors of foreign language reading comprehension through the means of Linguistic Intervention Program. The Linguistic Intervention Program was designed for the purpose of the current research. It refers to such method of foreign language teaching which emphasized active social learning, creative drama strategies, self-directed learning. The research sample consisted of 360 respondents, foreign language learners ranging from 13 – 17 years of age. Specifically designed questionnaire and a standardized foreign language reading comprehension tests were applied to serve the purpose. The outcomes of the research recorded significant results towards significant relationship between selected elements of the Linguistic Intervention Program and the academic achievements in the factors of reading comprehension.

Keywords: foreign language learning, linguistic intervention program, reading comprehension, social learning

Procedia PDF Downloads 123
30396 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application

Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob

Abstract:

Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.

Keywords: robotic vision, image processing, applications of robotics, artificial intelligent

Procedia PDF Downloads 100
30395 Modeling Generalization in the Acquired Equivalence Paradigm with the Successor Representation

Authors: Troy M. Houser

Abstract:

The successor representation balances flexible and efficient reinforcement learning by learning to predict the future, given the present. As such, the successor representation models stimuli as what future states they lead to. Therefore, two stimuli that are perceptually dissimilar but lead to the same future state will come to be represented more similarly. This is very similar to an older behavioral paradigm -the acquired equivalence paradigm, which measures the generalization of learned associations. Here, we test via computational modeling the plausibility that the successor representation is the mechanism by which people generalize knowledge learned in the acquired equivalence paradigm. Computational evidence suggests that this is a plausible mechanism for acquired equivalence and thus can guide future empirical work on individual differences in associative-based generalization.

Keywords: acquired equivalence, successor representation, generalization, decision-making

Procedia PDF Downloads 33
30394 Improving the Performance of Back-Propagation Training Algorithm by Using ANN

Authors: Vishnu Pratap Singh Kirar

Abstract:

Artificial Neural Network (ANN) can be trained using backpropagation (BP). It is the most widely used algorithm for supervised learning with multi-layered feed-forward networks. Efficient learning by the BP algorithm is required for many practical applications. The BP algorithm calculates the weight changes of artificial neural networks, and a common approach is to use a two-term algorithm consisting of a learning rate (LR) and a momentum factor (MF). The major drawbacks of the two-term BP learning algorithm are the problems of local minima and slow convergence speeds, which limit the scope for real-time applications. Recently the addition of an extra term, called a proportional factor (PF), to the two-term BP algorithm was proposed. The third increases the speed of the BP algorithm. However, the PF term also reduces the convergence of the BP algorithm, and criteria for evaluating convergence are required to facilitate the application of the three terms BP algorithm. Although these two seem to be closely related, as described later, we summarize various improvements to overcome the drawbacks. Here we compare the different methods of convergence of the new three-term BP algorithm.

Keywords: neural network, backpropagation, local minima, fast convergence rate

Procedia PDF Downloads 504
30393 An Analytical Study of Organizational Implication in EFL Writing Experienced by Iranian Students with Learning Difficulties

Authors: Yoones Tavoosy

Abstract:

This present study concentrates on the organizational implication the Iranian students with learning difficulties (LD) experience when they write an English essay. Particularly, the present study aims at exploring students' structural problems in EFL essay writing. A mixed method research design was employed including a questionnaire and a semi-structured in-depth interview. Technical Data Analysis of findings exposed that students experience a number of difficulties in the structure of EFL essay writing. Discussion and implications of these findings are presented respectively.

Keywords: Iranian students, learning difficulties, organizational implication, writing

Procedia PDF Downloads 225
30392 Hierarchical Clustering Algorithms in Data Mining

Authors: Z. Abdullah, A. R. Hamdan

Abstract:

Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the areas in data mining and it can be classified into partition, hierarchical, density based, and grid-based. Therefore, in this paper, we do a survey and review for four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON, and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems, as well as deriving more robust and scalable algorithms for clustering.

Keywords: clustering, unsupervised learning, algorithms, hierarchical

Procedia PDF Downloads 892
30391 Motivation and Attitudes toward Learning English and German as Foreign Languages among Sudanese University Students

Authors: A. Ishag, E. Witruk, C. Altmayer

Abstract:

Motivation and attitudes are considered as hypothetical psychological constructs in explaining the process of second language learning. Gardner (1985) – who first systematically investigated the motivational factors in second language acquisition – found that L2 achievement is related not only to the individual learner’s linguistic aptitude or general intelligence but also to the learner’s motivation and interest in learning the target language. Traditionally language learning motivation can be divided into two types: integrative motivation – the desire to integrate oneself with the target culture; and instrumental motivation – the desire to learn a language in order to meet a specific language requirement such as for employment. One of the Gardner’s main ideas is that the integrative motivation plays an important role in second language acquisition. It is directly and positively related to second language achievement more than instrumental motivation. However, the significance of integrative motivation reflects a rather controversial set of findings. On the other hand, Students’ attitudes towards the target language, its speakers and the learning context may all play some part in explaining their success in learning a language. Accordingly, the present study aims at exploring the significance of motivational and attitudinal factors in learning foreign languages, namely English and German among Sudanese undergraduate students from a psycholinguistic and interdisciplinary perspective. The sample composed of 221 students from the English and German language departments respectively at the University of Khartoum in Sudan. The results indicate that English language’s learners are instrumentally motivated and that German language’s learners have positive attitudes towards the German language community and culture. Furthermore, there are statistical significant differences in the attitudes toward the two languages due to gender; where female students have more positive attitudes than their male counterparts. However, there are no differences along the variables of academic grade and study level. Finally, the reasons of studying the English or German language have also been indicated.

Keywords: motivation and attitudes, foreign language learning, english language, german language

Procedia PDF Downloads 687
30390 Virtual Reality Learning Environment in Embryology Education

Authors: Salsabeel F. M. Alfalah, Jannat F. Falah, Nadia Muhaidat, Amjad Hudaib, Diana Koshebye, Sawsan AlHourani

Abstract:

Educational technology is changing the way how students engage and interact with learning materials. This improved the learning process amongst various subjects. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing medical education. This paper utilizes VR to provide a solution to improve the delivery of the subject of Embryology to medical students, and facilitate the teaching process by providing a useful aid to lecturers, whilst proving the effectiveness of this new technology in this particular area. After evaluating the current teaching methods and identifying students ‘needs, a VR system was designed that demonstrates in an interactive fashion the development of the human embryo from fertilization to week ten of intrauterine development. This system aims to overcome some of the problems faced by the students’ in the current educational methods, and to increase the efficacy of the learning process.

Keywords: virtual reality, student assessment, medical education, 3D, embryology

Procedia PDF Downloads 195
30389 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 135
30388 Framework to Organize Community-Led Project-Based Learning at a Massive Scale of 900 Indian Villages

Authors: Ayesha Selwyn, Annapoorni Chandrashekar, Kumar Ashwarya, Nishant Baghel

Abstract:

Project-based learning (PBL) activities are typically implemented in technology-enabled schools by highly trained teachers. In rural India, students have limited access to technology and quality education. Implementing typical PBL activities is challenging. This study details how Pratham Education Foundation’s Hybrid Learning model was used to implement two PBL activities related to music in 900 remote Indian villages with 46,000 students aged 10-14. The activities were completed by 69% of groups that submitted a total of 15,000 videos (completed projects). Pratham’s H-Learning model reaches 100,000 students aged 3-14 in 900 Indian villages. The community-driven model engages students in 20,000 self-organized groups outside of school. The students are guided by 6,000 youth volunteers and 100 facilitators. The students partake in learning activities across subjects with the support of community stakeholders and offline digital content on shared Android tablets. A training and implementation toolkit for PBL activities is designed by subject experts. This toolkit is essential in ensuring efficient implementation of activities as facilitators aren’t highly skilled and have limited access to training resources. The toolkit details the activity at three levels of student engagement - enrollment, participation, and completion. The subject experts train project leaders and facilitators who train youth volunteers. Volunteers need to be trained on how to execute the activity and guide students. The training is focused on building the volunteers’ capacity to enable students to solve problems, rather than developing the volunteers’ subject-related knowledge. This structure ensures that continuous intervention of subject matter experts isn’t required, and the onus of judging creativity skills is put on community members. 46,000 students in the H-Learning program were engaged in two PBL activities related to Music from April-June 2019. For one activity, students had to conduct a “musical survey” in their village by designing a survey and shooting and editing a video. This activity aimed to develop students’ information retrieval, data gathering, teamwork, communication, project management, and creativity skills. It also aimed to identify talent and document local folk music. The second activity, “Pratham Idol”, was a singing competition. Students participated in performing, producing, and editing videos. This activity aimed to develop students’ teamwork and creative skills and give students a creative outlet. Students showcased their completed projects at village fairs wherein a panel of community members evaluated the videos. The shortlisted videos from all villages were further evaluated by experts who identified students and adults to participate in advanced music workshops. The H-Learning framework enables students in low resource settings to engage in PBL and develop relevant skills by leveraging community support and using video creation as a tool. In rural India, students do not have access to high-quality education or infrastructure. Therefore designing activities that can be implemented by community members after limited training is essential. The subject experts have minimal intervention once the activity is initiated, which significantly reduces the cost of implementation and allows the activity to be implemented at a massive scale.

Keywords: community supported learning, project-based learning, self-organized learning, education technology

Procedia PDF Downloads 187
30387 Electronic Marketing Applied to Tourism Case Study

Authors: Ahcene Boucied

Abstract:

In this paper, a case study is conducted to analyze the effectiveness of web pages designed in Barbados for the tourism and hospitality industry. The assessment is made from two perspectives: to understand how the Barbados’ tourism industry is using the web, and to identify the effect of information technology on economic issues. In return, this is used: (a) to provide interested parties with accurate information and marketing insight necessary for decision making for electronic commerce/e-commerce, and (b) to demonstrate pragmatic difficulties in searching and designing web pages.

Keywords: segmentation, tourism stakeholders, destination marketing, case study

Procedia PDF Downloads 424
30386 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms

Authors: Sagri Sharma

Abstract:

Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.

Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine

Procedia PDF Downloads 430