Search results for: forces estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3062

Search results for: forces estimation

212 Some Quality Parameters of Selected Maize Hybrids from Serbia for the Production of Starch, Bioethanol and Animal Feed

Authors: Marija Milašinović-Šeremešić, Valentina Semenčenko, Milica Radosavljević, Dušanka Terzić, Ljiljana Mojović, Ljubica Dokić

Abstract:

Maize (Zea mays L.) is one of the most important cereal crops, and as such, one of the most significant naturally renewable carbohydrate raw materials for the production of energy and multitude of different products. The main goal of the present study was to investigate a suitability of selected maize hybrids of different genetic background produced in Maize Research Institute ‘Zemun Polje’, Belgrade, Serbia, for starch, bioethanol and animal feed production. All the hybrids are commercial and their detailed characterization is important for the expansion of their different uses. The starches were isolated by using a 100-g laboratory maize wet-milling procedure. Hydrolysis experiments were done in two steps (liquefaction with Termamyl SC, and saccharification with SAN Extra L). Starch hydrolysates obtained by the two-step hydrolysis of the corn flour starch were subjected to fermentation by S. cerevisiae var. ellipsoideus under semi-anaerobic conditions. The digestibility based on enzymatic solubility was performed by the Aufréré method. All investigated ZP maize hybrids had very different physical characteristics and chemical composition which could allow various possibilities of their use. The amount of hard (vitreous) and soft (floury) endosperm in kernel is considered one of the most important parameters that can influence the starch and bioethanol yields. Hybrids with a lower test weight and density and a greater proportion of soft endosperm fraction had a higher yield, recovery and purity of starch. Among the chemical composition parameters only starch content significantly affected the starch yield. Starch yields of studied maize hybrids ranged from 58.8% in ZP 633 to 69.0% in ZP 808. The lowest bioethanol yield of 7.25% w/w was obtained for hybrid ZP 611k and the highest by hybrid ZP 434 (8.96% w/w). A very significant correlation was determined between kernel starch content and the bioethanol yield, as well as volumetric productivity (48h) (r=0.66). Obtained results showed that the NDF, ADF and ADL contents in the whole maize plant of the observed ZP maize hybrids varied from 40.0% to 60.1%, 18.6% to 32.1%, and 1.4% to 3.1%, respectively. The difference in the digestibility of the dry matter of the whole plant among hybrids (ZP 735 and ZP 560) amounted to 18.1%. Moreover, the differences in the contents of the lignocelluloses fraction affected the differences in dry matter digestibility. From the results it can be concluded that genetic background of the selected maize hybrids plays an important part in estimation of the technological value of maize hybrids for various purposes. Obtained results are of an exceptional importance for the breeding programs and selection of potentially most suitable maize hybrids for starch, bioethanol and animal feed production.

Keywords: bioethanol, biomass quality, maize, starch

Procedia PDF Downloads 195
211 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure

Procedia PDF Downloads 296
210 Bioanalytical Method Development and Validation of Aminophylline in Rat Plasma Using Reverse Phase High Performance Liquid Chromatography: An Application to Preclinical Pharmacokinetics

Authors: S. G. Vasantharaju, Viswanath Guptha, Raghavendra Shetty

Abstract:

Introduction: Aminophylline is a methylxanthine derivative belonging to the class bronchodilator. From the literature survey, reported methods reveals the solid phase extraction and liquid liquid extraction which is highly variable, time consuming, costly and laborious analysis. Present work aims to develop a simple, highly sensitive, precise and accurate high-performance liquid chromatography method for the quantification of Aminophylline in rat plasma samples which can be utilized for preclinical studies. Method: Reverse Phase high-performance liquid chromatography method. Results: Selectivity: Aminophylline and the internal standard were well separated from the co-eluted components and there was no interference from the endogenous material at the retention time of analyte and the internal standard. The LLOQ measurable with acceptable accuracy and precision for the analyte was 0.5 µg/mL. Linearity: The developed and validated method is linear over the range of 0.5-40.0 µg/mL. The coefficient of determination was found to be greater than 0.9967, indicating the linearity of this method. Accuracy and precision: The accuracy and precision values for intra and inter day studies at low, medium and high quality control samples concentrations of aminophylline in the plasma were within the acceptable limits Extraction recovery: The method produced consistent extraction recovery at all 3 QC levels. The mean extraction recovery of aminophylline was 93.57 ± 1.28% while that of internal standard was 90.70 ± 1.30%. Stability: The results show that aminophylline is stable in rat plasma under the studied stability conditions and that it is also stable for about 30 days when stored at -80˚C. Pharmacokinetic studies: The method was successfully applied to the quantitative estimation of aminophylline rat plasma following its oral administration to rats. Discussion: Preclinical studies require a rapid and sensitive method for estimating the drug concentration in the rat plasma. The method described in our article includes a simple protein precipitation extraction technique with ultraviolet detection for quantification. The present method is simple and robust for fast high-throughput sample analysis with less analysis cost for analyzing aminophylline in biological samples. In this proposed method, no interfering peaks were observed at the elution times of aminophylline and the internal standard. The method also had sufficient selectivity, specificity, precision and accuracy over the concentration range of 0.5 - 40.0 µg/mL. An isocratic separation technique was used underlining the simplicity of the presented method.

Keywords: Aminophyllin, preclinical pharmacokinetics, rat plasma, RPHPLC

Procedia PDF Downloads 197
209 Atypical Intoxication Due to Fluoxetine Abuse with Symptoms of Amnesia

Authors: Ayse Gul Bilen

Abstract:

Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed antidepressants that are used clinically for the treatment of anxiety disorders, obsessive-compulsive disorder (OCD), panic disorders and eating disorders. The first SSRI, fluoxetine (sold under the brand names Prozac and Sarafem among others), had an adverse effect profile better than any other available antidepressant when it was introduced because of its selectivity for serotonin receptors. They have been considered almost free of side effects and have become widely prescribed, however questions about the safety and tolerability of SSRIs have emerged with their continued use. Most SSRI side effects are dose-related and can be attributed to serotonergic effects such as nausea. Continuous use might trigger adverse effects such as hyponatremia, tremor, nausea, weight gain, sleep disturbance and sexual dysfunction. Moderate toxicity can be safely observed in the hospital for 24 hours, and mild cases can be safely discharged (if asymptomatic) from the emergency department once cleared by Psychiatry in cases of intentional overdose and after 6 to 8 hours of observation. Although fluoxetine is relatively safe in terms of overdose, it might still be cardiotoxic and inhibit platelet secretion, aggregation, and plug formation. There have been reported clinical cases of seizures, cardiac conduction abnormalities, and even fatalities associated with fluoxetine ingestions. While the medical literature strongly suggests that most fluoxetine overdoses are benign, emergency physicians need to remain cognizant that intentional, high-dose fluoxetine ingestions may induce seizures and can even be fatal due to cardiac arrhythmia. Our case is a 35-year old female patient who was sent to ER with symptoms of confusion, amnesia and loss of orientation for time and location after being found wandering in the streets unconsciously by police forces that informed 112. Upon laboratory examination, no pathological symptom was found except sinus tachycardia in the EKG and high levels of aspartate transaminase (AST) and alanine transaminase (ALT). Diffusion MRI and computed tomography (CT) of the brain all looked normal. Upon physical and sexual examination, no signs of abuse or trauma were found. Test results for narcotics, stimulants and alcohol were negative as well. There was a presence of dysrhythmia which required admission to the intensive care unit (ICU). The patient gained back her conscience after 24 hours. It was discovered from her story afterward that she had been using fluoxetine due to post-traumatic stress disorder (PTSD) for 6 months and that she had attempted suicide after taking 3 boxes of fluoxetine due to the loss of a parent. She was then transferred to the psychiatric clinic. Our study aims to highlight the need to consider toxicologic drug use, in particular, the abuse of selective serotonin reuptake inhibitors (SSRIs), which have been widely prescribed due to presumed safety and tolerability, for diagnosis of patients applying to the emergency room (ER).

Keywords: abuse, amnesia, fluoxetine, intoxication, SSRI

Procedia PDF Downloads 180
208 Digitalization, Economic Growth and Financial Sector Development in Africa

Authors: Abdul Ganiyu Iddrisu

Abstract:

Digitization is the process of transforming analog material into digital form, especially for storage and use in a computer. Significant development of information and communication technology (ICT) over the past years has encouraged many researchers to investigate its contribution to promoting economic growth, and reducing poverty. Yet compelling empirical evidence on the effects of digitization on economic growth remains weak, particularly in Africa. This is because extant studies that explicitly evaluate digitization and economic growth nexus are mostly reports and desk reviews. This points out an empirical knowledge gap in the literature. Hypothetically, digitization influences financial sector development which in turn influences economic growth. Digitization has changed the financial sector and its operating environment. Obstacles to access to financing, for instance, physical distance, minimum balance requirements, low-income flows among others can be circumvented. Savings have increased, micro-savers have opened bank accounts, and banks are now able to price short-term loans. This has the potential to develop the financial sector, however, empirical evidence on digitization-financial development nexus is dearth. On the other hand, a number of studies maintained that financial sector development greatly influences growth of economies. We therefore argue that financial sector development is one of the transmission mechanisms through which digitization affects economic growth. Employing macro-country-level data from African countries and using fixed effects, random effects and Hausman-Taylor estimation approaches, this paper contributes to the literature by analysing economic growth in Africa focusing on the role of digitization, and financial sector development. First, we assess how digitization influence financial sector development in Africa. From an economic policy perspective, it is important to identify digitization determinants of financial sector development so that action can be taken to reduce the economic shocks associated with financial sector distortions. This nexus is rarely examined empirically in the literature. Secondly, we examine the effect of domestic credit to private sector and stock market capitalization as a percentage of GDP as used to proxy for financial sector development on 2 economic growth. Digitization is represented by the volume of digital/ICT equipment imported and GDP growth is used to proxy economic growth. Finally, we examine the effect of digitization on economic growth in the light of financial sector development. The following key results were found; first, digitalization propels financial sector development in Africa. Second, financial sector development enhances economic growth. Finally, contrary to our expectation, the results also indicate that digitalization conditioned on financial sector development tends to reduce economic growth in Africa. However, results of the net effects suggest that digitalization, overall, improves economic growth in Africa. We, therefore, conclude that, digitalization in Africa does not only develop the financial sector but unconditionally contributes the growth of the continent’s economies.

Keywords: digitalization, economic growth, financial sector development, Africa

Procedia PDF Downloads 77
207 Numerical Erosion Investigation of Standalone Screen (Wire-Wrapped) Due to the Impact of Sand Particles Entrained in a Single-Phase Flow (Water Flow)

Authors: Ahmed Alghurabi, Mysara Mohyaldinn, Shiferaw Jufar, Obai Younis, Abdullah Abduljabbar

Abstract:

Erosion modeling equations were typically acquired from regulated experimental trials for solid particles entrained in single-phase or multi-phase flows. Evidently, those equations were later employed to predict the erosion damage caused by the continuous impacts of solid particles entrained in streamflow. It is also well-known that the particle impact angle and velocity do not change drastically in gas-sand flow erosion prediction; hence an accurate prediction of erosion can be projected. On the contrary, high-density fluid flows, such as water flow, through complex geometries, such as sand screens, greatly affect the sand particles’ trajectories/tracks and consequently impact the erosion rate predictions. Particle tracking models and erosion equations are frequently applied simultaneously as a method to improve erosion visualization and estimation. In the present work, computational fluid dynamic (CFD)-based erosion modeling was performed using a commercially available software; ANSYS Fluent. The continuous phase (water flow) behavior was simulated using the realizable K-epsilon model, and the secondary phase (solid particles), having a 5% flow concentration, was tracked with the help of the discrete phase model (DPM). To accomplish a successful erosion modeling, three erosion equations from the literature were utilized and introduced to the ANSYS Fluent software to predict the screen wire-slot velocity surge and estimate the maximum erosion rates on the screen surface. Results of turbulent kinetic energy, turbulence intensity, dissipation rate, the total pressure on the screen, screen wall shear stress, and flow velocity vectors were presented and discussed. Moreover, the particle tracks and path-lines were also demonstrated based on their residence time, velocity magnitude, and flow turbulence. On one hand, results from the utilized erosion equations have shown similarities in screen erosion patterns, locations, and DPM concentrations. On the other hand, the model equations estimated slightly different values of maximum erosion rates of the wire-wrapped screen. This is solely based on the fact that the utilized erosion equations were developed with some assumptions that are controlled by the experimental lab conditions.

Keywords: CFD simulation, erosion rate prediction, material loss due to erosion, water-sand flow

Procedia PDF Downloads 135
206 Development of Earthquake and Typhoon Loss Models for Japan, Specifically Designed for Underwriting and Enterprise Risk Management Cycles

Authors: Nozar Kishi, Babak Kamrani, Filmon Habte

Abstract:

Natural hazards such as earthquakes and tropical storms, are very frequent and highly destructive in Japan. Japan experiences, every year on average, more than 10 tropical cyclones that come within damaging reach, and earthquakes of moment magnitude 6 or greater. We have developed stochastic catastrophe models to address the risk associated with the entire suite of damaging events in Japan, for use by insurance, reinsurance, NGOs and governmental institutions. KCC’s (Karen Clark and Company) catastrophe models are procedures constituted of four modular segments: 1) stochastic events sets that would represent the statistics of the past events, hazard attenuation functions that could model the local intensity, vulnerability functions that would address the repair need for local buildings exposed to the hazard, and financial module addressing policy conditions that could estimates the losses incurring as result of. The events module is comprised of events (faults or tracks) with different intensities with corresponding probabilities. They are based on the same statistics as observed through the historical catalog. The hazard module delivers the hazard intensity (ground motion or wind speed) at location of each building. The vulnerability module provides library of damage functions that would relate the hazard intensity to repair need as percentage of the replacement value. The financial module reports the expected loss, given the payoff policies and regulations. We have divided Japan into regions with similar typhoon climatology, and earthquake micro-zones, within each the characteristics of events are similar enough for stochastic modeling. For each region, then, a set of stochastic events is developed that results in events with intensities corresponding to annual occurrence probabilities that are of interest to financial communities; such as 0.01, 0.004, etc. The intensities, corresponding to these probabilities (called CE, Characteristics Events) are selected through a superstratified sampling approach that is based on the primary uncertainty. Region specific hazard intensity attenuation functions followed by vulnerability models leads to estimation of repair costs. Extensive economic exposure model addresses all local construction and occupancy types, such as post-linter Shinand Okabe wood, as well as concrete confined in steel, SRC (Steel-Reinforced Concrete), high-rise.

Keywords: typhoon, earthquake, Japan, catastrophe modelling, stochastic modeling, stratified sampling, loss model, ERM

Procedia PDF Downloads 239
205 A Multipurpose Inertial Electrostatic Magnetic Confinement Fusion for Medical Isotopes Production

Authors: Yasser R. Shaban

Abstract:

A practical multipurpose device for medical isotopes production is most wanted for clinical centers and researches. Unfortunately, the major supply of these radioisotopes currently comes from aging sources, and there is a great deal of uneasiness in the domestic market. There are also many cases where the cost of certain radioisotopes is too high for their introduction on a commercial scale even though the isotopes might have great benefits for society. The medical isotopes such as radiotracers PET (Positron Emission Tomography), Technetium-99 m, and Iodine-131, Lutetium-177 by is feasible to be generated by a single unit named IEMC (Inertial Electrostatic Magnetic Confinement). The IEMC fusion vessel is the upgrading unit of the Inertial Electrostatic Confinement IEC fusion vessel. Comprehensive experimental works on IEC were carried earlier with promising results. The principle of inertial electrostatic magnetic confinement IEMC fusion is based on forcing the binary fuel ions to interact in the opposite directions in ions cyclotrons orbits with different kinetic energies in order to have equal compression (forces) and with different ion cyclotron frequency ω in order to increase the rate of intersection. The IEMC features greater fusion volume than IEC by several orders of magnitude. The particles rate from the IEMC approach are projected to be 8.5 x 10¹¹ (p/s), ~ 0.2 microampere proton, for D/He-3 fusion reaction and 4.2 x 10¹² (n/s) for D/T fusion reaction. The projected values of particles yield (neutrons and protons) are suitable for medical isotope productions on-site by a single unit without any change in the fusion vessel but only the fuel gas. The PET radiotracers are usually produced on-site by medical ion accelerator whereas Technetium-99m (Tc-99m) is usually produced off-site from the irradiation facilities of nuclear power plants. Typically, hospitals receive molybdenum-99 isotope container; the isotope decays to Tc-99mwith half-life time 2.75 days. Even though the projected current from IEMC is lesser than the proton current from the medical ion accelerator but still the IEMC vessel is simpler, and reduced in components and power consumption which add a new value of populating the PET radiotracers in most clinical centers. On the other hand, the projected neutrons flux from the IEMC is lesser than the thermal neutron flux at the irradiation facilities of nuclear power plants, but in the IEMC case the productions of Technetium-99m is suggested to be at the resonance region of which the resonance integral cross section is two orders of magnitude higher than the thermal flux. Thus it can be said the net activity from both is evened. Besides, the particle accelerator cannot be considered a multipurpose particles production unless a significant change is made to the accelerator to change from neutrons mode to protons mode or vice versa. In conclusion, the projected fusion yield from IEMC is a straightforward since slightly change in the primer IEC and ion source is required.

Keywords: electrostatic versus magnetic confinement fusion vessel, ion source, medical isotopes productions, neutron activation

Procedia PDF Downloads 326
204 The Trade Flow of Small Association Agreements When Rules of Origin Are Relaxed

Authors: Esmat Kamel

Abstract:

This paper aims to shed light on the extent to which the Agadir Association agreement has fostered inter regional trade between the E.U_26 and the Agadir_4 countries; once that we control for the evolution of Agadir agreement’s exports to the rest of the world. The next valid question will be regarding any remarkable variation in the spatial/sectoral structure of exports, and to what extent has it been induced by the Agadir agreement itself and precisely after the adoption of rules of origin and the PANEURO diagonal cumulative scheme? The paper’s empirical dataset covering a timeframe from [2000 -2009] was designed to account for sector specific export and intermediate flows and the bilateral structured gravity model was custom tailored to capture sector and regime specific rules of origin and the Poisson Pseudo Maximum Likelihood Estimator was used to calculate the gravity equation. The methodological approach of this work is considered to be a threefold one which starts first by conducting a ‘Hierarchal Cluster Analysis’ to classify final export flows showing a certain degree of linkage between each other. The analysis resulted in three main sectoral clusters of exports between Agadir_4 and E.U_26: cluster 1 for Petrochemical related sectors, cluster 2 durable goods and finally cluster 3 for heavy duty machinery and spare parts sectors. Second step continues by taking export flows resulting from the 3 clusters to be subject to treatment with diagonal Rules of origin through ‘The Double Differences Approach’, versus an equally comparable untreated control group. Third step is to verify results through a robustness check applied by ‘Propensity Score Matching’ to validate that the same sectoral final export and intermediate flows increased when rules of origin were relaxed. Through all the previous analysis, a remarkable and partial significance of the interaction term combining both treatment effects and time for the coefficients of 13 out of the 17 covered sectors turned out to be partially significant and it further asserted that treatment with diagonal rules of origin contributed in increasing Agadir’s_4 final and intermediate exports to the E.U._26 on average by 335% and in changing Agadir_4 exports structure and composition to the E.U._26 countries.

Keywords: agadir association agreement, structured gravity model, hierarchal cluster analysis, double differences estimation, propensity score matching, diagonal and relaxed rules of origin

Procedia PDF Downloads 299
203 Simulation of Technological, Energy and GHG Comparison between a Conventional Diesel Bus and E-bus: Feasibility to Promote E-bus Change in High Lands Cities

Authors: Riofrio Jonathan, Fernandez Guillermo

Abstract:

Renewable energy represented around 80% of the energy matrix for power generation in Ecuador during 2020, so the deployment of current public policies is focused on taking advantage of the high presence of renewable sources to carry out several electrification projects. These projects are part of the portfolio sent to the United Nations Framework on Climate Change (UNFCCC) as a commitment to reduce greenhouse gas emissions (GHG) in the established national determined contribution (NDC). In this sense, the Ecuadorian Organic Energy Efficiency Law (LOEE) published in 2019 promotes E-mobility as one of the main milestones. In fact, it states that the new vehicles for urban and interurban usage must be E-buses since 2025. As a result, and for a successful implementation of this technological change in a national context, it is important to deploy land surveys focused on technical and geographical areas to keep the quality of services in both the electricity and transport sectors. Therefore, this research presents a technological and energy comparison between a conventional diesel bus and its equivalent E-bus. Both vehicles fulfill all the technical requirements to ride in the study-case city, which is Ambato in the province of Tungurahua-Ecuador. In addition, the analysis includes the development of a model for the energy estimation of both technologies that are especially applied in a highland city such as Ambato. The altimetry of the most important bus routes in the city varies from 2557 to 3200 m.a.s.l., respectively, for the lowest and highest points. These operation conditions provide a grade of novelty to this paper. Complementary, the technical specifications of diesel buses are defined following the common features of buses registered in Ambato. On the other hand, the specifications for E-buses come from the most common units introduced in Latin America because there is not enough evidence in similar cities at the moment. The achieved results will be good input data for decision-makers since electric demand forecast, energy savings, costs, and greenhouse gases emissions are computed. Indeed, GHG is important because it allows reporting the transparency framework that it is part of the Paris Agreement. Finally, the presented results correspond to stage I of the called project “Analysis and Prospective of Electromobility in Ecuador and Energy Mix towards 2030” supported by Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ).

Keywords: high altitude cities, energy planning, NDC, e-buses, e-mobility

Procedia PDF Downloads 128
202 Linear Evolution of Compressible Görtler Vortices Subject to Free-Stream Vortical Disturbances

Authors: Samuele Viaro, Pierre Ricco

Abstract:

Görtler instabilities generate in boundary layers from an unbalance between pressure and centrifugal forces caused by concave surfaces. Their spatial streamwise evolution influences transition to turbulence. It is therefore important to understand even the early stages where perturbations, still small, grow linearly and could be controlled more easily. This work presents a rigorous theoretical framework for compressible flows using the linearized unsteady boundary region equations, where only the streamwise pressure gradient and streamwise diffusion terms are neglected from the full governing equations of fluid motion. Boundary and initial conditions are imposed through an asymptotic analysis in order to account for the interaction of the boundary layer with free-stream turbulence. The resulting parabolic system is discretize with a second-order finite difference scheme. Realistic flow parameters are chosen from wind tunnel studies performed at supersonic and subsonic conditions. The Mach number ranges from 0.5 to 8, with two different radii of curvature, 5 m and 10 m, frequencies up to 2000 Hz, and vortex spanwise wavelengths from 5 mm to 20 mm. The evolution of the perturbation flow is shown through velocity, temperature, pressure profiles relatively close to the leading edge, where non-linear effects can still be neglected, and growth rate. Results show that a global stabilizing effect exists with the increase of Mach number, frequency, spanwise wavenumber and radius of curvature. In particular, at high Mach numbers curvature effects are less pronounced and thermal streaks become stronger than velocity streaks. This increase of temperature perturbations saturates at approximately Mach 4 flows, and is limited in the early stage of growth, near the leading edge. In general, Görtler vortices evolve closer to the surface with respect to a flat plate scenario but their location shifts toward the edge of the boundary layer as the Mach number increases. In fact, a jet-like behavior appears for steady vortices having small spanwise wavelengths (less than 10 mm) at Mach 8, creating a region of unperturbed flow close to the wall. A similar response is also found at the highest frequency considered for a Mach 3 flow. Larger vortices are found to have a higher growth rate but are less influenced by the Mach number. An eigenvalue approach is also employed to study the amplification of the perturbations sufficiently downstream from the leading edge. These eigenvalue results are compared with the ones obtained through the initial value approach with inhomogeneous free-stream boundary conditions. All of the parameters here studied have a significant influence on the evolution of the instabilities for the Görtler problem which is indeed highly dependent on initial conditions.

Keywords: compressible boundary layers, Görtler instabilities, receptivity, turbulence transition

Procedia PDF Downloads 233
201 Survey of Indoor Radon/Thoron Concentrations in High Lung Cancer Incidence Area in India

Authors: Zoliana Bawitlung, P. C. Rohmingliana, L. Z. Chhangte, Remlal Siama, Hming Chungnunga, Vanram Lawma, L. Hnamte, B. K. Sahoo, B. K. Sapra, J. Malsawma

Abstract:

Mizoram state has the highest lung cancer incidence rate in India due to its high-level consumption of tobacco and its products which is supplemented by the food habits. While smoking is mainly responsible for this incidence, the effect of inhalation of indoor radon gas cannot be discarded as the hazardous nature of this radioactive gas and its progenies on human population have been well-established worldwide where the radiation damage to bronchial cells eventually can be the second leading cause of lung cancer next to smoking. It is also known that the effect of radiation, however, small may be the concentration, cannot be neglected as they can bring about the risk of cancer incidence. Hence, estimation of indoor radon concentration is important to give a useful reference against radiation effects as well as establishing its safety measures and to create a baseline for further case-control studies. The indoor radon/thoron concentrations in Mizoram had been measured in 41 dwellings selected on the basis of spot gamma background radiation and construction type of the houses during 2015-2016. The dwellings were monitored for one year, in 4 months cycles to indicate seasonal variations, for the indoor concentration of radon gas and its progenies, outdoor gamma dose, and indoor gamma dose respectively. A time-integrated method using Solid State Nuclear Track Detector (SSNTD) based single entry pin-hole dosimeters were used for measurement of indoor Radon/Thoron concentration. Gamma dose measurements for indoor as well as outdoor were carried out using Geiger Muller survey meters. Seasonal variation of indoor radon/ thoron concentration was monitored. The results show that the annual average radon concentrations varied from 54.07 – 144.72 Bq/m³ with an average of 90.20 Bq/m³ and the annual average thoron concentration varied from 17.39 – 54.19 Bq/m³ with an average of 35.91 Bq/m³ which are below the permissible limit. The spot survey of gamma background radiation level varies between 9 to 24 µR/h inside and outside the dwellings throughout Mizoram which are all within acceptable limits. From the above results, there is no direct indication that radon/thoron is responsible for the high lung cancer incidence in the area. In order to find epidemiological evidence of natural radiations to high cancer incidence in the area, one may need to conduct a case-control study which is beyond this scope. However, the derived data of measurement will provide baseline data for further studies.

Keywords: background gamma radiation, indoor radon/thoron, lung cancer, seasonal variation

Procedia PDF Downloads 119
200 Digitization and Economic Growth in Africa: The Role of Financial Sector Development

Authors: Abdul Ganiyu Iddrisu, Bei Chen

Abstract:

Digitization is the process of transforming analog material into digital form, especially for storage and use in a computer. Significant development of information and communication technology (ICT) over the past years has encouraged many researchers to investigate its contribution to promoting economic growth and reducing poverty. Yet the compelling empirical evidence on the effects of digitization on economic growth remains weak, particularly in Africa. This is because extant studies that explicitly evaluate digitization and economic growth nexus are mostly reports and desk reviews. This points out an empirical knowledge gap in the literature. Hypothetically, digitization influences financial sector development which in turn influences economic growth. Digitization has changed the financial sector and its operating environment. Obstacles to access to financing, for instance, physical distance, minimum balance requirements, and low-income flows, among others can be circumvented. Savings have increased, micro-savers have opened bank accounts, and banks are now able to price short-term loans. This has the potential to develop the financial sector. However, empirical evidence on the digitization-financial development nexus is dearth. On the other hand, a number of studies maintained that financial sector development greatly influences growth of economies. We, therefore, argue that financial sector development is one of the transmission mechanisms through which digitization affects economic growth. Employing macro-country-level data from African countries and using fixed effects, random effects and Hausman-Taylor estimation approaches, this paper contributes to the literature by analysing economic growth in Africa, focusing on the role of digitization and financial sector development. First, we assess how digitization influences financial sector development in Africa. From an economic policy perspective, it is important to identify digitization determinants of financial sector development so that action can be taken to reduce the economic shocks associated with financial sector distortions. This nexus is rarely examined empirically in the literature. Secondly, we examine the effect of domestic credit to the private sector and stock market capitalization as a percentage of GDP as used to proxy for financial sector development on economic growth. Digitization is represented by the volume of digital/ICT equipment imported and GDP growth is used to proxy economic growth. Finally, we examine the effect of digitization on economic growth in the light of financial sector development. The following key results were found; first, digitalization propels financial sector development in Africa. Second, financial sector development enhances economic growth. Finally, contrary to our expectation, the results also indicate that digitalization conditioned on financial sector development tends to reduce economic growth in Africa. However, results of the net effects suggest that digitalization, overall, improve economic growth in Africa. We, therefore, conclude that, digitalization in Africa does not only develop the financial sector but unconditionally contributes the growth of the continent’s economies.

Keywords: digitalization, financial sector development, Africa, economic growth

Procedia PDF Downloads 109
199 Mechanical Response Investigation of Wafer Probing Test with Vertical Cobra Probe via the Experiment and Transient Dynamic Simulation

Authors: De-Shin Liu, Po-Chun Wen, Zhen-Wei Zhuang, Hsueh-Chih Liu, Pei-Chen Huang

Abstract:

Wafer probing tests play an important role in semiconductor manufacturing procedures in accordance with the yield and reliability requirement of the wafer after the backend-of-the-line process. Accordingly, the stable physical and electrical contact between the probe and the tested wafer during wafer probing is regarded as an essential issue in identifying the known good die. The probe card can be integrated with multiple probe needles, which are classified as vertical, cantilever and micro-electro-mechanical systems type probe selections. Among all potential probe types, the vertical probe has several advantages as compared with other probe types, including maintainability, high probe density and feasibility for high-speed wafer testing. In the present study, the mechanical response of the wafer probing test with the vertical cobra probe on 720 μm thick silicon (Si) substrate with a 1.4 μm thick aluminum (Al) pad is investigated by the experiment and transient dynamic simulation approach. Because the deformation mechanism of the vertical cobra probe is determined by both bending and buckling mechanisms, the stable correlation between contact forces and overdrive (OD) length must be carefully verified. Moreover, the decent OD length with corresponding contact force contributed to piercing the native oxide layer of the Al pad and preventing the probing test-induced damage on the interconnect system. Accordingly, the scratch depth of the Al pad under various OD lengths is estimated by the atomic force microscope (AFM) and simulation work. In the wafer probing test configuration, the contact phenomenon between the probe needle and the tested object introduced large deformation and twisting of mesh gridding, causing the subsequent numerical divergence issue. For this reason, the arbitrary Lagrangian-Eulerian method is utilized in the present simulation work to conquer the aforementioned issue. The analytic results revealed a slight difference when the OD is considered as 40 μm, and the simulated is almost identical to the measured scratch depths of the Al pad under higher OD lengths up to 70 μm. This phenomenon can be attributed to the unstable contact of the probe at low OD length with the scratch depth below 30% of Al pad thickness, and the contact status will be being stable when the scratch depth over 30% of pad thickness. The splash of the Al pad is observed by the AFM, and the splashed Al debris accumulates on a specific side; this phenomenon is successfully simulated in the transient dynamic simulation. Thus, the preferred testing OD lengths are found as 45 μm to 70 μm, and the corresponding scratch depths on the Al pad are represented as 31.4% and 47.1% of Al pad thickness, respectively. The investigation approach demonstrated in this study contributed to analyzing the mechanical response of wafer probing test configuration under large strain conditions and assessed the geometric designs and material selections of probe needles to meet the requirement of high resolution and high-speed wafer-level probing test for thinned wafer application.

Keywords: wafer probing test, vertical probe, probe mark, mechanical response, FEA simulation

Procedia PDF Downloads 29
198 Thermoluminescence Investigations of Tl2Ga2Se3S Layered Single Crystals

Authors: Serdar Delice, Mehmet Isik, Nizami Hasanli, Kadir Goksen

Abstract:

Researchers have donated great interest to ternary and quaternary semiconductor compounds especially with the improvement of the optoelectronic technology. The quaternary compound Tl2Ga2Se3S which was grown by Bridgman method carries the properties of ternary thallium chalcogenides group of semiconductors with layered structure. This compound can be formed from TlGaSe2 crystals replacing the one quarter of selenium atom by sulfur atom. Although Tl2Ga2Se3S crystals are not intentionally doped, some unintended defect types such as point defects, dislocations and stacking faults can occur during growth processes of crystals. These defects can cause undesirable problems in semiconductor materials especially produced for optoelectronic technology. Defects of various types in the semiconductor devices like LEDs and field effect transistor may act as a non-radiative or scattering center in electron transport. Also, quick recombination of holes with electrons without any energy transfer between charge carriers can occur due to the existence of defects. Therefore, the characterization of defects may help the researchers working in this field to produce high quality devices. Thermoluminescence (TL) is an effective experimental method to determine the kinetic parameters of trap centers due to defects in crystals. In this method, the sample is illuminated at low temperature by a light whose energy is bigger than the band gap of studied sample. Thus, charge carriers in the valence band are excited to delocalized band. Then, the charge carriers excited into conduction band are trapped. The trapped charge carriers are released by heating the sample gradually and these carriers then recombine with the opposite carriers at the recombination center. By this way, some luminescence is emitted from the samples. The emitted luminescence is converted to pulses by using an experimental setup controlled by computer program and TL spectrum is obtained. Defect characterization of Tl2Ga2Se3S single crystals has been performed by TL measurements at low temperatures between 10 and 300 K with various heating rate ranging from 0.6 to 1.0 K/s. The TL signal due to the luminescence from trap centers revealed one glow peak having maximum temperature of 36 K. Curve fitting and various heating rate methods were used for the analysis of the glow curve. The activation energy of 13 meV was found by the application of curve fitting method. This practical method established also that the trap center exhibits the characteristics of mixed (general) kinetic order. In addition, various heating rate analysis gave a compatible result (13 meV) with curve fitting as the temperature lag effect was taken into consideration. Since the studied crystals were not intentionally doped, these centers are thought to originate from stacking faults, which are quite possible in Tl2Ga2Se3S due to the weakness of the van der Waals forces between the layers. Distribution of traps was also investigated using an experimental method. A quasi-continuous distribution was attributed to the determined trap centers.

Keywords: chalcogenides, defects, thermoluminescence, trap centers

Procedia PDF Downloads 262
197 Method of Complex Estimation of Text Perusal and Indicators of Reading Quality in Different Types of Commercials

Authors: Victor N. Anisimov, Lyubov A. Boyko, Yazgul R. Almukhametova, Natalia V. Galkina, Alexander V. Latanov

Abstract:

Modern commercials presented on billboards, TV and on the Internet contain a lot of information about the product or service in text form. However, this information cannot always be perceived and understood by consumers. Typical sociological focus group studies often cannot reveal important features of the interpretation and understanding information that has been read in text messages. In addition, there is no reliable method to determine the degree of understanding of the information contained in a text. Only the fact of viewing a text does not mean that consumer has perceived and understood the meaning of this text. At the same time, the tools based on marketing analysis allow only to indirectly estimate the process of reading and understanding a text. Therefore, the aim of this work is to develop a valid method of recording objective indicators in real time for assessing the fact of reading and the degree of text comprehension. Psychophysiological parameters recorded during text reading can form the basis for this objective method. We studied the relationship between multimodal psychophysiological parameters and the process of text comprehension during reading using the method of correlation analysis. We used eye-tracking technology to record eye movements parameters to estimate visual attention, electroencephalography (EEG) to assess cognitive load and polygraphic indicators (skin-galvanic reaction, SGR) that reflect the emotional state of the respondent during text reading. We revealed reliable interrelations between perceiving the information and the dynamics of psychophysiological parameters during reading the text in commercials. Eye movement parameters reflected the difficulties arising in respondents during perceiving ambiguous parts of text. EEG dynamics in rate of alpha band were related with cumulative effect of cognitive load. SGR dynamics were related with emotional state of the respondent and with the meaning of text and type of commercial. EEG and polygraph parameters together also reflected the mental difficulties of respondents in understanding text and showed significant differences in cases of low and high text comprehension. We also revealed differences in psychophysiological parameters for different type of commercials (static vs. video, financial vs. cinema vs. pharmaceutics vs. mobile communication, etc.). Conclusions: Our methodology allows to perform multimodal evaluation of text perusal and the quality of text reading in commercials. In general, our results indicate the possibility of designing an integral model to estimate the comprehension of reading the commercial text in percent scale based on all noticed markers.

Keywords: reading, commercials, eye movements, EEG, polygraphic indicators

Procedia PDF Downloads 142
196 Anaerobic Co-Digestion of Pressmud with Bagasse and Animal Waste for Biogas Production Potential

Authors: Samita Sondhi, Sachin Kumar, Chirag Chopra

Abstract:

The increase in population has resulted in an excessive feedstock production, which has in return lead to the accumulation of a large amount of waste from different resources as crop residues, industrial waste and solid municipal waste. This situation has raised the problem of waste disposal in present days. A parallel problem of depletion of natural fossil fuel resources has led to the formation of alternative sources of energy from the waste of different industries to concurrently resolve the two issues. The biogas is a carbon neutral fuel which has applications in transportation, heating and power generation. India is a nation that has an agriculture-based economy and agro-residues are a significant source of organic waste. Taking into account, the second largest agro-based industry that is sugarcane industry producing a high quantity of sugar and sugarcane waste byproducts such as Bagasse, Press Mud, Vinasse and Wastewater. Currently, there are not such efficient disposal methods adopted at large scales. According to manageability objectives, anaerobic digestion can be considered as a method to treat organic wastes. Press mud is lignocellulosic biomass and cannot be accumulated for Mono digestion because of its complexity. Prior investigations indicated that it has a potential for production of biogas. But because of its biological and elemental complexity, Mono-digestion was not successful. Due to the imbalance in the C/N ratio and presence of wax in it can be utilized with any other fibrous material hence will be digested properly under suitable conditions. In the first batch of Mono-digestion of Pressmud biogas production was low. Now, co-digestion of Pressmud with Bagasse which has desired C/N ratio will be performed to optimize the ratio for maximum biogas from Press mud. In addition, with respect to supportability, the main considerations are the monetary estimation of item result and ecological concerns. The work is designed in such a way that the waste from the sugar industry will be digested for maximum biogas generation and digestive after digestion will be characterized for its use as a bio-fertilizer for soil conditioning. Due to effectiveness demonstrated by studied setups of Mono-digestion and Co-digestion, this approach can be considered as a viable alternative for lignocellulosic waste disposal and in agricultural applications. Biogas produced from the Pressmud either can be used for Powerhouses or transportation. In addition, the work initiated towards the development of waste disposal for energy production will demonstrate balanced economy sustainability of the process development.

Keywords: anaerobic digestion, carbon neutral fuel, press mud, lignocellulosic biomass

Procedia PDF Downloads 146
195 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India

Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit

Abstract:

Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.

Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique

Procedia PDF Downloads 107
194 Rain Gauges Network Optimization in Southern Peninsular Malaysia

Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno

Abstract:

Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.

Keywords: geostatistics, simulated annealing, semivariogram, optimization

Procedia PDF Downloads 274
193 Requirements for the Development of Competencies to Mentor Trainee Teachers: A Case Study of Vocational Education Cooperating Teachers in Quebec

Authors: Nathalie Gagnon, Andréanne Gagné, Julie Courcy

Abstract:

Quebec's vocational education teachers experience an atypical induction process into the workplace and thus face unique challenges. In contrast to elementary and high school teachers, who must undergo initial teacher training in order to access the profession, vocational education teachers, in most cases, are hired based on their professional expertise in the trade they are teaching, without prior pedagogical training. In addition to creating significant stress, which does not foster the acquisition of teaching roles and skills, this approach also forces recruits into a particular posture during their practical training: that of juggling their dual identities as teacher and trainee simultaneously. Recruits are supported by Cooperating Teachers (CPs) who, as experienced educators, take a critical and constructive look at their practices, observe them in the classroom, give them constructive feedback, and encourage them in their reflective practice. Thus, the vocational setting CP also assumes a distinctive posture and role due to the characteristics of the trainees they support. Although it is recognized that preparation, training, and supervision of CPs are essential factors in improving the support provided to trainees, there is little research about how CPs develop their support skills, and very little research focuses on the distinct posture they occupy. However, in order for them to be properly equipped for the important role they play in recruits’ practical training, it is vital to know more about their experience. An individual’s competencies cannot be studied without first examining what characterizes their experience, how they experience any given situation on cognitive, emotional, and motivational levels, in addition to how they act and react in situ. Depending on its nature, the experience will or will not promote the development of a specific competency. The research from which this communication originates focuses on describing the overall experience of vocational education CP in an effort to better understand the mechanisms linked to the development of their mentoring competencies. Experience and competence were, therefore, the two main theoretical concepts leading the research. As per methodology choices, case study methods were used since it proves to be adequate to describe in a rich and detailed way contemporary phenomena within contexts of life. The set of data used was collected from semi-structured interviews conducted with 15 vocational education CP in Quebec (Canada), followed by the use of a data-driven semi-inductive analysis approach to let the categories emerge organically. Focusing on the development needs of vocational education CP to improve their mentoring skills, this paper presents the results of our research, namely the importance of adequate training, better support offered by university supervisors, greater recognition of their role, and specific time slots dedicated to trainee support. The knowledge resulting from this research could improve the quality of support for trainee teachers in vocational education settings and to a more successful induction into the workplace. This communication also presents recommendations regarding the development of training systems that meet the specific needs of vocational education CP.

Keywords: development of competencies, cooperating teacher, mentoring trainee teacher, practical training, vocational education

Procedia PDF Downloads 87
192 In situ Stabilization of Arsenic in Soils with Birnessite and Goethite

Authors: Saeed Bagherifam, Trevor Brown, Chris Fellows, Ravi Naidu

Abstract:

Over the last century, rapid urbanization, industrial emissions, and mining activities have resulted in widespread contamination of the environment by heavy metal(loid)s. Arsenic (As) is a toxic metalloid belonging to group 15 of the periodic table, which occurs naturally at low concentrations in soils and the earth’s crust, although concentrations can be significantly elevated in natural systems as a result of dispersion from anthropogenic sources, e.g., mining activities. Bioavailability is the fraction of a contaminant in soils that is available for uptake by plants, food chains, and humans and therefore presents the greatest risk to terrestrial ecosystems. Numerous attempts have been made to establish in situ and ex-situ technologies of remedial action for remediation of arsenic-contaminated soils. In situ stabilization techniques are based on deactivation or chemical immobilization of metalloid(s) in soil by means of soil amendments, which consequently reduce the bioavailability (for biota) and bioaccessibility (for humans) of metalloids due to the formation of low-solubility products or precipitates. This study investigated the effectiveness of two different types of synthetic manganese and iron oxides (birnessite and goethite) for stabilization of As in a soil spiked with 1000 mg kg⁻¹ of As and treated with 10% dosages of soil amendments. Birnessite was made using HCl and KMnO₄, and goethite was synthesized by the dropwise addition of KOH into Fe(NO₃) solution. The resulting contaminated soils were subjected to a series of chemical extraction studies including sequential extraction (BCR method), single-step extraction with distilled (DI) water, 2M HNO₃ and simplified bioaccessibility extraction tests (SBET) for estimation of bioaccessible fractions of As in two different soil fractions ( < 250 µm and < 2 mm). Concentrations of As in samples were measured using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that soil with birnessite reduced bioaccessibility of As by up to 92% in both soil fractions. Furthermore, the results of single-step extractions revealed that the application of both birnessite and Goethite reduced DI water and HNO₃ extractable amounts of arsenic by 75, 75, 91, and 57%, respectively. Moreover, the results of the sequential extraction studies showed that both birnessite and goethite dramatically reduced the exchangeable fraction of As in soils. However, the amounts of recalcitrant fractions were higher in birnessite, and Goethite amended soils. The results revealed that the application of both birnessite and goethite significantly reduced bioavailability and the exchangeable fraction of As in contaminated soils, and therefore birnessite and Goethite amendments might be considered as promising adsorbents for stabilization and remediation of As contaminated soils.

Keywords: arsenic, bioavailability, in situ stabilisation, metalloid(s) contaminated soils

Procedia PDF Downloads 112
191 Evaluation of Soil Erosion Risk and Prioritization for Implementation of Management Strategies in Morocco

Authors: Lahcen Daoudi, Fatima Zahra Omdi, Abldelali Gourfi

Abstract:

In Morocco, as in most Mediterranean countries, water scarcity is a common situation because of low and unevenly distributed rainfall. The expansions of irrigated lands, as well as the growth of urban and industrial areas and tourist resorts, contribute to an increase of water demand. Therefore in the 1960s Morocco embarked on an ambitious program to increase the number of dams to boost water retention capacity. However, the decrease in the capacity of these reservoirs caused by sedimentation is a major problem; it is estimated at 75 million m3/year. Dams and reservoirs became unusable for their intended purposes due to sedimentation in large rivers that result from soil erosion. Soil erosion presents an important driving force in the process affecting the landscape. It has become one of the most serious environmental problems that raised much interest throughout the world. Monitoring soil erosion risk is an important part of soil conservation practices. The estimation of soil loss risk is the first step for a successful control of water erosion. The aim of this study is to estimate the soil loss risk and its spatial distribution in the different fields of Morocco and to prioritize areas for soil conservation interventions. The approach followed is the Revised Universal Soil Loss Equation (RUSLE) using remote sensing and GIS, which is the most popular empirically based model used globally for erosion prediction and control. This model has been tested in many agricultural watersheds in the world, particularly for large-scale basins due to the simplicity of the model formulation and easy availability of the dataset. The spatial distribution of the annual soil loss was elaborated by the combination of several factors: rainfall erosivity, soil erodability, topography, and land cover. The average annual soil loss estimated in several basins watershed of Morocco varies from 0 to 50t/ha/year. Watersheds characterized by high-erosion-vulnerability are located in the North (Rif Mountains) and more particularly in the Central part of Morocco (High Atlas Mountains). This variation of vulnerability is highly correlated to slope variation which indicates that the topography factor is the main agent of soil erosion within these basin catchments. These results could be helpful for the planning of natural resources management and for implementing sustainable long-term management strategies which are necessary for soil conservation and for increasing over the projected economic life of the dam implemented.

Keywords: soil loss, RUSLE, GIS-remote sensing, watershed, Morocco

Procedia PDF Downloads 435
190 Globalization of Pesticide Technology and Sustainable Agriculture

Authors: Gagandeep Kaur

Abstract:

The pesticide industry is a big supplier of agricultural inputs. The uses of pesticides control weeds, fungal diseases, etc., which causes of yield losses in agricultural production. In agribusiness and agrichemical industry, Globalization of markets, competition and innovation are the dominant trends. By the tradition of increasing the productivity of agro-systems through generic, universally applicable technologies, innovation in the agrichemical industry is limited. The marketing of technology of agriculture needs to deal with some various trends such as locally-organized forces that envision regionalized sustainable agriculture in the future. Agricultural production has changed dramatically over the past century. Before World War second agricultural production was featured as a low input of money, high labor, mixed farming and low yields. Although mineral fertilizers were applied already in the second half of the 19th century, most f the crops were restricted by local climatic, geological and ecological conditions. After World War second, in the period of reconstruction, political and socioeconomic pressure changed the nature of agricultural production. For a growing population, food security at low prices and securing farmer income at acceptable levels became political priorities. Current agricultural policy the new European common agricultural policy is aimed to reduce overproduction, liberalization of world trade and the protection of landscape and natural habitats. Farmers have to increase the quality of their productivity and they have to control costs because of increased competition from the world market. Pesticides should be more effective at lower application doses, less toxic and not pose a threat to groundwater. There is a big debate taking place about how and whether to mitigate the intensive use of pesticides. This debate is about the future of agriculture which is sustainable agriculture. This is possible by moving away from conventional agriculture. Conventional agriculture is featured as high inputs and high yields. The use of pesticides in conventional agriculture implies crop production in a wide range. To move away from conventional agriculture is possible through the gradual adoption of less disturbing and polluting agricultural practices at the level of the cropping system. For a healthy environment for crop production in the future there is a need for the maintenance of chemical, physical or biological properties. There is also required to minimize the emission of volatile compounds in the atmosphere. Companies are limiting themselves to a particular interpretation of sustainable development, characterized by technological optimism and production-maximizing. So the main objective of the paper will present the trends in the pesticide industry and in agricultural production in the era of Globalization. The second objective is to analyze sustainable agriculture. Companies of pesticides seem to have identified biotechnology as a promising alternative and supplement to the conventional business of selling pesticides. The agricultural sector is in the process of transforming its conventional mode of operation. Some experts give suggestions to farmers to move towards precision farming and some suggest engaging in organic farming. The methodology of the paper will be historical and analytical. Both primary and secondary sources will be used.

Keywords: globalization, pesticides, sustainable development, organic farming

Procedia PDF Downloads 72
189 An eHealth Intervention Using Accelerometer- Smart Phone-App Technology to Promote Physical Activity and Health among Employees in a Military Setting

Authors: Emilia Pietiläinen, Heikki Kyröläinen, Tommi Vasankari, Matti Santtila, Tiina Luukkaala, Kai Parkkola

Abstract:

Working in the military sets special demands on physical fitness, however, reduced physical activity levels among employees in the Finnish Defence Forces (FDF), a trend also being seen among the working-age population in Finland, is leading to reduced physical fitness levels and increased risk of cardiovascular and metabolic diseases, something which also increases human resource costs. Therefore, the aim of the present study was to develop an eHealth intervention using accelerometer- smartphone app feedback technique, telephone counseling and physical activity recordings to increase physical activity of the personnel and thereby improve their health. Specific aims were to reduce stress, improve quality of sleep and mental and physical performance, ability to work and reduce sick leave absences. Employees from six military brigades around Finland were invited to participate in the study, and finally, 260 voluntary participants were included (66 women, 194 men). The participants were randomized into intervention (156) and control groups (104). The eHealth intervention group used accelerometers measuring daily physical activity and duration and quality of sleep for six months. The accelerometers transmitted the data to smartphone apps while giving feedback about daily physical activity and sleep. The intervention group participants were also encouraged to exercise for two hours a week during working hours, a benefit that was already offered to employees following existing FDF guidelines. To separate the exercise done during working hours from the accelerometer data, the intervention group marked this exercise into an exercise diary. The intervention group also participated in telephone counseling about their physical activity. On the other hand, the control group participants continued with their normal exercise routine without the accelerometer and feedback. They could utilize the benefit of being able to exercise during working hours, but they were not separately encouraged for it, nor was the exercise diary used. The participants were measured at baseline, after the entire intervention period, and six months after the end of the entire intervention. The measurements included accelerometer recordings, biochemical laboratory tests, body composition measurements, physical fitness tests, and a wide questionnaire focusing on sociodemographic factors, physical activity and health. In terms of results, the primary indicators of effectiveness are increased physical activity and fitness, improved health status, and reduced sick leave absences. The evaluation of the present scientific reach is based on the data collected during the baseline measurements. Maintenance of the studied outcomes is assessed by comparing the results of the control group measured at the baseline and a year follow-up. Results of the study are not yet available but will be presented at the conference. The present findings will help to develop an easy and cost-effective model to support the health and working capability of employees in the military and other workplaces.

Keywords: accelerometer, health, mobile applications, physical activity, physical performance

Procedia PDF Downloads 171
188 Validation and Fit of a Biomechanical Bipedal Walking Model for Simulation of Loads Induced by Pedestrians on Footbridges

Authors: Dianelys Vega, Carlos Magluta, Ney Roitman

Abstract:

The simulation of loads induced by walking people in civil engineering structures is still challenging It has been the focus of considerable research worldwide in the recent decades due to increasing number of reported vibration problems in pedestrian structures. One of the most important key in the designing of slender structures is the Human-Structure Interaction (HSI). How moving people interact with structures and the effect it has on their dynamic responses is still not well understood. To rely on calibrated pedestrian models that accurately estimate the structural response becomes extremely important. However, because of the complexity of the pedestrian mechanisms, there are still some gaps in knowledge and more reliable models need to be investigated. On this topic several authors have proposed biodynamic models to represent the pedestrian, whether these models provide a consistent approximation to physical reality still needs to be studied. Therefore, this work comes to contribute to a better understanding of this phenomenon bringing an experimental validation of a pedestrian walking model and a Human-Structure Interaction model. In this study, a bi-dimensional bipedal walking model was used to represent the pedestrians along with an interaction model which was applied to a prototype footbridge. Numerical models were implemented in MATLAB. In parallel, experimental tests were conducted in the Structures Laboratory of COPPE (LabEst), at Federal University of Rio de Janeiro. Different test subjects were asked to walk at different walking speeds over instrumented force platforms to measure the walking force and an accelerometer was placed at the waist of each subject to measure the acceleration of the center of mass at the same time. By fitting the step force and the center of mass acceleration through successive numerical simulations, the model parameters are estimated. In addition, experimental data of a walking pedestrian on a flexible structure was used to validate the interaction model presented, through the comparison of the measured and simulated structural response at mid span. It was found that the pedestrian model was able to adequately reproduce the ground reaction force and the center of mass acceleration for normal and slow walking speeds, being less efficient for faster speeds. Numerical simulations showed that biomechanical parameters such as leg stiffness and damping affect the ground reaction force, and the higher the walking speed the greater the leg length of the model. Besides, the interaction model was also capable to estimate with good approximation the structural response, that remained in the same order of magnitude as the measured response. Some differences in frequency spectra were observed, which are presumed to be due to the perfectly periodic loading representation, neglecting intra-subject variabilities. In conclusion, this work showed that the bipedal walking model could be used to represent walking pedestrians since it was efficient to reproduce the center of mass movement and ground reaction forces produced by humans. Furthermore, although more experimental validations are required, the interaction model also seems to be a useful framework to estimate the dynamic response of structures under loads induced by walking pedestrians.

Keywords: biodynamic models, bipedal walking models, human induced loads, human structure interaction

Procedia PDF Downloads 103
187 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour

Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.

Keywords: artificial neural network, back-propagation, tide data, training algorithm

Procedia PDF Downloads 453
186 The New Waterfront: Examining the Impact of Planning on Waterfront Regeneration in Da Nang

Authors: Ngoc Thao Linh Dang

Abstract:

Urban waterfront redevelopment is a global phenomenon, and thousands of schemes are being carried out in large metropoles, medium-sized cities, and even small towns all over the world. This opportunity brings the city back to the river and rediscovers waterfront revitalization as a unique opportunity for cities to reconnect with their unique historical and cultural image. The redevelopment can encourage economic investments, serve as a social platform for public interactions, and allow dwellers to express their rights to the city. Many coastal cities have effectively transformed the perception of their waterfront area through years of redevelopment initiatives, having been neglected for over a century. However, this process has never been easy due to the particular complexity of the space: local culture, history, and market-led development. Moreover, municipal governments work out the balance of diverse stakeholder interests, especially when repurposing high-profile and redundant spaces that form the core of urban economic investment while also accommodating the present and future generations in sustainable environments. Urban critics consistently grapple with the effectiveness of the planning process on the new waterfront, where public spaces are criticized for presenting a lack of opportunities for actual public participation due to privatization and authoritarian governance while no longer doing what they are ‘meant to’: all arise in reaction to the perceived failure of these places to meet expectations. The planning culture and the decision-making context determine the level of public involvement in the planning process; however, in the context of competing market forces and commercial interests dominating cities’ planning agendas, planning for public space in urban waterfronts tends to be for economic gain rather than supporting residents' social needs. These newly pleasing settings satisfied the cluster of middle-class individuals, new communities living along the waterfront, and tourists. A trend of public participatory exclusion is primarily determined by the nature of the planning being undertaken and the decision-making context in which it is embedded. Starting from this context, the research investigates the influence of planning on waterfront regeneration and the role of participation in this process. The research aims to look specifically at the characteristics of the planning process of the waterfront in Da Nang and its impact on the regeneration of the place to regain the city’s historical value and enhance local cultural identity and images. Vietnam runs a top-down planning system where municipal governments have control or power over what happens in their city following the approved planning from the national government. The community has never been excluded from development; however, their participation is still marginalized. In order to ensure social equality, a proposed approach called "bottom-up" should be considered and implemented alongside the traditional "top-down" process and provide a balance of perspectives, as it allows for the voices of the most underprivileged social group involved in a planning project to be heard, rather than ignored. The research provides new insights into the influence of the planning process on the waterfront regeneration in the context of Da Nang.

Keywords: planning process, public participation, top-down planning, waterfront regeneration

Procedia PDF Downloads 41
185 Modeling Diel Trends of Dissolved Oxygen for Estimating the Metabolism in Pristine Streams in the Brazilian Cerrado

Authors: Wesley A. Saltarelli, Nicolas R. Finkler, Adriana C. P. Miwa, Maria C. Calijuri, Davi G. F. Cunha

Abstract:

The metabolism of the streams is an indicator of ecosystem disturbance due to the influences of the catchment on the structure of the water bodies. The study of the respiration and photosynthesis allows the estimation of energy fluxes through the food webs and the analysis of the autotrophic and heterotrophic processes. We aimed at evaluating the metabolism in streams located in the Brazilian savannah, Cerrado (Sao Carlos, SP), by determining and modeling the daily changes of dissolved oxygen (DO) in the water during one year. Three water bodies with minimal anthropogenic interference in their surroundings were selected, Espraiado (ES), Broa (BR) and Canchim (CA). Every two months, water temperature, pH and conductivity are measured with a multiparameter probe. Nitrogen and phosphorus forms are determined according to standard methods. Also, canopy cover percentages are estimated in situ with a spherical densitometer. Stream flows are quantified through the conservative tracer (NaCl) method. For the metabolism study, DO (PME-MiniDOT) and light (Odyssey Photosynthetic Active Radiation) sensors log data for at least three consecutive days every ten minutes. The reaeration coefficient (k2) is estimated through the method of the tracer gas (SF6). Finally, we model the variations in DO concentrations and calculate the rates of gross and net primary production (GPP and NPP) and respiration based on the one station method described in the literature. Three sampling were carried out in October and December 2015 and February 2016 (the next will be in April, June and August 2016). The results from the first two periods are already available. The mean water temperatures in the streams were 20.0 +/- 0.8C (Oct) and 20.7 +/- 0.5C (Dec). In general, electrical conductivity values were low (ES: 20.5 +/- 3.5uS/cm; BR 5.5 +/- 0.7uS/cm; CA 33 +/- 1.4 uS/cm). The mean pH values were 5.0 (BR), 5.7 (ES) and 6.4 (CA). The mean concentrations of total phosphorus were 8.0ug/L (BR), 66.6ug/L (ES) and 51.5ug/L (CA), whereas soluble reactive phosphorus concentrations were always below 21.0ug/L. The BR stream had the lowest concentration of total nitrogen (0.55mg/L) as compared to CA (0.77mg/L) and ES (1.57mg/L). The average discharges were 8.8 +/- 6L/s (ES), 11.4 +/- 3L/s and CA 2.4 +/- 0.5L/s. The average percentages of canopy cover were 72% (ES), 75% (BR) and 79% (CA). Significant daily changes were observed in the DO concentrations, reflecting predominantly heterotrophic conditions (respiration exceeded the gross primary production, with negative net primary production). The GPP varied from 0-0.4g/m2.d (in Oct and Dec) and the R varied from 0.9-22.7g/m2.d (Oct) and from 0.9-7g/m2.d (Dec). The predominance of heterotrophic conditions suggests increased vulnerability of the ecosystems to artificial inputs of organic matter that would demand oxygen. The investigation of the metabolism in the pristine streams can help defining natural reference conditions of trophic state.

Keywords: low-order streams, metabolism, net primary production, trophic state

Procedia PDF Downloads 233
184 Identification of ω-3 Fatty Acids Using GC-MS Analysis in Extruded Spelt Product

Authors: Jelena Filipovic, Marija Bodroza-Solarov, Milenko Kosutic, Nebojsa Novkovic, Vladimir Filipovic, Vesna Vucurovic

Abstract:

Spelt wheat is suitable raw material for extruded products such as pasta, special types of bread and other products of altered nutritional characteristics compared to conventional wheat products. During the process of extrusion, spelt is exposed to high temperature and high pressure, during which raw material is also mechanically treated by shear forces. Spelt wheat is growing without the use of pesticides in harsh ecological conditions and in marginal areas of cultivation. So it can be used for organic and health safe food. Pasta is the most popular foodstuff; its consumption has been observed to rise. Pasta quality depends mainly on the properties of flour raw materials, especially protein content and its quality but starch properties are of a lesser importance. Pasta is characterized by significant amounts of complex carbohydrates, low sodium, total fat fiber, minerals, and essential fatty acids and its nutritional value can be improved with additional functional component. Over the past few decades, wheat pasta has been successfully formulated using different ingredients in pasta to cater health-conscious consumers who prefer having a product rich in protein, healthy lipids and other health benefits. Flaxseed flour is used in the production of bakery and pasta products that have properties of functional foods. However, it should be taken into account that food products retain the technological and sensory quality despite the added flax seed. Flaxseed contains important substances in its composition such as vitamins and minerals elements, and it is also an excellent source of fiber and one of the best sources of ω-3 fatty acids and lignin. In this paper, the quality and identification of spelt extruded product with the addition of flax seed, which is positively contributing to the nutritive and technology changes of the product, is investigated. ω-3 fatty acids are polyunsaturated essential fatty acids, and they must be taken with food to satisfy the recommended daily intake. Flaxseed flour is added in the quantity of 10/100 g of sample and 20/100 g of sample on farina. It is shown that the presence of ω-3 fatty acids in pasta can be clearly distinguished from other fatty acids by gas chromatography with mass spectrometry. Addition of flax seed flour influence chemical content of pasta. The addition of flax seed flour in spelt pasta in the quantities of 20g/100 g significantly increases the share of ω-3 fatty acids, which results in improved ratio of ω-6/ω-3 1:2.4 and completely satisfies minimum daily needs of ω-3 essential fatty acids (3.8 g/100 g) recommended by FDA. Flex flour influenced the pasta quality by increasing of hardness (2377.8 ± 13.3; 2874.5 ± 7.4; 3076.3 ± 5.9) and work of shear (102.6 ± 11.4; 150.8 ± 11.3; 165.0 ± 18.9) and increasing of adhesiveness (11.8 ± 20.6; 9.,98 ± 0.12; 7.1 ± 12.5) of the final product. Presented data point at good indicators of technological quality of spelt pasta with flax seed and that GC-MS analysis can be used in the quality control for flax seed identification. Acknowledgment: The research was financed by the Ministry of Education and Science of the Republic of Serbia (Project No. III 46005).

Keywords: GC-MS analysis, ω-3 fatty acids, flex seed, spelt wheat, daily needs

Procedia PDF Downloads 133
183 Evaluation of Natural Frequency of Single and Grouped Helical Piles

Authors: Maryam Shahbazi, Amy B. Cerato

Abstract:

The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.

Keywords: helical pile, natural frequency, pile group, shake table, stiffness

Procedia PDF Downloads 110