Search results for: artificial stock market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5903

Search results for: artificial stock market

3053 Modeling Visual Memorability Assessment with Autoencoders Reveals Characteristics of Memorable Images

Authors: Elham Bagheri, Yalda Mohsenzadeh

Abstract:

Image memorability refers to the phenomenon where certain images are more likely to be remembered by humans than others. It is a quantifiable and intrinsic attribute of an image. Understanding how visual perception and memory interact is important in both cognitive science and artificial intelligence. It reveals the complex processes that support human cognition and helps to improve machine learning algorithms by mimicking the brain's efficient data processing and storage mechanisms. To explore the computational underpinnings of image memorability, this study examines the relationship between an image's reconstruction error, distinctiveness in latent space, and its memorability score. A trained autoencoder is used to replicate human-like memorability assessment inspired by the visual memory game employed in memorability estimations. This study leverages a VGG-based autoencoder that is pre-trained on the vast ImageNet dataset, enabling it to recognize patterns and features that are common to a wide and diverse range of images. An empirical analysis is conducted using the MemCat dataset, which includes 10,000 images from five broad categories: animals, sports, food, landscapes, and vehicles, along with their corresponding memorability scores. The memorability score assigned to each image represents the probability of that image being remembered by participants after a single exposure. The autoencoder is finetuned for one epoch with a batch size of one, attempting to create a scenario similar to human memorability experiments where memorability is quantified by the likelihood of an image being remembered after being seen only once. The reconstruction error, which is quantified as the difference between the original and reconstructed images, serves as a measure of how well the autoencoder has learned to represent the data. The reconstruction error of each image, the error reduction, and its distinctiveness in latent space are calculated and correlated with the memorability score. Distinctiveness is measured as the Euclidean distance between each image's latent representation and its nearest neighbor within the autoencoder's latent space. Different structural and perceptual loss functions are considered to quantify the reconstruction error. The results indicate that there is a strong correlation between the reconstruction error and the distinctiveness of images and their memorability scores. This suggests that images with more unique distinct features that challenge the autoencoder's compressive capacities are inherently more memorable. There is also a negative correlation between the reduction in reconstruction error compared to the autoencoder pre-trained on ImageNet, which suggests that highly memorable images are harder to reconstruct, probably due to having features that are more difficult to learn by the autoencoder. These insights suggest a new pathway for evaluating image memorability, which could potentially impact industries reliant on visual content and mark a step forward in merging the fields of artificial intelligence and cognitive science. The current research opens avenues for utilizing neural representations as instruments for understanding and predicting visual memory.

Keywords: autoencoder, computational vision, image memorability, image reconstruction, memory retention, reconstruction error, visual perception

Procedia PDF Downloads 91
3052 Consumer Complicity toward Luxury in Developing Countries

Authors: Marisa Hakim

Abstract:

After all, collectivism moderate is one of the biggest issues that drive complicit behavior toward luxury in Indonesia and Thailand. The nature of collectivism that we find on this research would probably break the problems of the gap about the nature of complicit behavior. Precisely, we could probably drive to the further research about: 'Is there any pattern to describe consumer behavior toward counterfeit luxury goods among market in developing countries? Furthermore, is there any possibility to manipulate that pattern and bring the new concept of local/traditional luxury teste toward consumers in developing countries?'

Keywords: complicity, consumer complicity, counterfeit, consumer behavior, luxury goods, marketing, Indonesia, Thailand

Procedia PDF Downloads 269
3051 Some Aspects of Improving Service Sphere Management in Georgia

Authors: Gechbaia Badri

Abstract:

In the article, it is studied and realized the perfection issues of service sphere management in Georgia’s reality. As stated above, to transfer the country's economy onto marketing relationships, to form competitive dynamic market is dictated by the time and represents objective necessity. In the last period, the abruptly increasing of changes on science and education caused servicing sphere and producing skills, consumptions based on fields of places and changing role in a structure of the national economy. The main recourse in the new system of the economy became the intellectual capital. The economical progress is significantly determined by developing informational technologies. In the article, it is investigated the service problems of different fields of national economy and are given sentences to settle these problems.

Keywords: service management, service, paradigm, business and management engineering

Procedia PDF Downloads 417
3050 Home-Country’s Competitive Assets of the Emerging Countries' Multinational Enterprises (EMNEs)

Authors: Philippe Gugler

Abstract:

The aim of this study is to investigate how home country patterns may influence the competitiveness of EMNEs in international markets and more specifically their ability to invest abroad. The study examines the dynamic relationship between home country specific advantage and firms’ competitiveness. Are EMNEs still driven by strong country specific advantages or are EMNEs increasingly relying on their own firm specific competitiveness? EMNEs are not commonly recognized as a ‘homogeneous group’. Therefore, the approaches to these questions need to be specific while still attempting to extract some common evidence. The aim of the study is to elaborate a framework to investigate this issue in a dynamic context of international business’s strategies. The study focuses on two major research questions. The first one relates to the role of the home-base context in the internationalization process of EMNEs and more specifically the home-base assets’ influence on EMNEs competitiveness. Another question is to investigate the interactions among home-base context, recipient country context and EMNEs competitiveness. The evolution of EMNEs’ competitiveness is shaped by the evolution of the home country’s business environment. The nature of the home-based components in EMNEs’ specific advantages has changed over time due to the increased integration of emerging countries in the world market and the inherent changes related to their institutional, structural and regulatory patterns. The home country offers not only inherited assets but also a productive business environment, allowing firms to innovate, be more productive, create unique value for customers and finally, to face international competition successfully. The more sophisticated the home business environment is, the more opportunities there are for firms to developed exclusive and unique competitive assets. The international expansion of EMNEs is a fascinating but challenging issue. Among the numerous questions raised by the involvement of EMNEs in international competition is the evolving role of the home market. The purpose of this study is to examine some of the theoretical ideas and empirical evidence to allow us to deepen our understanding of the role of emerging home countries in the internationalization process of their domestic firms and more specifically in their ability to compete successfully abroad. How much do home specific assets still influence EMNEs’ foreign investment? Which home country assets provide the main competitive drivers to invest and compete abroad? How do EMNEs combine home country assets and host country assets to strengthen their competitive advantages? These questions as well as various others deserve further examination by the scientific community.

Keywords: competitiveness, emerging countries' multinational enterprises, foreign direct investments, international business

Procedia PDF Downloads 265
3049 Exploring the Contribution of Dynamic Capabilities to a Firm's Value Creation: The Role of Competitive Strategy

Authors: Mona Rashidirad, Hamid Salimian

Abstract:

Dynamic capabilities, as the most considerable capabilities of firms in the current fast-moving economy may not be sufficient for performance improvement, but their contribution to performance is undeniable. While much of the extant literature investigates the impact of dynamic capabilities on organisational performance, little attention has been devoted to understand whether and how dynamic capabilities create value. Dynamic capabilities as the mirror of competitive strategies should enable firms to search and seize new ideas, integrate and coordinate the firm’s resources and capabilities in order to create value. A careful investigation to the existing knowledge base remains us puzzled regarding the relationship among competitive strategies, dynamic capabilities and value creation. This study thus attempts to fill in this gap by empirically investigating the impact of dynamic capabilities on value creation and the mediating impact of competitive strategy on this relationship. We aim to contribute to dynamic capability view (DCV), in both theoretical and empirical senses, by exploring the impact of dynamic capabilities on firms’ value creation and whether competitive strategy can play any role in strengthening/weakening this relationship. Using a sample of 491 firms in the UK telecommunications market, the results demonstrate that dynamic sensing, learning, integrating and coordinating capabilities play a significant role in firm’s value creation, and competitive strategy mediates the impact of dynamic capabilities on value creation. Adopting DCV, this study investigates whether the value generating from dynamic capabilities depends on firms’ competitive strategy. This study argues a firm’s competitive strategy can mediate its ability to derive value from its dynamic capabilities and it explains the extent a firm’s competitive strategy may influence its value generation. The results of the dynamic capabilities-value relationships support our expectations and justify the non-financial value added of the four dynamic capability processes in a highly turbulent market, such as UK telecommunications. Our analytical findings of the relationship among dynamic capabilities, competitive strategy and value creation provide further evidence of the undeniable role of competitive strategy in deriving value from dynamic capabilities. The results reinforce the argument for the need to consider the mediating impact of organisational contextual factors, such as firm’s competitive strategy to examine how they interact with dynamic capabilities to deliver value. The findings of this study provide significant contributions to theory. Unlike some previous studies which conceptualise dynamic capabilities as a unidimensional construct, this study demonstrates the benefits of understanding the details of the link among the four types of dynamic capabilities, competitive strategy and value creation. In terms of contributions to managerial practices, this research draws attention to the importance of competitive strategy in conjunction with development and deployment of dynamic capabilities to create value. Managers are now equipped with solid empirical evidence which explains why DCV has become essential to firms in today’s business world.

Keywords: dynamic capabilities, resource based theory, value creation, competitive strategy

Procedia PDF Downloads 241
3048 Modelling Urban Rigidity and Elasticity Growth Boundaries: A Spatial Constraints-Suitability Based Perspective

Authors: Pengcheng Xiang Jr., Xueqing Sun, Dong Ngoduy

Abstract:

In the context of rapid urbanization, urban sprawl has brought about extensive negative impacts on ecosystems and the environment, resulting in a gradual shift from "incremental growth" to ‘stock growth’ in cities. A detailed urban growth boundary is a prerequisite for urban renewal and management. This study takes Shenyang City, China, as the study area and evaluates the spatial distribution of urban spatial suitability in the study area from the perspective of spatial constraints-suitability using multi-source data and simulates the future rigid and elastic growth boundaries of the city in the study area using the CA-Markov model. The results show that (1) the suitable construction area and moderate construction area in the study area account for 8.76% and 19.01% of the total area, respectively, and the suitable construction area and moderate construction area show a trend of distribution from the urban centre to the periphery, mainly in Shenhe District, the southern part of Heping District, the western part of Dongling District, and the central part of Dadong District; (2) the area of expansion of construction land in the study area in the period of 2023-2030 is 153274.6977hm2, accounting for 44.39% of the total area of the study area; (3) the rigid boundary of the study area occupies an area of 153274.6977 hm2, accounting for 44.39% of the total area of the study area, and the elastic boundary of the study area contains an area of 75362.61 hm2, accounting for 21.69% of the total area of the study area. The study constructed a method for urban growth boundary delineation, which helps to apply remote sensing to guide future urban spatial growth management and urban renewal.

Keywords: urban growth boundary, spatial constraints, spatial suitability, urban sprawl

Procedia PDF Downloads 32
3047 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 42
3046 Using Photogrammetry to Survey the Côa Valley Iron Age Rock Art Motifs: Vermelhosa Panel 3 Case Study

Authors: Natália Botica, Luís Luís, Paulo Bernardes

Abstract:

The Côa Valley, listed World Heritage since 1998, presents more than 1300 open-air engraved rock panels. The Archaeological Park of the Côa Valley recorded the rock art motifs, testing various techniques based on direct tracing processes on the rock, using natural and artificial lighting. In this work, integrated in the "Open Access Rock Art Repository" (RARAA) project, we present the methodology adopted for the vectorial drawing of the rock art motifs based on orthophotos taken from the photogrammetric survey and 3D models of the rocks. We also present the information system designed to integrate the vector drawing and the characterization data of the motifs, as well as the open access sharing, in order to promote their reuse in multiple areas. The 3D models themselves constitute a very detailed record, ensuring the digital preservation of the rock and iconography. Thus, even if a rock or motif disappears, it can continue to be studied and even recreated.

Keywords: rock art, archaeology, iron age, 3D models

Procedia PDF Downloads 83
3045 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 137
3044 Determination of Lead , Cadmium, Nickel and Zinc in Some Green Tea Samples Collected from Libyan Markets

Authors: Jamal A. Mayouf, Hashim Salih Al Bayati, Eltayeb M. Emmima

Abstract:

Green tea is one of the most common drinks in all cities of Libyan. Heavy metal contents such as cadmium (Cd), lead (Pb), nickel (Ni) and zinc (Zn) were determined in four green tea samples collected from Libyan market and their tea infusions by using atomic emission spectrophotometry after acid digestion. The results obtained indicate that the concentrations of Cd, Pb, Ni and Zn in tea infusions samples ranged from 0.07-0.12, 0.19-0.28, 0.09-0.15, 0.18-0.43 mg/l after boiling for 5 min., 0.06-0.08, 0.18-0.23, 0.08-0.14, 0.17-0.27 mg/l after boiling for 10 min., 0.07-0.11, 0.18-0.24, 0.08-0.14, 0.21-0.34 mg/l after boiling for 15 min. respectively. On the other hand, the concentrations of the same element mentioned above obtained in tea leaves ranged from 6.0-18.0, 36.0-42.0, 16.0-20.0, 44.0-132.0 mg/kg respectively. The concentrations of Cd, Pb, Ni and Zn in tea leaves samples were higher than Prevention of Food Adulteration (PFA) limit and World Health Organization(WHO) permissible limit.

Keywords: boiling, infusion, metals, tea

Procedia PDF Downloads 398
3043 Social Networks as a Tool for Sports Marketing

Authors: Márcia Aparecida Teixeira

Abstract:

Sports, in particular football, boosts considerably the financial market of a certain locality, be it city or even a country. The financial transactions involving this medium stand out from other existing businesses, such as small industries. Strategically, social networks are inserted in this sporting environment, in order to promote and attract new fans of this modality. The present study analyzes the use of social networks in Sports Marketing with a focus on football. For the object of this study, it was chosen a specific club, the Club Atlético Mineiro, a Brazilian club of great national notoriety. The social networks on focus will be: Facebook, Twitter, and Instagram. It will be analyzed the content and frequency of the posts, reception of the target public in relation to the content made available and its feedback.

Keywords: social network, sport, strategy, marketing

Procedia PDF Downloads 388
3042 The Response of the Accumulated Biomass and the Efficiency of Water Use in Five Varieties of Durum Wheat Lines under Water Stress

Authors: Fellah Sihem

Abstract:

The optimal use of soil moisture by culture, is related to the leaf area index, which stood in the cycle and its modulation according to the prevailing stress intensity. For a given stock of water in the soil, cultivar adapted and saving water is one that is no luxury consumption during the preanthesis. It modulates the leaf area index to regulate sweating in the degree of its water supply. In plants water saving, avoidance of dehydration is related to the reduction of water loss by cuticular and stomatal pathways. Muchow and Sinclair reported that the test of relative water content (TRE) is considered the best indicator of leaf water status. The search for indicators of the ability of the plant to make good use of the water, under water stress is a prerequisite for progress in improving performance under water stress. This experiment aims to characterize a set of durum wheat varieties, tested jars and vegetation under different levels of water stress to the surface of the leaf, relative water content, cell integrity, the accumulated biomass and efficiency of water use. The experiment was conducted during the 2005/2006 academic year, at the Agricultural Research Station of the Field Crop Institute of Setif, under semi-controlled conditions. Five genotypes of durum wheat (Triticum durum Desf) were evaluated for their ability to tolerate moderate and severe water stress. The results showed that geno types respond differently to water stress. Dry matter accumulation and growth rate varied among geno types and were significantly reduced. At severe water stress biomass accumulated by Boussalam was the least affected.

Keywords: water stress, triticum durum, biomass, cell membrane integrity, relative water content

Procedia PDF Downloads 469
3041 The Mechanical Strength and Durability of High Performance Concrete Using Local Materials

Authors: I. Guemidi, Y. Abdelaziz, T. Rikioui

Abstract:

In this work, an experimental investigation was carried out to evaluate the mechanical and durability properties of high performance concretes (HPC) containing local southwest Algerian materials. The mechanical properties were assessed from the compressive strength and the flexural strength, whilst the durability characteristics were investigated in terms of sulphate attack. The results obtained allow us to conclude that it is possible to make a high performance concrete (HPC) based on existing materials in the local market, if these are carefully selected and properly mixed in such away to optimize grain size distribution.

Keywords: durability, high performance concrete, high strength, local materials, Southwest Algerian, sulphate attack

Procedia PDF Downloads 390
3040 Smart Multifunctionalized and Responsive Polymersomes as Targeted and Selective Recognition Systems

Authors: Silvia Moreno, Banu Iyisan, Hannes Gumz, Brigitte Voit, Dietmar Appelhans

Abstract:

Polymersomes are materials which are considered as artificial counterparts of natural vesicles. The nanotechnology of such smart nanovesicles is very useful to enhance the efficiency of many therapeutic and diagnostic drugs. Those compounds show a higher stability, flexibility, and mechanical strength to the membrane compared to natural liposomes. In addition, they can be designed in detail, the permeability of the membrane can be controlled by different stimuli, and the surface can be functionalized with different biological molecules to facilitate monitoring and target. For this purpose, this study demonstrates the formation of multifunctional and pH sensitive polymersomes and their functionalization with different reactive groups or biomolecules inside and outside of polymersomes´ membrane providing by crossing the membrane and docking/undocking processes for biomedical applications. Overall, they are highly versatile and thus present new opportunities for the design of targeted and selective recognition systems, for example, in mimicking cell functions and in synthetic biology.

Keywords: multifunctionalized, pH stimulus, controllable release, cellular uptake

Procedia PDF Downloads 320
3039 A Survey of Response Generation of Dialogue Systems

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

An essential task in the field of artificial intelligence is to allow computers to interact with people through natural language. Therefore, researches such as virtual assistants and dialogue systems have received widespread attention from industry and academia. The response generation plays a crucial role in dialogue systems, so to push forward the research on this topic, this paper surveys various methods for response generation. We sort out these methods into three categories. First one includes finite state machine methods, framework methods, and instance methods. The second contains full-text indexing methods, ontology methods, vast knowledge base method, and some other methods. The third covers retrieval methods and generative methods. We also discuss some hybrid methods based knowledge and deep learning. We compare their disadvantages and advantages and point out in which ways these studies can be improved further. Our discussion covers some studies published in leading conferences such as IJCAI and AAAI in recent years.

Keywords: deep learning, generative, knowledge, response generation, retrieval

Procedia PDF Downloads 134
3038 Development of a Bioprocess Technology for the Production of Vibrio midae, a Probiotic for Use in Abalone Aquaculture

Authors: Ghaneshree Moonsamy, Nodumo N. Zulu, Rajesh Lalloo, Suren Singh, Santosh O. Ramchuran

Abstract:

The abalone industry of South Africa is under severe pressure due to illegal harvesting and poaching of this seafood delicacy. These abalones are harvested excessively; as a result, these animals do not have a chance to replace themselves in their habitats, ensuing in a drastic decrease in natural stocks of abalone. Abalone has an extremely slow growth rate and takes approximately four years to reach a size that is market acceptable; therefore, it was imperative to investigate methods to boost the overall growth rate and immunity of the animal. The University of Cape Town (UCT) began to research, which resulted in the isolation of two microorganisms, a yeast isolate Debaryomyces hansenii and a bacterial isolate Vibrio midae, from the gut of the abalone and characterised them for their probiotic abilities. This work resulted in an internationally competitive concept technology that was patented. The next stage of research was to develop a suitable bioprocess to enable commercial production. Numerous steps were taken to develop an efficient production process for V. midae, one of the isolates found by UCT. The initial stages of research involved the development of a stable and robust inoculum and the optimization of physiological growth parameters such as temperature and pH. A range of temperature and pH conditions were evaluated, and data obtained revealed an optimum growth temperature of 30ᵒC and a pH of 6.5. Once these critical growth parameters were established further media optimization studies were performed. Corn steep liquor (CSL) and high test molasses (HTM) were selected as suitable alternatives to more expensive, conventionally used growth medium additives. The optimization of CSL (6.4 g.l⁻¹) and HTM (24 g.l⁻¹) concentrations in the growth medium resulted in a 180% increase in cell concentration, a 5716-fold increase in cell productivity and a 97.2% decrease in the material cost of production in comparison to conventional growth conditions and parameters used at the onset of the study. In addition, a stable market-ready liquid probiotic product, encompassing the viable but not culturable (VBNC) state of Vibrio midae cells, was developed during the downstream processing aspect of the study. The demonstration of this technology at a full manufacturing scale has further enhanced the attractiveness and commercial feasibility of this production process.

Keywords: probiotics, abalone aquaculture, bioprocess technology, manufacturing scale technology development

Procedia PDF Downloads 152
3037 Nonparametric Estimation of Risk-Neutral Densities via Empirical Esscher Transform

Authors: Manoel Pereira, Alvaro Veiga, Camila Epprecht, Renato Costa

Abstract:

This paper introduces an empirical version of the Esscher transform for risk-neutral option pricing. Traditional parametric methods require the formulation of an explicit risk-neutral model and are operational only for a few probability distributions for the returns of the underlying. In our proposal, we make only mild assumptions on the pricing kernel and there is no need for the formulation of the risk-neutral model for the returns. First, we simulate sample paths for the returns under the physical distribution. Then, based on the empirical Esscher transform, the sample is reweighted, giving rise to a risk-neutralized sample from which derivative prices can be obtained by a weighted sum of the options pay-offs in each path. We compare our proposal with some traditional parametric pricing methods in four experiments with artificial and real data.

Keywords: esscher transform, generalized autoregressive Conditional Heteroscedastic (GARCH), nonparametric option pricing

Procedia PDF Downloads 489
3036 Sukuk Issuance and Its Regulatory Framework in Saudi Arabia

Authors: Ali Alshamrani

Abstract:

This article aims to give a comprehensive and critical review of sukuk issuance in Saudi Arabia, and the extent to which the issuance of sukuk in Saudi Arabia is consistent with Shariah requirements. The article is divided into two sections. Accordingly, the first section of this article begins with an examination of sukuk in general, and includes the concept of sukuk, the basic principles of sukuk, common types of sukuk, and a critical analysis of the most important differences between sukuk and conventional bonds. The second section gives a critical analysis of how sukuk work in Saudi Arabia, offering the regulatory framework of the issuance of sukuk in the KSA, and the legal challenges from Shariah point of view, and provide recommendations to overcome these challenges.

Keywords: sukuk issuance, Shariah, Saudi Arabia, capital market authority

Procedia PDF Downloads 472
3035 Predicting National Football League (NFL) Match with Score-Based System

Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor

Abstract:

This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.

Keywords: game prediction, NFL, football, artificial neural network

Procedia PDF Downloads 84
3034 A Computer-Aided System for Detection and Classification of Liver Cirrhosis

Authors: Abdel Hadi N. Ebraheim, Eman Azomi, Nefisa A. Fahmy

Abstract:

This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI).

Keywords: liver cirrhosis, artificial neural network, support vector machine, multi-layer perceptron, classification, accuracy

Procedia PDF Downloads 461
3033 Identifying Confirmed Resemblances in Problem-Solving Engineering, Both in the Past and Present

Authors: Colin Schmidt, Adrien Lecossier, Pascal Crubleau, Philippe Blanchard, Simon Richir

Abstract:

Introduction:The widespread availability of artificial intelligence, exemplified by Generative Pre-trained Transformers (GPT) relying on large language models (LLM), has caused a seismic shift in the realm of knowledge. Everyone now has the capacity to swiftly learn how these models can either serve them well or not. Today, conversational AI like ChatGPT is grounded in neural transformer models, a significant advance in natural language processing facilitated by the emergence of renowned LLMs constructed using neural transformer architecture. Inventiveness of an LLM : OpenAI's GPT-3 stands as a premier LLM, capable of handling a broad spectrum of natural language processing tasks without requiring fine-tuning, reliably producing text that reads as if authored by humans. However, even with an understanding of how LLMs respond to questions asked, there may be lurking behind OpenAI’s seemingly endless responses an inventive model yet to be uncovered. There may be some unforeseen reasoning emerging from the interconnection of neural networks here. Just as a Soviet researcher in the 1940s questioned the existence of Common factors in inventions, enabling an Under standing of how and according to what principles humans create them, it is equally legitimate today to explore whether solutions provided by LLMs to complex problems also share common denominators. Theory of Inventive Problem Solving (TRIZ) : We will revisit some fundamentals of TRIZ and how Genrich ALTSHULLER was inspired by the idea that inventions and innovations are essential means to solve societal problems. It's crucial to note that traditional problem-solving methods often fall short in discovering innovative solutions. The design team is frequently hampered by psychological barriers stemming from confinement within a highly specialized knowledge domain that is difficult to question. We presume ChatGPT Utilizes TRIZ 40. Hence, the objective of this research is to decipher the inventive model of LLMs, particularly that of ChatGPT, through a comparative study. This will enhance the efficiency of sustainable innovation processes and shed light on how the construction of a solution to a complex problem was devised. Description of the Experimental Protocol : To confirm or reject our main hypothesis that is to determine whether ChatGPT uses TRIZ, we will follow a stringent protocol that we will detail, drawing on insights from a panel of two TRIZ experts. Conclusion and Future Directions : In this endeavor, we sought to comprehend how an LLM like GPT addresses complex challenges. Our goal was to analyze the inventive model of responses provided by an LLM, specifically ChatGPT, by comparing it to an existing standard model: TRIZ 40. Of course, problem solving is our main focus in our endeavours.

Keywords: artificial intelligence, Triz, ChatGPT, inventiveness, problem-solving

Procedia PDF Downloads 74
3032 Deep Neural Network Approach for Navigation of Autonomous Vehicles

Authors: Mayank Raj, V. G. Narendra

Abstract:

Ever since the DARPA challenge on autonomous vehicles in 2005, there has been a lot of buzz about ‘Autonomous Vehicles’ amongst the major tech giants such as Google, Uber, and Tesla. Numerous approaches have been adopted to solve this problem, which can have a long-lasting impact on mankind. In this paper, we have used Deep Learning techniques and TensorFlow framework with the goal of building a neural network model to predict (speed, acceleration, steering angle, and brake) features needed for navigation of autonomous vehicles. The Deep Neural Network has been trained on images and sensor data obtained from the comma.ai dataset. A heatmap was used to check for correlation among the features, and finally, four important features were selected. This was a multivariate regression problem. The final model had five convolutional layers, followed by five dense layers. Finally, the calculated values were tested against the labeled data, where the mean squared error was used as a performance metric.

Keywords: autonomous vehicles, deep learning, computer vision, artificial intelligence

Procedia PDF Downloads 158
3031 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 73
3030 Learning Environments in the Early Years: A Case Study of an Early Childhood Centre in Australia

Authors: Mingxi Xiao

Abstract:

Children’s experiences in the early years build and shape the brain. The early years learning environment plays a significantly important role in children’s development. A well-constructed environment will facilitate children’s physical and mental well-being. This case study used an early learning centre in Australia called SDN Hurstville as an example, describing the learning environment in the centre, as well as analyzing the functions of the affordances. In addition, this report talks about the sustainability of learning in the centre, and how the environment supports cultural diversity and indigenous learning. The early years for children are significant. Different elements in the early childhood centre should work together to help children develop better. This case study found that the natural environment and the artificial environment are both critical to children; only when they work together can children have better development in physical and mental well-being and have a sense of belonging when playing and learning in the centre.

Keywords: early childhood center, early childhood education, learning environment, Australia

Procedia PDF Downloads 242
3029 A Hybrid Distributed Algorithm for Multi-Objective Dynamic Flexible Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid distributed algorithm has been suggested for multi-objective dynamic flexible job shop scheduling problem. The proposed algorithm is high level, in which several algorithms search the space on different machines simultaneously also it is a hybrid algorithm that takes advantages of the artificial intelligence, evolutionary and optimization methods. Distribution is done at different levels and new approaches are used for design of the algorithm. Apache spark and Hadoop frameworks have been used for the distribution of the algorithm. The Pareto optimality approach is used for solving the multi-objective benchmarks. The suggested algorithm that is able to solve large-size problems in short times has been compared with the successful algorithms of the literature. The results prove high speed and efficiency of the algorithm.

Keywords: distributed algorithms, apache-spark, Hadoop, flexible dynamic job shop scheduling, multi-objective optimization

Procedia PDF Downloads 354
3028 Training as a Service for Electronic Warfare

Authors: Toan Vo

Abstract:

Electronic attacks, illegal drones, interference, and jamming are no longer capabilities reserved for a state-sponsored, near-peer adversary. The proliferation of jammers on auction websites has lowered the price of entry for electronics hobbyists and nefarious actors. To enable local authorities and enforcement bodies to keep up with these challenges, this paper proposes a training as a service model to quickly and economically train and equip police departments and local law enforcement agencies. Using the U.S Department of Defense’s investment in Electronic Warfare as a guideline, a large number of personnel can be trained on effective spectrum monitoring techniques using commercial equipment readily available on the market. Finally, this paper will examine the economic benefits to the test and measurement industry if the TaaS model is applied.

Keywords: training, electronic warfare, economics, law enforcement

Procedia PDF Downloads 103
3027 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants

Authors: Coriolano Salvini

Abstract:

The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis

Procedia PDF Downloads 214
3026 Numerical Investigation of Incompressible Turbulent Flows by Method of Characteristics

Authors: Ali Atashbar Orang, Carlo Massimo Casciola

Abstract:

A novel numerical approach for the steady incompressible turbulent flows is presented in this paper. The artificial compressibility method (ACM) is applied to the Reynolds Averaged Navier-Stokes (RANS) equations. A new Characteristic-Based Turbulent (CBT) scheme is developed for the convective fluxes. The well-known Spalart–Allmaras turbulence model is employed to check the effectiveness of this new scheme. Comparing the proposed scheme with previous studies, it is found that the present CBT scheme demonstrates accurate results, high stability and faster convergence. In addition, the local time stepping and implicit residual smoothing are applied as the convergence acceleration techniques. The turbulent flows past a backward facing step, circular cylinder, and NACA0012 hydrofoil are studied as benchmarks. Results compare favorably with those of other available schemes.

Keywords: incompressible turbulent flow, method of characteristics, finite volume, Spalart–Allmaras turbulence model

Procedia PDF Downloads 412
3025 Strategic Management of a Geoscience Education and Training Program

Authors: Lee Ock-Sun

Abstract:

The effective development of a geoscience education and training program takes account of the rapidly changing environment in the geoscience market, includes information about resource-rich countries which have international education demands. In this paper, we introduce the geoscience program run bythe International School for Geoscience Resources at the Korea Institute of Geoscience and Mineral Resources (IS-Geo of KIGAM),and show its remarkable performance. To further effective geoscience program planning and operation, we present recommendations for strategic management for customer-oriented operation with a more favorable program format and advanced training aids. Above all, the IS-Geo of KIGAM should continue improve through‘plan-do-see-feedback’activities based on the recommendations.

Keywords: demand survey, geoscience program, program performance, strategic management

Procedia PDF Downloads 444
3024 Study on the Evaluation and Utilization of Space Renewal Potential under Bridge in Chongqing

Authors: Qin Xvelian

Abstract:

organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability. To provide feasible theoretical basis and scientific decision support for the use of under bridge space in the future.

Keywords: high density urban area, potential evaluation, space under bridge, updated using

Procedia PDF Downloads 67