Search results for: production control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16687

Search results for: production control

13867 Biodiesel Production and Heavy Metal Removal by Aspergillus fumigatus sp.

Authors: Ahmed M. Haddad, Hadeel S. El-Shaal, Gadallah M. Abu-Elreesh

Abstract:

Some of filamentous fungi can be used for biodiesel production as they are able to accumulate high amounts of intracellular lipids when grown at stress conditions. Aspergillus fumigatus sp. was isolated from Nile delta soil in Egypt. The fungus was primarily screened for its capacity to accumulate lipids using Nile red staining assay. The fungus could accumulate more than 20% of its biomass as lipids when grown at optimized minimal medium. After lipid extraction, we could use fungal cell debris to remove some heavy metals from contaminated waste water. The fungal cell debris could remove Cd, Cr, and Zn with absorption efficiency of 73%, 83.43%, and 69.39% respectively. In conclusion, the Aspergillus fumigatus isolate may be considered as a promising biodiesel producer, and its biomass waste can be further used for bioremediation of wastewater contaminated with heavy metals.

Keywords: biodiesel, bioremediation, fungi, heavy metals, lipids, oleaginous

Procedia PDF Downloads 209
13866 Properties of Biodiesel Produced by Enzymatic Transesterification of Lipids Extracted from Microalgae in Supercritical Carbon Dioxide Medium

Authors: Hanifa Taher, Sulaiman Al-Zuhair, Ali H. Al-Marzouqi, Yousef Haik, Mohammed Farid

Abstract:

Biodiesel, as an alternative renewable fuel, has been receiving increasing attention due to the limited supply of fossil fuels and the increasing need for energy. Microalgae is a promising source for lipids, which can be converted to biodiesel. The biodiesel production from microalgae lipids using lipase catalyzed reaction in supercritical CO2 medium has several advantages over conventional production processes. However, identifying the optimum microalgae lipid extraction and transesterification conditions is still a challenge. In this study, the lipids extracted from Scenedesmus sp. and their enzymatic transesterification using supercritical carbon dioxide have been investigated. The effect of extraction variables (temperature, pressure and solvent flow rate) and reaction variables (enzyme loading, incubation time, methanol to lipids molar ratio and temperature) were considered. Process parameters and their effects were studied using a full factorial analysis of both. Response Surface Methodology (RSM) and was used to determine the optimum conditions for the extraction and reaction steps. For extraction, the optimum conditions were 53 °C and 500 bar, whereas for the reaction the optimum conditions were 35% enzyme loading, 4 h reaction, 9:1 molar ratio and 50 oC. At these optimum conditions, the highest biodiesel production yield was found to be 82 %. The fuel properties of the produced biodiesel, at optimum reaction condition, were determined and compared to ASTM standards. The properties were found to comply with the limits, and showed a low glycerol content, without any separation step.

Keywords: biodiesel, lipase, supercritical CO2, standards

Procedia PDF Downloads 475
13865 Development of Mechanisms of Value Creation and Risk Management Organization in the Conditions of Transformation of the Economy of Russia

Authors: Mikhail V. Khachaturyan, Inga A. Koryagina, Eugenia V. Klicheva

Abstract:

In modern conditions, scientific judgment of problems in developing mechanisms of value creation and risk management acquires special relevance. Formation of economic knowledge has resulted in the constant analysis of consumer behavior for all players from national and world markets. Effective mechanisms development of the demand analysis, crucial for consumer's characteristics of future production, and the risks connected with the development of this production are the main objectives of control systems in modern conditions. The modern period of economic development is characterized by a high level of globalization of business and rigidity of competition. At the same time, the considerable share of new products and services costs has a non-material intellectual nature. The most successful in Russia is the contemporary development of small innovative firms. Such firms, through their unique technologies and new approaches to process management, which form the basis of their intellectual capital, can show flexibility and succeed in the market. As a rule, such enterprises should have very variable structure excluding the tough scheme of submission and demanding essentially new incentives for inclusion of personnel in innovative activity. Realization of similar structures, as well as a new approach to management, can be constructed based on value-oriented management which is directed to gradual change of consciousness of personnel and formation from groups of adherents included in the solution of the general innovative tasks. At the same time, valuable changes can gradually capture not only innovative firm staff, but also the structure of its corporate partners. Introduction of new technologies is the significant factor contributing to the development of new valuable imperatives and acceleration of the changing values systems of the organization. It relates to the fact that new technologies change the internal environment of the organization in a way that the old system of values becomes inefficient in new conditions. Introduction of new technologies often demands change in the structure of employee’s interaction and training in their new principles of work. During the introduction of new technologies and the accompanying change in the value system, the structure of the management of the values of the organization is changing. This is due to the need to attract more staff to justify and consolidate the new value system and bring their view into the motivational potential of the new value system of the organization.

Keywords: value, risk, creation, problems, organization

Procedia PDF Downloads 267
13864 Vocal Training and Practice Methods: A Glimpse on the South Indian Carnatic Music

Authors: Raghavi Janaswamy, Saraswathi K. Vasudev

Abstract:

Music is one of the supreme arts of expressions, next to the speech itself. Its evolution over centuries has paved the way with a variety of training protocols and performing methods. Indian classical music is one of the most elaborate and refined systems with immense emphasis on the voice culture related to range, breath control, quality of the tone, flexibility and diction. Several exercises namely saraliswaram, jantaswaram, dhatuswaram, upper stayi swaram, alamkaras and varnams lay the required foundation to gain the voice culture and deeper understanding on the voice development and further on to the intricacies of the raga system. This article narrates a few of the Carnatic music training methods with an emphasis on the advanced practice methods for articulating the vocal skills, continuity in the voice, ability to produce gamakams, command in the multiple speeds of rendering with reasonable volume. The creativity on these exercises and their impact on the voice production are discussed. The articulation of the outlined conscious practice methods and vocal exercises bestow the optimum use of the natural human vocal system to not only enhance the signing quality but also to gain health benefits.

Keywords: Carnatic music, Saraliswaram, Varnam, vocal training

Procedia PDF Downloads 160
13863 Hydrogen Production Through Thermocatalytic Decomposition of Methane Over Biochar

Authors: Seyed Mohamad Rasool Mirkarimi, David Chiaramonti, Samir Bensaid

Abstract:

Catalytic methane decomposition (CMD, reaction 4) is a one-step process for hydrogen production where carbon in the methane molecule is sequestered in the form of stable and higher-value carbon materials. Metallic catalysts and carbon-based catalysts are two major types of catalysts utilized for the CDM process. Although carbon-based catalysts have lower activity compared to metallic ones, they are less expensive and offer high thermal stability and strong resistance to chemical impurities such as sulfur. Also, it would require less costly separation methods as some of the carbon-based catalysts may not have an active metal component in them. Since the regeneration of metallic catalysts requires burning of the C on their surfaces, which emits CO/CO2, in some cases, using carbon-based catalysts would be recommended because regeneration can be completely avoided, and the catalyst can be directly used in other processes. This work focuses on the effect of biochar as a carbon-based catalyst for the conversion of methane into hydrogen and carbon. Biochar produced from the pyrolysis of poplar wood and activated biochar are used as catalysts for this process. In order to observe the impact of carbon-based catalysts on methane conversion, methane cracking in the absence and presence of catalysts for a gas stream with different levels of methane concentration should be performed. The results of these experiments prove conversion of methane in the absence of catalysts at 900 °C is negligible, whereas in the presence of biochar and activated biochar, significant growth has been observed. Comparing the results of the tests related to using char and activated char shows the enhancement obtained in BET surface area of the catalyst through activation leads to more than 10 vol.% methane conversion.

Keywords: hydrogen production, catalytic methane decomposition, biochar, activated biochar, carbon-based catalyts

Procedia PDF Downloads 66
13862 Analysis of Probiotic Properties of Lactobacillus Acidophilus from Commercial Yoghurt

Authors: Anwar Ali Abdulla, Thekra Abdulaali Abed Al-Chaabawi, Anwar Kadhim Al-Saffar, Hussein Kadhim Al-Saffar

Abstract:

Lactic acid bacteria are very significant to human health due to the production of some antimicrobial substances and ability to inhibit pathogenic bacteria. Furthermore, the bacteria are also used as starter culture in the production of various foods. The present study was focused on isolation and characterization of Lactobacillus acidophilus from yogurt and to demonstrate some of probiotic properties of these isolates. All isolates were phenotypically characterized including studying, biochemical, effect of sodium chloride and pH during growth, carbohydrates test and characterizing the antimicrobial activity of Lactobacillus acidophilus against pathogens. The present study demonstrates that Lactobacillus acidophilus produced a bacteriocin- like inhibitory substance with a broad spectrum of antimicrobial activity directed against pathogenic indicator organism suggesting its protective value against enteric pathogens.

Keywords: lactobacillus acidophilus, bacteriocin, antimicrobial activity, probiotic

Procedia PDF Downloads 521
13861 Design Data Sorter Circuit Using Insertion Sorting Algorithm

Authors: Hoda Abugharsa

Abstract:

In this paper we propose to design a sorter circuit using insertion sorting algorithm. The circuit will be designed using Algorithmic State Machines (ASM) method. That means converting the insertion sorting flowchart into an ASM chart. Then the ASM chart will be used to design the sorter circuit and the control unit.

Keywords: insert sorting algorithm, ASM chart, sorter circuit, state machine, control unit

Procedia PDF Downloads 431
13860 The Late School of Alexandria and Its Influence on Islamic Philosophy

Authors: Hussein El-Zohary

Abstract:

This research aims at studying the late Alexandrian school of philosophy in the 6th century AD, the adaptation of its methodologies by the Islamic world, and its impact on Muslim philosophical thought. The Alexandrian school has been underestimated by many scholars who regard its production at the end of the classical age as mere interpretations of previous writings and delimit its achievement to the preservation of ancient philosophical heritage. The research reviews the leading figures of the Alexandrian school and its production of philosophical commentaries studying ancient Greek philosophy in its entirety. It also traces the transmission of its heritage to the Islamic world through direct translations into Syriac first and then into Arabic. The research highlights the impact of the Alexandrian commentaries on Muslim recognition of Plato and Aristotle as well as its philosophical teaching methodology starting with the study of Aristotle’s Categories as introductory to understand Plato’s philosophy.

Keywords: Alexandrian school of philosophy, categories, commentaries, Syriac

Procedia PDF Downloads 131
13859 Collaborative Management Approach for Logistics Flow Management of Cuban Medicine Supply Chain

Authors: Ana Julia Acevedo Urquiaga, Jose A. Acevedo Suarez, Ana Julia Urquiaga Rodriguez, Neyfe Sablon Cossio

Abstract:

Despite the progress made in logistics and supply chains fields, it is unavoidable the development of business models that use efficiently information to facilitate the integrated logistics flows management between partners. Collaborative management is an important tool for materializing the cooperation between companies, as a way to achieve the supply chain efficiency and effectiveness. The first face of this research was a comprehensive analysis of the collaborative planning on the Cuban companies. It is evident that they have difficulties in supply chains planning where production, supplies and replenishment planning are independent tasks, as well as logistics and distribution operations. Large inventories generate serious financial and organizational problems for entities, demanding increasing levels of working capital that cannot be financed. Problems were found in the efficient application of Information and Communication Technology on business management. The general objective of this work is to develop a methodology that allows the deployment of a planning and control system in a coordinated way on the medicine’s logistics system in Cuba. To achieve these objectives, several mechanisms of supply chain coordination, mathematical programming models, and other management techniques were analyzed to meet the requirements of collaborative logistics management in Cuba. One of the findings is the practical and theoretical inadequacies of the studied models to solve the current situation of the Cuban logistics systems management. To contribute to the tactical-operative management of logistics, the Collaborative Logistics Flow Management Model (CLFMM) is proposed as a tool for the balance of cycles, capacities, and inventories, always to meet the final customers’ demands in correspondence with the service level expected by these. The CLFMM has as center the supply chain planning and control system as a unique information system, which acts on the processes network. The development of the model is based on the empirical methods of analysis-synthesis and the study cases. Other finding is the demonstration of the use of a single information system to support the supply chain logistics management, allows determining the deadlines and quantities required in each process. This ensures that medications are always available to patients and there are no faults that put the population's health at risk. The simulation of planning and control with the CLFMM in medicines such as dipyrone and chlordiazepoxide, during 5 months of 2017, permitted to take measures to adjust the logistic flow, eliminate delayed processes and avoid shortages of the medicines studied. As a result, the logistics cycle efficiency can be increased to 91%, the inventory rotation would increase, and this results in a release of financial resources.

Keywords: collaborative management, medicine logistic system, supply chain planning, tactical-operative planning

Procedia PDF Downloads 161
13858 Study on the Quality of Biscuits Prepared from Wheat Flour and Cassava Flour

Authors: Ramim Tanver Rahman, Muhammad Mahbub Sobhan, M. A. Alim

Abstract:

This study reports on processing of biscuits using skinned, treated and dried cassava flour. Five samples of biscuits S2, S3, S4, S5, and S6 containing 8, 16, 24, 32, and 40% cassava flour with wheat flour and a control sample (S1) containing no cassava flour were processed. The weights of all the biscuit samples were higher than that of control biscuit. The biscuit containing cassava flour was lower width than the control biscuit. The spread ratio of biscuits with 16% cassava flour was higher than other combinations of cassava flour. No remarkable changes in moisture content, peroxide value, fatty acid value, texture, and flavor were observed up to 4 months of storage in ambient conditions (27° to 35°C). A decreasing trend in color, flavor, texture and overall acceptability was observed with the increased incorporation of cassava flour. The sample S1 (no cassava flour) secured the highest overall acceptability and sample S6 (40% cassava flour) obtained the lowest overall acceptability. It is recommended that good quality cassava flour fortified biscuits may be processed in industrial-scale substituting the wheat flour by cassava flour up to 24% levels.

Keywords: cassava flour, wheat flour, shelf life, spread ratio, storage, biscuit

Procedia PDF Downloads 354
13857 Urban Agriculture for Sustainable Cities: Using Wastewater and Urban Wetlands as Resource

Authors: Hussnain Mukhtar, Yu-Pin Lin

Abstract:

This paper deals with the concept of ecologically engineered system for sustainable agriculture production with the view of sustainable cities development. Sustainable cities offer numerous eco-services to its inhabitants, and where, among other issues, wastewater nutrients can be considered to be a valuable resource to be used for a sustainable enhancement of urban agriculture in wetlands. Existing cities can be transferred from being only consumer of food and other agriculture product into important resource conserving and sustainable generators of these products. The review provides the food production capacity through introduction of wastewater into urban wetlands, potential for nutrient recovery and ecological engineering intervention to reduce the risk of food contamination by pathogens. Finally, we discuss the potential nutrients accumulating in our cities, as an important aspect of sustainable urban development.

Keywords: ecological engineering, nutrient recovery, pathogens, urban agriculture, wetlands

Procedia PDF Downloads 242
13856 Anabasine Intoxication and Its Relation to Plant Develoment Stages

Authors: Thaís T. Valério Caetano, Lívia de Carvalho Ferreira, João Máximo De Siqueira, Carlos Alexandre Carollo, Arthur Ladeira Macedo, Vanessa C. Stein

Abstract:

Nicotiana glauca, commonly known as wild tobacco or tobacco bush, belongs to the Solanaceae family. It is native to South America but has become naturalized in various regions, including Australia, California, Africa, and the Mediterranean. N. glauca is listed in the Global Invasive Species Database (GISD) and the Invasive Species Compendium (CABI). It is known for producing pyridine alkaloids, including anabasine, which is highly toxic. Anabasine is predominantly found in the leaves and can cause severe health issues such as neuromuscular blockade, respiratory arrest, and cardiovascular problems when ingested. Mistaken identity with edible plants like spinach has resulted in food poisoning cases in Israel and Brazil. Anabasine, a minor alkaloid constituent of tobacco, may contribute to tobacco addiction by mimicking or enhancing the effects of nicotine. Therefore, it is essential to investigate the production pattern of anabasine and its relationship to the developmental stages of the plant. This study aimed to establish the relationship between the phenological plant age, cultivation place, and the increase in anabasine concentration, which can lead to human intoxication cases. In this study, N. glauca plants were collected from three different rural areas in Brazil during a year to examine leaves at various stages of development. Samples were also obtained from cultivated plants in Marilândia, Minas Gerais, Brazil, as well as from Divinópolis, Minas Gerais, Brazil, and Arraial do Cabo, Rio de Janeiro, Brazil. In vitro cultivated plants on MS medium were included in the study. The collected leaves were dried, powdered, and stored. Alkaloid extraction was performed using a methanol and water mixture, followed by liquid-liquid extraction with chloroform. The anabasine content was determined using HPLC-DAD analysis with nicotine as a standard. The results indicated that anabasine production increases with the plant's development, peaking in adult leaves during the reproduction phase and declining afterward. In vitro, plants showed similar anabasine production to young leaves. The successful adaptation of N. glauca in new environments poses a global problem, and the correlation between anabasine production and the plant's developmental stages has been understudied. The presence of substances produced by the plant can pose a risk to other species, especially when mistaken for edible plants. The findings from this study shed light on the pattern of anabasine production and its association with plant development, contributing to a better understanding of the potential risks associated with N. glauca and the importance of accurate identification.

Keywords: alkaloid production, invasive species, nicotiana glauca, plant phenology

Procedia PDF Downloads 64
13855 Azolla Pinnata as Promising Source for Animal Feed in India: An Experimental Study to Evaluate the Nutrient Enhancement Result of Feed

Authors: Roshni Raha, Karthikeyan S.

Abstract:

The world's largest livestock population resides in India. Existing strategies must be modified to increase the production of livestock and their by-products in order to meet the demands of the growing human population. Even though India leads the world in both milk production and the number of cows, average production is not very healthy and productive. This may be due to the animals' poor nutrition caused by a chronic under-availability of high-quality fodder and feed. This article explores Azolla pinnata to be a promising source to produce high-quality unconventional feed and fodder for effective livestock production and good quality breeding in India. This article is an exploratory study using a literature survey and experimentation analysis. In the realm of agri-biotechnology, azolla sp gained attention for helping farmers achieve sustainability, having minimal land requirements, and serving as a feed element that doesn't compete with human food sources. It has high methionine content, which is a good source of protein. It can be easily digested as the lignin content is low. It has high antioxidants and vitamins like beta carotene, vitamin A, and vitamin B12. Using this concept, the paper aims to investigate and develop a model of using azolla plants as a novel, high-potential feed source to combat the problems of low production and poor quality of animals in India. A representative sample of animal feed is collected where azolla is added. The sample is ground into a fine powder using mortar. PITC (phenylisothiocyanate) is added to derivatize the amino acids. The sample is analyzed using HPLC (High-Performance Liquid Chromatography) to measure the amino acids and monitor the protein content of the sample feed. The amino acid measurements from HPLC are converted to milligrams per gram of protein using the method of amino acid profiling via a set of calculations. The amino acid profile data is then obtained to validate the proximate results of nutrient enhancement of the composition of azolla in the sample. Based on the proximate composition of azolla meal, the enhancement results shown were higher compared to the standard values of normal fodder supplements indicating the feed to be much richer and denser in nutrient supply. Thus azolla fed sample proved to be a promising source for animal fodder. This would in turn lead to higher production and a good breed of animals that would help to meet the economic demands of the growing Indian population. Azolla plants have no side effects and can be considered as safe and effective to be immersed in the animal feed. One area of future research could begin with the upstream scaling strategy of azolla plants in India. This could involve introducing several bioreactor types for its commercial production. Since azolla sp has been proved in this paper as a promising source for high quality animal feed and fodder, large scale production of azolla plants will help to make the process much quicker, more efficient and easily accessible. Labor expenses will also be reduced by employing bioreactors for large-scale manufacturing.

Keywords: azolla, fodder, nutrient, protein

Procedia PDF Downloads 38
13854 Longevity of Soybean Seeds Submitted to Different Mechanized Harvesting Conditions

Authors: Rute Faria, Digo Moraes, Amanda Santos, Dione Morais, Maria Sartori

Abstract:

Seed vigor is a fundamental component for the good performance of the entire soybean production process. Seeds with mechanical damage at harvest time will be more susceptible to fungal and insect attack during storage, which will invariably reduce their vigor to the field, compromising uniformity and final stand performance. Harvesters, even the most modern ones, when not properly regulated or operated, can cause irreversible damages to the seeds, compromising even their commercialization. Therefore, the control of an efficient harvest is necessary in order to guarantee a good quality final product. In this work, the damage caused by two different harvesters (one rented, and another one) was evaluated, traveling in two speeds (4 and 8 km / h). The design was completely randomized in 2 x 2 factorial, with four replications. To evaluate the physiological quality seed germination and vigor tests were carried out over a period of six months. A multivariate analysis of Principal Components (PCA) and clustering allowed us to verify that the leased machine had better performance in the incidence of immediate damages in the seeds, but after a storage period of 6 months the vigor of these seeds reduced more than own machine evidencing that such a machine would bring more damages to the seeds.

Keywords: Glycine max (L.), cluster analysis, PCA, vigor

Procedia PDF Downloads 238
13853 Pozzolanic Properties of Synthetic Zeolites as Materials Used for the Production of Building Materials

Authors: Joanna Styczen, Wojciech Franus

Abstract:

Currently, cement production reaches 3-6 Gt per year. The production of one ton of cement is associated with the emission of 0.5 to 1 ton of carbon dioxide into the atmosphere, which means that this process is responsible for 5% of global CO2 emissions. Simply improving the cement manufacturing process is not enough. An effective solution is the use of pozzolanic materials, which can partly replace clinker and thus reduce energy consumption, and emission of pollutants and give mortars the desired characteristics, shaping their microstructure. Pozzolanic additives modify the phase composition of cement, reducing the amount of portlandite and changing the CaO/SiO2 ratio in the C-S-H phase. Zeolites are a pozzolanic additive that is not commonly used. Three types of zeolites were synthesized in work: Na-A, sodalite and ZSM-5 (these zeolites come from three different structural groups). Zeolites were obtained by hydrothermal synthesis of fly ash in an aqueous NaOH solution. Then, the pozzolanicity of the obtained materials was assessed. The pozzolanic activity of the zeolites synthesized for testing was tested by chemical methods in accordance with the ASTM C 379-65 standard. The method consisted in determining the percentage content of active ingredients (soluble silicon oxide and aluminum).in alkaline solutions, i.e. those that are potentially reactive towards calcium hydroxide. The highest amount of active silica was found in zeolite ZSM-5 - 88.15%. The amount of active Al2O3 was small - 1%. The smallest pozzolanic activity was found in the Na-A zeolite (active SiO2 - 4.4%, and active Al2O3 - 2.52). The tests carried out using the XRD, SEM, XRF and textural tests showed that the obtained zeolites are characterized by high porosity, which makes them a valuable addition to mortars.

Keywords: pozzolanic properties, hydration, zeolite, alite

Procedia PDF Downloads 65
13852 Chemical Synthesis and Microwave Sintering of SnO2-Based Nanoparticles for Varistor Films

Authors: Glauco M. M. M. Lustosa, João Paulo C. Costa, Leinig Antônio Perazolli, Maria Aparecida Zaghete

Abstract:

SnO2 has electrical conductivity due to the excess of electrons and structural defects, being its electrical behavior highly dependent on sintering temperature and chemical composition. The addition of metals modifiers into the crystalline structure can improve and controlling the behavior of some semiconductor oxides that can therefore develop different applications such as varistors (ceramic with non-ohmic behavior between current and voltage, i.e. conductive during normal operation and resistive during overvoltage). The polymeric precursor method, based on the complexation reaction between metal ion and policarboxylic acid and then polymerized with ethylene glycol, was used to obtain nanopowders ceramic. The metal immobilization reduces its segregation during the decomposition of the polyester resulting in a crystalline oxide with high chemical homogeneity. The preparation of films from ceramics nanoparticles using electrophoretic deposition method (EPD) brings prospects for a new generation of smaller size devices with easy integration technology. EPD allows to control time and current and therefore it can have control of the thickness, surface roughness and the film density, quickly and with low production costs. The sintering process is key to control size and grain boundary density of the film. In this step, there is the diffusion of metals that promote densification and control of intrinsic defects or change these defects which will form and modify the potential barrier in the grain boundary. The use of microwave oven for sintering is an advantageous process due to the fast and homogeneous heating rate, promoting the diffusion and densification without irregular grain growth. This research was done a comparative study of sintering temperature by use of zinc as modifier agent to verify the influence on sintering step aiming to promote densification and grain growth, which influences the potential barrier formation and then changed the electrical behavior. SnO2-nanoparticles were obtained with 1 %mol of ZnO + 0.05 %mol of Nb2O5 (SZN), deposited as film through EPD (voltage 2 kV, time of 10 min) on Si/Pt substrate. Sintering was made in a microwave oven at 800, 900 and 1000 °C. For complete coverage of the substrate by nanoparticles with low surface roughness and uniform thickness was added 0.02 g of solid iodine in alcoholic suspension SnO2 to increase particle surface charge. They were also used magneto in EPD system that improved the deposition rate forming a compact film. Using a scanning electron microscope of high resolution (SEM_FEG) it was observed nanoparticles with average size between 10-20 nm, after sintering the average size was 150 to 200 nm and thickness of 5 µm. Also, it was verified that the temperature at 1000 °C was the most efficient in sintering. The best sintering time was also recorded and determined as 40 minutes. After sintering, the films were recovered with Cr3+ ions layer by EPD, then the films were again thermally treated. The electrical characterizations (nonlinear coefficient of 11.4, voltage rupture of ~60 V and leakage current = 4.8x10−6 A), allow considering the new methodology suitable for prepare SnO2-based varistor applied for development of electrical protection devices for low voltage.

Keywords: chemical synthesis, electrophoretic deposition, microwave sintering, tin dioxide

Procedia PDF Downloads 255
13851 Using Serious Games to Integrate the Potential of Mass Customization into the Fuzzy Front-End of New Product Development

Authors: Michael N. O'Sullivan, Con Sheahan

Abstract:

Mass customization is the idea of offering custom products or services to satisfy the needs of each individual customer while maintaining the efficiency of mass production. Technologies like 3D printing and artificial intelligence have many start-ups hoping to capitalize on this dream of creating personalized products at an affordable price, and well established companies scrambling to innovate and maintain their market share. However, the majority of them are failing as they struggle to understand one key question – where does customization make sense? Customization and personalization only make sense where the value of the perceived benefit outweighs the cost to implement it. In other words, will people pay for it? Looking at the Kano Model makes it clear that it depends on the product. In products where customization is an inherent need, like prosthetics, mass customization technologies can be highly beneficial. However, for products that already sell as a standard, like headphones, offering customization is likely only an added bonus, and so the product development team must figure out if the customers’ perception of the added value of this feature will outweigh its premium price tag. This can be done through the use of a ‘serious game,’ whereby potential customers are given a limited budget to collaboratively buy and bid on potential features of the product before it is developed. If the group choose to buy customization over other features, then the product development team should implement it into their design. If not, the team should prioritize the features on which the customers have spent their budget. The level of customization purchased can also be translated to an appropriate production method, for example, the most expensive type of customization would likely be free-form design and could be achieved through digital fabrication, while a lower level could be achieved through short batch production. Twenty-five teams of final year students from design, engineering, construction and technology tested this methodology when bringing a product from concept through to production specification, and found that it allowed them to confidently decide what level of customization, if any, would be worth offering for their product, and what would be the best method of producing it. They also found that the discussion and negotiations between players during the game led to invaluable insights, and often decided to play a second game where they offered customers the option to buy the various customization ideas that had been discussed during the first game.

Keywords: Kano model, mass customization, new product development, serious game

Procedia PDF Downloads 119
13850 A Critical Review of Mechanization in Rice Farming in Indonesia

Authors: K. Suheiti, P. Soni, Yardha

Abstract:

Challenges ahead of Indonesian agricultural development include increasing rural welfare, food needs, and the provision of employment through resource optimization that are laid out in agribusiness system. The agricultural system also responsive to the changing strategic environment. However, mounting pressure of population increase and changes in land-uses, require intensive use of agricultural land with modern agricultural machinery. Similarly, environmentally friendly technologies should continue to be developed in an effort to build and develop a good farming practice model. This paper explains the development of agricultural mechanization in Indonesia, particularly on rice production. The method of the research was analyze secondary data, tabulation and interpretation. The result showed, there was a variety of tools and agricultural machinery that have been produced and used by farmers to support national food security. The role of mechanization was needed to support national rice production and food security achievement.

Keywords: farming, Indonesia, mechanization, rice

Procedia PDF Downloads 476
13849 Energy Strategy and Economic Growth of Russia

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

This article considers the problems of economic growth and Russian energy strategy. Also in this paper, the issues related to the economic growth prospects of Russian were discussed. Russian energy strategy without standing Russia`s stature in global energy markets, at the current production and extraction rates, will not be able to sustain its own production as well as fulfil its energy strategy. Indeed, Russia’s energy sector suffers from a chronic lack of investments which are necessary to modernize its energy supply system. In recent years, especially since the international financial crisis, Russia-EU energy cooperation has made substantive progress. Recently the break-through progress has been made, resulting mainly from long-term contributing factors between the countries and recent international economic and political situation changes. Analytical material presented in the article is intended for a more detailed or substantive analysis related to foreign economic relations of the countries and Russia as well.

Keywords: Russia, energy strategy, economic growth, cooperation

Procedia PDF Downloads 298
13848 Electrolysis Ship for Green Hydrogen Production and Possible Applications

Authors: Julian David Hunt, Andreas Nascimento

Abstract:

Green hydrogen is the most environmental, renewable alternative to produce hydrogen. However, an important challenge to make hydrogen a competitive energy carrier is a constant supply of renewable energy, such as solar, wind and hydropower. Given that the electricity generation potential of these sources vary seasonally and interannually, this paper proposes installing an electrolysis hydrogen production plant in a ship and move the ship to the locations where electricity is cheap, or where the seasonal potential for renewable generation is high. An example of electrolysis ship application is to produce green hydrogen with hydropower from the North region of Brazil and then sail to the Northeast region of Brazil and generate hydrogen using excess electricity from offshore wind power. The electrolysis ship concept is interesting because it has the flexibility to produce green hydrogen using the cheapest renewable electricity available in the market.

Keywords: green hydrogen, electrolysis ship, renewable energies, seasonal variations

Procedia PDF Downloads 145
13847 Sustainable Production of Pharmaceutical Compounds Using Plant Cell Culture

Authors: David A. Ullisch, Yantree D. Sankar-Thomas, Stefan Wilke, Thomas Selge, Matthias Pump, Thomas Leibold, Kai Schütte, Gilbert Gorr

Abstract:

Plants have been considered as a source of natural substances for ages. Secondary metabolites from plants are utilized especially in medical applications but are more and more interesting as cosmetical ingredients and in the field of nutraceuticals. However, supply of compounds from natural harvest can be limited by numerous factors i.e. endangered species, low product content, climate impacts and cost intensive extraction. Especially in the pharmaceutical industry the ability to provide sufficient amounts of product and high quality are additional requirements which in some cases are difficult to fulfill by plant harvest. Whereas in many cases the complexity of secondary metabolites precludes chemical synthesis on a reasonable commercial basis, plant cells contain the biosynthetic pathway – a natural chemical factory – for a given compound. A promising approach for the sustainable production of natural products can be plant cell fermentation (PCF®). A thoroughly accomplished development process comprises the identification of a high producing cell line, optimization of growth and production conditions, the development of a robust and reliable production process and its scale-up. In order to address persistent, long lasting production, development of cryopreservation protocols and generation of working cell banks is another important requirement to be considered. So far the most prominent example using a PCF® process is the production of the anticancer compound paclitaxel. To demonstrate the power of plant suspension cultures here we present three case studies: 1) For more than 17 years Phyton produces paclitaxel at industrial scale i.e. up to 75,000 L in scale. With 60 g/kg dw this fully controlled process which is applied according to GMP results in outstanding high yields. 2) Thapsigargin is another anticancer compound which is currently isolated from seeds of Thapsia garganica. Thapsigargin is a powerful cytotoxin – a SERCA inhibitor – and the precursor for the derivative ADT, the key ingredient of the investigational prodrug Mipsagargin (G-202) which is in several clinical trials. Phyton successfully generated plant cell lines capable to express this compound. Here we present data about the screening for high producing cell lines. 3) The third case study covers ingenol-3-mebutate. This compound is found in the milky sap of the intact plants of the Euphorbiacae family at very low concentrations. Ingenol-3-mebutate is used in Picato® which is approved against actinic keratosis. Generation of cell lines expressing significant amounts of ingenol-3-mebutate is another example underlining the strength of plant cell culture. The authors gratefully acknowledge Inspyr Therapeutics for funding.

Keywords: Ingenol-3-mebutate, plant cell culture, sustainability, thapsigargin

Procedia PDF Downloads 231
13846 Multi-Agent System Based Solution for Operating Agile and Customizable Micro Manufacturing Systems

Authors: Dylan Santos De Pinho, Arnaud Gay De Combes, Matthieu Steuhlet, Claude Jeannerat, Nabil Ouerhani

Abstract:

The Industry 4.0 initiative has been launched to address huge challenges related to ever-smaller batch sizes. The end-user need for highly customized products requires highly adaptive production systems in order to keep the same efficiency of shop floors. Most of the classical Software solutions that operate the manufacturing processes in a shop floor are based on rigid Manufacturing Execution Systems (MES), which are not capable to adapt the production order on the fly depending on changing demands and or conditions. In this paper, we present a highly modular and flexible solution to orchestrate a set of production systems composed of a micro-milling machine-tool, a polishing station, a cleaning station, a part inspection station, and a rough material store. The different stations are installed according to a novel matrix configuration of a 3x3 vertical shelf. The different cells of the shelf are connected through horizontal and vertical rails on which a set of shuttles circulate to transport the machined parts from a station to another. Our software solution for orchestrating the tasks of each station is based on a Multi-Agent System. Each station and each shuttle is operated by an autonomous agent. All agents communicate with a central agent that holds all the information about the manufacturing order. The core innovation of this paper lies in the path planning of the different shuttles with two major objectives: 1) reduce the waiting time of stations and thus reduce the cycle time of the entire part, and 2) reduce the disturbances like vibration generated by the shuttles, which highly impacts the manufacturing process and thus the quality of the final part. Simulation results show that the cycle time of the parts is reduced by up to 50% compared with MES operated linear production lines while the disturbance is systematically avoided for the critical stations like the milling machine-tool.

Keywords: multi-agent systems, micro-manufacturing, flexible manufacturing, transfer systems

Procedia PDF Downloads 119
13845 Mixotrophic Growth as a Tool for Increasing Polyhydroxyalkanoates (PHA) Production in Cyanobacteria

Authors: Zuzana Sedrlova, Eva Slaninova, Ines Fritz, Christina Daffert, Stanislav Obruca

Abstract:

Cyanobacteria are ecologically extremely important phototrophic gram-negative bacteria capable of oxygenic photosynthesis. They synthesize many interesting metabolites such as glycogen, carotenoids, but the most interesting metabolites are polyhydroxyalkanoates (PHA). The main advantage of cyanobacteria is the fact they do not require costly organic substrate and, oppositely, cyanobacteria can fix CO₂. PHA serves primarily as a carbon and energy source and occurs in the form of intracellular granules in bacterial cells. It is possible, PHA helps cyanobacteria to survive stress conditions since increased PHA synthesis was observed during cultivation in stress conditions. PHA is microbial biopolymers that are biodegradable with similar properties as petrochemical synthetic plastics. Production of PHA by heterotrophic bacteria is expensive; for price reduction waste materials as input, materials are used. Positively, cyanobacteria principally do not require organic carbon substrate since they are capable of CO₂ fixation. In this work, we demonstrated that stress conditions lead to the highest obtained yields of PHA in cyanobacterial cultures. Two cyanobacterial cultures from genera Synechocystis were used in this work. Cultivations were performed either in Erlenmayer flask or in tube multicultivator. Multiple stressors were applied on cyanobacterial cultures, and stressors include PHA precursors. PHA precursors are chemical substances and some of them do not occur naturally in the environment. Cultivation with the same PHA precursors in the same concentration led to a 1,6x higher amount of PHA when a multicultivator was used. The highest amount of PHA reached 25 % of PHA in dry cyanobacterial biomass. Both strains are capable of co-polymer synthesis in the presence of their structural precursor. The composition of co-polymer differs in Synechocystis sp. PCC 6803 and Synechocystis salina CCALA 192. Synechocystis sp. PCC 6803 cultivated with γ-butyrolakton accumulated co-polymer of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB) the composition of the copolymer was 56 % of 4HB and 44 % of 3HB. The total amount of PHA, as well as yield of biomass, was lower than in control due to the toxic properties of γ-butyrolakton. Funding: This study was partly funded by the project GA19- 19-29651L of the Czech Science Foundation (GACR) and partly funded by the Austrian Science Fund (FWF), a project I 4082-B25. This work was supported by Brno, Ph.D. Talent – Funded by the Brno City Municipality.

Keywords: co-polymer, cyanobacteria, PHA, synechocystis

Procedia PDF Downloads 187
13844 Biofuels from Hybrid Poplar: Using Biochemicals and Wastewater Treatment as Opportunities for Early Adoption

Authors: Kevin W. Zobrist, Patricia A. Townsend, Nora M. Haider

Abstract:

Advanced Hardwood Biofuels Northwest (AHB) is a consortium funded by the United States Department of Agriculture (USDA) to research the potential for a system to produce advanced biofuels (jet fuel, diesel, and gasoline) from hybrid poplar in the Pacific Northwest region of the U.S. An Extension team was established as part of the project to examine community readiness and willingness to adopt hybrid as a purpose-grown bioenergy crop. The Extension team surveyed key stakeholder groups, including growers, Extension professionals, policy makers, and environmental groups, to examine attitudes and concerns about growing hybrid poplar for biofuels. The surveys found broad skepticism about the viability of such a system. The top concern for most stakeholder groups was economic viability and the availability of predictable markets. Growers had additional concerns stemming from negative past experience with hybrid poplar as an unprofitable endeavor for pulp and paper production. Additional barriers identified included overall land availability and the availability of water and water rights for irrigation in dry areas of the region. Since the beginning of the project, oil and natural gas prices have plummeted due to rapid increases in domestic production. This has exacerbated the problem with economic viability by making biofuels even less competitive than fossil fuels. However, the AHB project has identified intermediate market opportunities to use poplar as a renewable source for other biochemicals produced by petroleum refineries, such as acetic acid, ethyl acetate, ethanol, and ethylene. These chemicals can be produced at a lower cost with higher yields and higher, more-stable prices. Despite these promising market opportunities, the survey results suggest that it will still be challenging to induce growers to adopt hybrid poplar. Early adopters will be needed to establish an initial feedstock supply for a budding industry. Through demonstration sites and outreach events to various stakeholder groups, the project attracted interest from wastewater treatment facilities, since these facilities are already growing hybrid poplar plantations for applying biosolids and treated wastewater for further purification, clarification, and nutrient control through hybrid poplar’s phytoremediation capabilities. Since these facilities are already using hybrid poplar, selling the wood as feedstock for a biorefinery would be an added bonus rather than something requiring a high rate of return to compete with other crops and land uses. By holding regional workshops and conferences with wastewater professionals, AHB Extension has found strong interest from wastewater treatment operators. In conclusion, there are several significant barriers to developing a successful system for producing biofuels from hybrid poplar, with the largest barrier being economic viability. However, there is potential for wastewater treatment facilities to serve as early adopters for hybrid poplar production for intermediate biochemicals and eventually biofuels.

Keywords: hybrid poplar, biofuels, biochemicals, wastewater treatment

Procedia PDF Downloads 256
13843 Comparison of Statins Dose Intensity on HbA1c Control in Outpatients with Type 2 Diabetes: A Prospective Cohort Study

Authors: Mohamed A. Hammad, Dzul Azri Mohamed Noor, Syed Azhar Syed Sulaiman, Ahmed A. Khamis, Abeer Kharshid, Nor Azizah Aziz

Abstract:

The effect of statins dose intensity (SDI) on glycemic control in patients with existing diabetes is unclear. Also, there are many contradictory findings were reported in the literature; thus, it is limiting the possibility to draw conclusions. This project was designed to compare the effect of SDI on glycated hemoglobin (HbA1c%) control in outpatients with Type 2 diabetes in the endocrine clinic at Hospital Pulau Pinang, Malaysia, between July 2015 and August 2016. A prospective cohort study was conducted, where records of 345 patients with Type 2 diabetes (Moderate-SDI group 289 patients and high-SDI cohort 56 patients) were reviewed to identify demographics and laboratory tests. The target of glycemic control (HbA1c < 7% for patient < 65 years, and < 8% for patient ≥ 65 years) was estimated, and the results were presented as descriptive statistics. From 289 moderate-SDI cohorts with a mean age of 57.3 ± 12.4 years, only 86 (29.8%) cases were shown to have controlled glycemia, while there were 203 (70.2%) cases with uncontrolled glycemia with confidence interval (CI) of 95% (6.2–10.8). On the other hand, the high-SDI group of 56 patients with Type 2 diabetes with a mean age 57.7±12.4 years is distributed among 11 (19.6%) patients with controlled diabetes, and 45 (80.4%) of them had uncontrolled glycemia, CI: 95% (7.1–11.9). The study has demonstrated that the relative risk (RR) of uncontrolled glycemia in patients with Type 2 diabetes that used high-SDI is 1.15, and the excessive relative risk (ERR) is 15%. The absolute risk (AR) is 10.2%, and the number needed to harm (NNH) is 10. Outpatients with Type 2 diabetes who use high-SDI of statin have a higher risk of uncontrolled glycemia than outpatients who had been treated with a moderate-SDI.

Keywords: cohort study, diabetes control, dose intensity, HbA1c, Malaysia, statin, type 2 diabetes mellitus, uncontrolled glycemia

Procedia PDF Downloads 291
13842 Growth Performance of New Born Holstein Calves Supplemented with Garlic (Allium sativum) Powder and Probiotics

Authors: T. W. Kekana, J. J. Baloyi, M. C. Muya, F. V. Nherera

Abstract:

Secondary metabolites (thiosulphinates) from Allium sativum are able to stimulate the production of volatile fatty acids. This study was carried out to investigate the effects of feeding Garlic powder or probiotics or a combination of both on feed intake and growth performance of Holstein calves. Neonatal calves were randomly allocated, according to birth weight, to four dietary treatments, each with 8 calves. The treatments were: C control, no additive (C), G: supplemented with either 5g/d garlic powder (G) or 4 g/d probiotics (P) or GP 5g/d garlic powder and 4 g/d probiotics compound (GP) with the total viable count of 1.3 x 107 cfu/g. Garlic and probiotics were diluted in the daily milk allocation from day 4. Commercial (17.5% CP) starter feed and fresh water were available ad libitum from day 4 until day 42 of age. Calves fed GP (0.27 kg day-1) tended (P=0.055) to have higher DMI than C (0.22 kg day-1). Milk, water, CP, fat intake and FCR were not affected (P>0.05) by the treatments. Metibolisable energy (ME) intake for GP group tended (P=0.058) to be higher than C calves. Combination of G and P (60.3 kg) tended (P = 0.056) to be higher than C (56.0 kg) calves on final BW. Garlic, probiotics or their combination did not affect calve’s HG, ADG and BL (P>0.05). The results of the current study indicated that combination of garlic and probiotics may improve nutrients intake and body weight when fed to calves during the first 42 days of life.

Keywords: garlic powder, probiotics, intake, growth, Holstein calves

Procedia PDF Downloads 649
13841 Aerodynamic Devices Development for Model Aircraft Control and Wind-Driven Bicycle

Authors: Yuta Moriyama, Tsuyoshi Yamazaki, Etsuo Morishita

Abstract:

Several aerodynamic devices currently attract engineers and research students. The plasma actuator is one of them, and it is very effective to control the flow. The actuator recovers a separated flow to an attached one. The actuator is also inversely applied to a spoiler. The model aircraft might be controlled by this actuator. We develop a model aircraft with the plasma actuator. Another interesting device is the Wells turbine which rotates in one direction. The present authors propose a bicycle with the Wells turbine in the wheels. Power reduction is measured when the turbine is driven by an electric motor at the exit of a wind tunnel. Several Watts power reduction might be possible. This means that the torque of the bike can be augmented by the turbine in the cross wind. These devices are tested in the wind tunnel with a three-component balance and the aerodynamic forces and moment are obtained. In this paper, we introduce these devices and their aerodynamic characteristics. The control force and moment of the plasma actuator are clarified and the power reduction of the bicycle is quantified.

Keywords: aerodynamics, model aircraft, plasma actuator, Wells turbine

Procedia PDF Downloads 224
13840 Impact Analysis of Quality Control Practices in Veterinary Diagnostic Labs in Lahore, Pakistan

Authors: Faiza Marrium, Masood Rabbani, Ali Ahmad Sheikh, Muhammad Yasin Tipu Javed Muhammad, Sohail Raza

Abstract:

More than 75% diseases spreading in the past 10 years in human population globally are linked to veterinary sector. Veterinary diagnostic labs are the powerful ally for diagnosis, prevention and monitoring of animal diseases in any country. In order to avoid detrimental effects of errors in disease diagnostic and biorisk management, there is a dire need to establish quality control system. In current study, 3 private and 6 public sectors veterinary diagnostic labs were selected for survey. A questionnaire survey in biorisk management guidelines of CWA 15793 was designed to find quality control breaches in lab design, personal, equipment and consumable, quality control measures adopted in lab, waste management, environmental monitoring and customer care. The data was analyzed through frequency distribution statistically by using (SPSS) version 18.0. A non-significant difference was found in all parameters of lab design, personal, equipment and consumable, quality control measures adopted in lab, waste management, environmental monitoring and customer care with an average percentage of 46.6, 57.77, 52.7, 55.5, 54.44, 48.88 and 60, respectively. A non-significant difference among all nine labs were found, with highest average compliance percentage of all parameters are lab 2 (78.13), Lab 3 (70.56), Lab 5 (57.51), Lab 6 (56.37), Lab 4 (55.02), Lab 9 (49.58), Lab 7 (47.76), Lab 1 (41.01) and Lab 8 (36.09). This study shows that in Lahore district veterinary diagnostic labs are not giving proper attention to quality of their system and there is no significant difference between setups of private and public sector laboratories. These results show that most of parameters are between 50 and 80 percent, which needs some work and improvement as per WHO criteria.

Keywords: veterinary lab, quality management system, accreditation, regulatory body, disease identification

Procedia PDF Downloads 132
13839 Microplastics in Urban Environment – Coimbra City Case Study

Authors: Inês Amorim Leitão, Loes van Shaick, António Dinis Ferreira, Violette Geissen

Abstract:

Plastic pollution is a growing concern worldwide: plastics are commercialized in large quantities and it takes a long time for them to degrade. When in the environment, plastic is fragmented into microplastics (<5mm), which have been found in all environmental compartments at different locations. Microplastics contribute to the environmental pollution in water, air and soil and are linked to human health problems. The progressive increase of population living in cities led to the aggravation of the pollution problem worldwide, especially in urban environments. Urban areas represent a strong source of pollution, through the roads, industrial production, wastewater, landfills, etc. It is expected that pollutants such as microplastics are transported diffusely from the sources through different pathways such as wind and rain. Therefore, it is very complex to quantify, control and treat these pollutants, designated current problematic issues by the European Commission. Green areas are pointed out by experts as natural filters for contaminants in cities, through their capacity of retention by vegetation. These spaces have thus the capacity to control the load of pollutants transported. This study investigates the spatial distribution of microplastics in urban soils of different land uses, their transport through atmospheric deposition, wind erosion, runoff and streams, as well as their deposition in vegetation like grass and tree leaves in urban environment. Coimbra, a medium large city located in the central Portugal, is the case-study. All the soil, sediments, water and vegetation samples were collected in Coimbra and were later analyzed in the Wageningen University & Research laboratory. Microplastics were extracted through the density separation using Sodium Phosphate as solution (~1.4 g cm−3) and filtration methods, visualized under a stereo microscope and identified using the u-FTIR method. Microplastic particles were found in all the different samples. In terms of soils, higher concentrations of microplastics were found in green parks, followed by landfills and industrial places, and the lowest concentrations in forests and pasture land-uses. Atmospheric deposition and streams after rainfall events seems to represent the strongest pathways of microplastics. Tree leaves can retain microplastics on their surfaces. Small leaves such as needle leaves seem to present higher amounts of microplastics per leaf area than bigger leaves. Rainfall episodes seem to reduce the concentration of microplastics on leaves surface, which suggests the wash of microplastics down to lower levels of the tree or to the soil. When in soil, different types of microplastics could be transported to the atmosphere through wind erosion. Grass seems to present high concentrations of microplastics, and the enlargement of the grass cover leads to a reduction of the amount of microplastics in soil, but also of the microplastics moved from the ground to the atmosphere by wind erosion. This study proof that vegetation can help to control the transport and dispersion of microplastics. In order to control the entry and the concentration of microplastics in the environment, especially in cities, it is essential to defining and evaluating nature-based land-use scenarios, considering the role of green urban areas in filtering small particles.

Keywords: microplastics, cities, sources, pathways, vegetation

Procedia PDF Downloads 42
13838 The Effects of Lithofacies on Oil Enrichment in Lucaogou Formation Fine-Grained Sedimentary Rocks in Santanghu Basin, China

Authors: Guoheng Liu, Zhilong Huang

Abstract:

For more than the past ten years, oil and gas production from marine shale such as the Barnett shale. In addition, in recent years, major breakthroughs have also been made in lacustrine shale gas exploration, such as the Yanchang Formation of the Ordos Basin in China. Lucaogou Formation shale, which is also lacustrine shale, has also yielded a high production in recent years, for wells such as M1, M6, and ML2, yielding a daily oil production of 5.6 tons, 37.4 tons and 13.56 tons, respectively. Lithologic identification and classification of reservoirs are the base and keys to oil and gas exploration. Lithology and lithofacies obviously control the distribution of oil and gas in lithological reservoirs, so it is of great significance to describe characteristics of lithology and lithofacies of reservoirs finely. Lithofacies is an intrinsic property of rock formed under certain conditions of sedimentation. Fine-grained sedimentary rocks such as shale formed under different sedimentary conditions display great particularity and distinctiveness. Hence, to our best knowledge, no constant and unified criteria and methods exist for fine-grained sedimentary rocks regarding lithofacies definition and classification. Consequently, multi-parameters and multi-disciplines are necessary. A series of qualitative descriptions and quantitative analysis were used to figure out the lithofacies characteristics and its effect on oil accumulation of Lucaogou formation fine-grained sedimentary rocks in Santanghu basin. The qualitative description includes core description, petrographic thin section observation, fluorescent thin-section observation, cathode luminescence observation and scanning electron microscope observation. The quantitative analyses include X-ray diffraction, total organic content analysis, ROCK-EVAL.II Methodology, soxhlet extraction, porosity and permeability analysis and oil saturation analysis. Three types of lithofacies were mainly well-developed in this study area, which is organic-rich massive shale lithofacies, organic-rich laminated and cloddy hybrid sedimentary lithofacies and organic-lean massive carbonate lithofacies. Organic-rich massive shale lithofacies mainly include massive shale and tuffaceous shale, of which quartz and clay minerals are the major components. Organic-rich laminated and cloddy hybrid sedimentary lithofacies contain lamina and cloddy structure. Rocks from this lithofacies chiefly consist of dolomite and quartz. Organic-lean massive carbonate lithofacies mainly contains massive bedding fine-grained carbonate rocks, of which fine-grained dolomite accounts for the main part. Organic-rich massive shale lithofacies contain the highest content of free hydrocarbon and solid organic matter. Moreover, more pores were developed in organic-rich massive shale lithofacies. Organic-lean massive carbonate lithofacies contain the lowest content solid organic matter and develop the least amount of pores. Organic-rich laminated and cloddy hybrid sedimentary lithofacies develop the largest number of cracks and fractures. To sum up, organic-rich massive shale lithofacies is the most favorable type of lithofacies. Organic-lean massive carbonate lithofacies is impossible for large scale oil accumulation.

Keywords: lithofacies classification, tuffaceous shale, oil enrichment, Lucaogou formation

Procedia PDF Downloads 195