Search results for: polymer concrete
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3238

Search results for: polymer concrete

418 The Effect of Super-Plasticizer and Ultra-sonic Process on the Carbon Nano Tubes Dispersion in Combination with Nano Silica in Cement Composites to Enhance Its Mechanical Properties

Authors: M.S. El-Feky, Passant Youssef, Mohamed I. Serag

Abstract:

nowadays, nanotechnology is the main trend of research in different areas due to the new potential of using nanometer materials sized less than 100nm. Nanomaterials are needed in cement composites to act as bridging for Nano and micro-cracks to increase tensile strength, reduce the permeability of gases and water in concrete to solve corrosion problem, react with excess Calcium Hydroxide, produce additional C-S-H, act as filler materials to densify the cement matrix and increase its mechanical properties. The present study focuses on the effectiveness of super-plasticizers and ultrasonic processing on the dispersion of Carbon Nanotube at first in water and then in cement composites in combination with Nano silica to enhance the mechanical properties of cement composites. A qualitative analysis using a compressive strength test is conducted with a view to investigate the influence of different dispersion techniques on the mechanical properties of cement composites containing Carbon Nanotube (CNT) and Nano Silica (NS) particles with different percentages. In addition, micro-structural analysis was carried out to understand the surface morphology and microstructure of cement composites with different dosages of NS addition. The investigational study results showed that the combination of NS with a low amount of CNT had a positive effect on the hydration reaction; on the other hand, the combination of CNT and a high amount of NS had a negative effect on the hydration reaction. The compressive strength can be improved by optimum combination 0.02% CNT and 1% NS with gain in strength by 72% and 35% after 7 and 28 days compared to control samples; these results were with an agreement with the morphology structure of composites using microstructure analysis.

Keywords: nano silica, dispersion, sonication, carbon nano tubes

Procedia PDF Downloads 125
417 Effect of Different Sterilization Processes on Drug Loaded Silicone-Hydrogel

Authors: Raquel Galante, Marina Braga, Daniela Ghisleni, Terezinha J. A. Pinto, Rogério Colaço, Ana Paula Serro

Abstract:

The sensitive nature of soft biomaterials, such as hydrogels, renders their sterilization a particularly challenging task for the biomedical industry. Widely used contact lenses are now studied as promising platforms for topical corneal drug delivery. However, to the best of the authors knowledge, the influence of sterilization methods on these systems has yet to be evaluated. The main goal of this study was to understand how different pairs drug-hydrogel would interact under an ozone-based sterilization method in comparison with two conventional processes (steam heat and gamma irradiation). For that, Si-Hy containing hydroxylethyl methacrylate (HEMA) and [tris(trimethylsiloxy)silyl]propyl methacrylate (TRIS) was produced and soaked in different drug solutions, commonly used for the treatment of ocular diseases (levofloxacin, chlorhexidine, diclofenac and timolol maleate). The drug release profiles and main material properties were evaluated before and after the sterilization. Namely, swelling capacity was determined by water uptake studies, transparency was accessed by UV-Vis spectroscopy, surface topography/morphology by scanning electron microscopy (SEM) and mechanical properties by performing tensile tests. The drug released was quantified by high performance liquid chromatography (HPLC). The effectiveness of the sterilization procedures was assured by performing sterility tests. Ozone gas method led to a significant reduction of drug released and to the formation of degradation products specially for diclofenac and levofloxacin. Gamma irradiation led to darkening of the loaded Si-Hys and to the complete degradation of levofloxacin. Steam heat led to smoother surfaces and to a decrease of the amount of drug released, however, with no formation of degradation products. This difference in the total drug released could be the related to drug/polymer interactions promoted by the sterilization conditions in presence of the drug. Our findings offer important insights that, in turn, could be a useful contribution to the safe development of actual products.

Keywords: drug delivery, silicone hydrogels, sterilization, gamma irradiation, steam heat, ozone gas

Procedia PDF Downloads 291
416 Violence against Police Officers in Germany

Authors: Anne T. Herr, Clemens Lorei

Abstract:

Employees of organizations with security tasks, such as emergency services, public order services, or police forces, work every day to ensure people's safety. Violence against police is, therefore, a relevant topic both socially and politically. An increase in violence is often discussed without there being any verifiable and generally valid data. So far, scientific research has mainly focused on offender characteristics and crime statistics. These surveys are mostly subjective, retrospective, and neglect the dynamics and interactions in concrete violent situations. Therefore, more recent research methods attempt to capture the issue of violence against emergency forces more comprehensively. However, the operationalization of the constructs and the methodological approach pose particular challenges. This contribution provides an overview of new perspectives on the understanding of violent assaults and identifies current research gaps. In addition, a new research project of the Hessian University of Police and Administration in Germany is presented. In the 'AMBOSafe' study, different theoretical backgrounds for understanding violence against police and emergency services personnel will be combined in order to capture as many different perspectives of violent assaults as possible in a multimodal research approach. In a retrospective as well as in a longitudinal survey, the conditions of escalation dynamics in the assaults are recorded and supplemented by the current and valid prevalence of physical and verbal assaults in a period of four months. In addition, qualitative interviews with those affected will be used to record more detailed descriptions of and the feelings during the assaults, as well as possible causes and connections between the different groups of people. In addition to the reports of the police forces, the motives of the attackers will be collected and supplemented by analyzing the criminal case files. This knowledge can contribute to a more comprehensive understanding of violent assaults against police forces in order to be able to derive scientifically based preventive measures.

Keywords: assaults, crime statistics, escalation dynamics, police

Procedia PDF Downloads 94
415 Impact of Fischer-Tropsch Wax on Ethylene Vinyl Acetate/Waste Crumb Rubber Modified Bitumen: An Energy-Sustainability Nexus

Authors: Keith D. Nare, Mohau J. Phiri, James Carson, Chris D. Woolard, Shanganyane P. Hlangothi

Abstract:

In an energy-intensive world, minimizing energy consumption is paramount to cost saving and reducing the carbon footprint. Improving mixture procedures utilizing warm mix additive Fischer-Tropsch (FT) wax in ethylene vinyl acetate (EVA) and modified bitumen highlights a greener and sustainable approach to modified bitumen. In this study, the impact of FT wax on optimized EVA/waste crumb rubber modified bitumen is assayed with a maximum loading of 2.5%. The rationale of the FT wax loading is to maintain the original maximum loading of EVA in the optimized mixture. The phase change abilities of FT wax enable EVA co-crystallization with the support of the elastomeric backbone of crumb rubber. Less than 1% loading of FT wax worked in the EVA/crumb rubber modified bitumen energy-sustainability nexus. Response surface methodology approach to the mixture design is implemented amongst the different loadings of FT wax, EVA for a consistent amount of crumb rubber and bitumen. Rheological parameters (complex shear modulus, phase angle and rutting parameter) were the factors used as performance indicators of the different optimized mixtures. The low temperature chemistry of the optimized mixtures is analyzed using elementary beam theory and the elastic-viscoelastic correspondence principle. Master curves and black space diagrams are developed and used to predict age-induced cracking of the different long term aged mixtures. Modified binder rheology reveals that the strain response is not linear and that there is substantial re-arrangement of polymer chains as stress is increased, this is based on the age state of the mixture and the FT wax and EVA loadings. Dominance of individual effects is evident over effects of synergy in co-interaction of EVA and FT wax. All-inclusive FT wax and EVA formulations were best optimized in mixture 4 with mixture 7 reflecting increase in ease of workability. Findings show that interaction chemistry of bitumen, crumb rubber EVA, and FT wax is first and second order in all cases involving individual contributions and co-interaction amongst the components of the mixture.

Keywords: bitumen, crumb rubber, ethylene vinyl acetate, FT wax

Procedia PDF Downloads 154
414 Computational Study of Composite Films

Authors: Rudolf Hrach, Stanislav Novak, Vera Hrachova

Abstract:

Composite and nanocomposite films represent the class of promising materials and are often objects of the study due to their mechanical, electrical and other properties. The most interesting ones are probably the composite metal/dielectric structures consisting of a metal component embedded in an oxide or polymer matrix. Behaviour of composite films varies with the amount of the metal component inside what is called filling factor. The structures contain individual metal particles or nanoparticles completely insulated by the dielectric matrix for small filling factors and the films have more or less dielectric properties. The conductivity of the films increases with increasing filling factor and finally a transition into metallic state occurs. The behaviour of composite films near a percolation threshold, where the change of charge transport mechanism from a thermally-activated tunnelling between individual metal objects to an ohmic conductivity is observed, is especially important. Physical properties of composite films are given not only by the concentration of metal component but also by the spatial and size distributions of metal objects which are influenced by a technology used. In our contribution, a study of composite structures with the help of methods of computational physics was performed. The study consists of two parts: -Generation of simulated composite and nanocomposite films. The techniques based on hard-sphere or soft-sphere models as well as on atomic modelling are used here. Characterizations of prepared composite structures by image analysis of their sections or projections follow then. However, the analysis of various morphological methods must be performed as the standard algorithms based on the theory of mathematical morphology lose their sensitivity when applied to composite films. -The charge transport in the composites was studied by the kinetic Monte Carlo method as there is a close connection between structural and electric properties of composite and nanocomposite films. It was found that near the percolation threshold the paths of tunnel current forms so-called fuzzy clusters. The main aim of the present study was to establish the correlation between morphological properties of composites/nanocomposites and structures of conducting paths in them in the dependence on the technology of composite films.

Keywords: composite films, computer modelling, image analysis, nanocomposite films

Procedia PDF Downloads 374
413 Modeling of Masonry In-Filled R/C Frame to Evaluate Seismic Performance of Existing Building

Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail

Abstract:

This paper deals with different modeling aspects of masonry infill: no infill model, Layered shell infill model, and strut infill model. These models consider the complicated behavior of the in-filled plane frames under lateral load similar to an earthquake load. Three strut infill models are used: NBCC (2005) strut infill model, ASCE/SEI 41-06 strut infill model and proposed strut infill model based on modification to Canadian, NBCC (2005) strut infill model. Pushover and modal analyses of a masonry infill concrete frame with a single storey and an existing 5-storey RC building have been carried out by using different models for masonry infill. The corresponding hinge status, the value of base shear at target displacement as well as their dynamic characteristics have been determined and compared. A validation of the structural numerical models for the existing 5-storey RC building has been achieved by comparing the experimentally measured and the analytically estimated natural frequencies and their mode shapes. This study shows that ASCE/SEI 41-06 equation underestimates the values for the equivalent properties of the diagonal strut while Canadian, NBCC (2005) equation gives realistic values for the equivalent properties. The results indicate that both ASCE/SEI 41-06 and Canadian, NBCC (2005) equations for strut infill model give over estimated values for dynamic characteristic of the building. Proposed modification to Canadian, NBCC (2005) equation shows that the fundamental dynamic characteristic values of the building are nearly similar to the corresponding values using layered shell elements as well as measured field results.

Keywords: masonry infill, framed structures, RC buildings, non-structural elements

Procedia PDF Downloads 260
412 Exploration of Influential Factors on First Year Architecture Students’ Productivity

Authors: Shima Nikanjam, Badiossadat Hassanpour, Adi Irfan Che Ani

Abstract:

The design process in architecture education is based upon the Learning-by-Doing method, which leads students to understand how to design by practicing rather than studying. First-year design studios, as starting educational stage, provide integrated knowledge and skills of design for newly jointed architecture students. Within the basic design studio environment, students are guided to transfer their abstract thoughts into visual concrete decisions under the supervision of design educators for the first time. Therefore, introductory design studios have predominant impacts on students’ operational thinking and designing. Architectural design thinking is quite different from students’ educational backgrounds and learning habits. This educational challenge at basic design studios creates a severe need to study the reality of design education at foundation year and define appropriate educational methods with convenient project types with the intention of enhancing architecture education quality. Material for this study has been gathered through long-term direct observation at a first year second semester design studio at the faculty of architecture at EMU (known as FARC 102), fall and spring academic semester 2014-15. Distribution of a questionnaire among case study students and interviews with third and fourth design studio students who passed through the same methods of education in the past 2 years and conducting interviews with instructors are other methodologies used in this research. The results of this study reveal a risk of a mismatch between the implemented teaching method, project type and scale in this particular level and students’ learning styles. Although the existence of such risk due to varieties in students’ profiles could be expected to some extent, recommendations can support educators to reach maximum compatibility.

Keywords: architecture education, basic design studio, educational method, forms creation skill

Procedia PDF Downloads 352
411 Application of the Critical Decision Method for Monitoring and Improving Safety in the Construction Industry

Authors: Juan Carlos Rubio Romero, Francico Salguero Caparros, Virginia Herrera-Pérez

Abstract:

No one is in the slightest doubt about the high levels of risk involved in work in the construction industry. They are even higher in structural construction work. The Critical Decision Method (CDM) is a semi-structured interview technique that uses cognitive tests to identify the different disturbances that workers have to deal with in their work activity. At present, the vision of safety focused on daily performance and things that go well for safety and health management is facing the new paradigm known as Resilience Engineering. The aim of this study has been to describe the variability in formwork labour on concrete structures in the construction industry and, from there, to find out the resilient attitude of workers to unexpected events that they have experienced during their working lives. For this purpose, a series of semi-structured interviews were carried out with construction employees with extensive experience in formwork labour in Spain by applying the Critical Decision Method. This work has been the first application of the Critical Decision Method in the field of construction and, more specifically, in the execution of structures. The results obtained show that situations categorised as unthought-of are identified to a greater extent than potentially unexpected situations. The identification during these interviews of both expected and unexpected events provides insight into the critical decisions made and actions taken to improve resilience in daily practice in this construction work. From this study, it is clear that it is essential to gain more knowledge about the nature of the human cognitive process in work situations within complex socio-technical systems such as construction sites. This could lead to a more effective design of workplaces in the search for improved human performance.

Keywords: resilience engineering, construction industry, unthought-of situations, critical decision method

Procedia PDF Downloads 137
410 URM Infill in-Plane and out-of-Plane Interaction in Damage Evaluation of RC Frames

Authors: F. Longo, G. Granello, G. Tecchio, F. Da Porto

Abstract:

Unreinforced masonry (URM) infill walls are widely used throughout the world, also in seismic prone regions, as partitions in reinforced concrete building frames. Even if they do not represent structural elements, they can dramatically affect both strength and stiffness of RC structures by acting as a diagonal strut, modifying shear and displacements distribution along the building height, with uncertain consequences on structural safety. In the last decades, many refined models have been developed to describe infill walls effect on frame structural behaviour, but generally restricted to in-plane actions. Only very recently some new approaches were implemented to consider in-plane/out-of-plane interaction of URM infill walls in progressive collapse simulations. In the present work, a particularly promising macro-model was adopted for the progressive collapse analysis of infilled RC frames. The model allows to consider the bi-directional interaction in terms of displacement and strength capacity for URM infills, and to remove the infill contribution when the URM wall is supposed to fail during the analysis process. The model was calibrated on experimental data regarding two different URM panels thickness, modelling with particular care the post-critic softening branch. A frame specimen set representing the most common Italian structures was built considering two main normative approaches: a traditional design philosophy, corresponding to structures erected between 50’s-80’s basically designed to support vertical loads, and a seismic design philosophy, corresponding to current criteria that take into account horizontal actions. Non-Linear Static analyses were carried out on the specimen set and some preliminary evaluations were drawn in terms of different performance exhibited by the RC frame when the contemporary effect of the out-of-plane damage is considered for the URM infill.

Keywords: infill Panels macromodels, in plane-out of plane interaction, RC frames, URM infills

Procedia PDF Downloads 499
409 Storm-water Management for Greenfield Area Using Low Impact Development Concept for Town Planning Scheme Mechanism

Authors: Sahil Patel

Abstract:

Increasing urbanization leads to a concrete forest. The effects of new development practices occur in the natural hydrologic cycle. Here the concerns have been raised about the groundwater recharge in sufficient quantity. With further development, porous surfaces reduce rapidly. A city like Ahmedabad, with a non-perennial river, is 100% dependent on groundwater. The Ahmedabad city receives its domestic use water from the Narmada river, located about 200 km away. The expenses to bring water is much higher. Ahmedabad city receives annually 800 mm rainfall, and mostly this water increases the local level waterlogging problems; after that, water goes to the Sabarmati river and merges into the sea. The existing developed area of Ahmedabad city is very dense, and does not offer many chances to change the built form and increase porous surfaces to absorb storm-water. Therefore, there is a need to plan upcoming areas with more effective solutions to manage storm-water. This paper is focusing on the management of stormwater for new development by retaining natural hydrology. The Low Impact Development (LID) concept is used to manage storm-water efficiently. Ahmedabad city has a tool called the “Town Planning Scheme,” which helps the local body drive new development by land pooling mechanism. This paper gives a detailed analysis of the selected area (proposed Town Planning Scheme area by the local authority) in Ahmedabad. Here the development control regulations for individual developers and some physical elements for public places are presented to manage storm-water. There is a different solution for the Town Planning scheme than that of the conventional way. A local authority can use it for any area, but it can be site-specific. In the end, there are benefits to locals with some financial analysis and comparisons.

Keywords: water management, green field development, low impact development, town planning scheme

Procedia PDF Downloads 108
408 ID + PD: Training Instructional Designers to Foster and Facilitate Learning Communities in Digital Spaces

Authors: Belkis L. Cabrera

Abstract:

Contemporary technological innovations have reshaped possibility, interaction, communication, engagement, education, and training. Indeed, today, a high-quality technology enhanced learning experience can be transformative as much for the learner as for the educator-trainer. As innovative technologies continue to facilitate, support, foster, and enhance collaboration, problem-solving, creativity, adaptiveness, multidisciplinarity, and communication, the field of instructional design (ID) also continues to develop and expand. Shifting its focus from media to the systematic design of instruction, or rather from the gadgets and devices themselves to the theories, models, and impact of implementing educational technology, the evolution of ID marks a restructuring of the teaching, learning, and training paradigms. However, with all of its promise, this latter component of ID remains underdeveloped. The majority of ID models are crafted and guided by learning theories and, therefore, most models are constructed around student and educator roles rather than trainer roles. Thus, when these models or systems are employed for training purposes, they usually have to be re-fitted, tweaked, and stretched to meet the training needs. This paper is concerned with the training or professional development (PD) facet of instructional design and how ID models built on teacher-to-teacher interaction and dialogue can support the creation of professional learning communities (PLCs) or communities of practice (CoPs), which can augment learning and PD experiences for all. Just as technology is changing the face of education, so too can it change the face of PD within the educational realm. This paper not only provides a new ID model but using innovative technologies such as Padlet and Thinkbinder, this paper presents a concrete example of how a traditional body-to-body, brick, and mortar learning community can be transferred and transformed into the online context.

Keywords: communities of practice, e-learning, educational reform, instructional design, professional development, professional learning communities, technology, training

Procedia PDF Downloads 328
407 Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates

Authors: Sisaynew Tesfaw Admassu

Abstract:

The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials.

Keywords: heritage structures, strengthening, stiffness, adhesive, polyester resin, steel plates

Procedia PDF Downloads 51
406 Decision Support Tool for Selecting Appropriate Sustainable Rainwater Harvesting Based System in Ibadan, Nigeria

Authors: Omolara Lade, David Oloke

Abstract:

The approach to water management worldwide is currently in transition, with a shift from centralised infrastructures to greater consideration of decentralised technologies, such as rainwater harvesting (RWH). However, in Nigeria, implementation of sustainable water management, such as RWH systems, is inefficient and social, environmental and technical barriers, concerns and knowledge gaps exist, which currently restrict its widespread utilisation. This inefficiency contributes to water scarcity, water-borne diseases, and loss of lives and property due to flooding. Meanwhile, several RWH technologies have been developed to improve SWM through both demand and storm-water management. Such technologies involve the use of reinforced concrete cement (RCC) storage tanks, surface water reservoirs and ground-water recharge pits as storage systems. A framework was developed to assess the significance and extent of water management problems, match the problems with existing RWH-based solutions and develop a robust ready-to-use decision support tool that can quantify the costs and benefits of implementing several RWH-based storage systems. The methodology adopted was the mixed method approach, involving a detailed literature review, followed by a questionnaire survey of household respondents, Nigerian Architects and Civil Engineers and focus group discussion with stakeholders. 18 selection attributes have been defined and three alternatives have been identified in this research. The questionnaires were analysed using SPSS, excel and selected statistical methods to derive weightings of the attributes for the tool. Following this, three case studies were modelled using RainCycle software. From the results, the MDA model chose RCC tank as the most appropriate storage system for RWH.

Keywords: rainwater harvesting, modelling, hydraulic assessment, whole life cost, decision support system

Procedia PDF Downloads 358
405 The LMPA/Epoxy Mixture Encapsulation of OLED on Polyimide Substrate

Authors: Chuyi Ye, Minsang Kim, Cheol-Hee Moon

Abstract:

The organic light emitting diode(OLED), is a potential organic optical functional materials which is considered as the next generation display technology with the advantages such as all-solid state, ultra-thin thickness, active luminous and flexibility. Due to the development of polymer-inorganic substrate, it becomes possible to achieve the flexible OLED display. However the organic light-emitting material is very sensitive to the oxygen and water vapor, and the encapsulation requires water vapor transmission rate(WVTR) and oxygen transmission rate(OTR) as lower as 10-6 g/(m2.d) and 10-5 cm3/(m2.d) respectively. In current situation, the rigorous WVTR and OTR have restricted the application of the OLED display. Traditional epoxy/getter or glass frit approaches, which have been widely applied on glass-substrate-based devices, are not suitable for transparent flexible organic devices, and mechanically flexible thin-film approaches are required. To ensure the OLED’s lifetime, the encapsulation material of the OLED package is very important. In this paper, a low melting point alloy(LMPA)-epoxy mixture in the encapsulation process is introduced. There will be a phase separation when the mixture is heated to the melting of LMPA and the formation of the double line structure between two substrates: the alloy barrier has extremely low WVTR and OTR and the epoxy fills the potential tiny cracks. In our experiment, the PI film is chosen as a flexible transparent substrate, and Mo and Cu are deposited on the PI film successively. Then the two metal layers are photolithographied to the sealing pattern line. The Mo is a transition layer between the PI film and Cu, at the same time, the Cu has a good wettability with the LMPA(Sn-58Bi). At last, pattern is printed with LMPA layer and applied voltage, the gathering Joule heat melt the LMPA and form the double line structure and the OLED package is sealed in the same time. In this research, the double-line encapsulating structure of LMPA and epoxy on the PI film is manufactured for the flexible OLED encapsulation, and in this process it is investigated whether the encapsulation satisfies the requirement of WVTR and OTR for the flexible OLED.

Keywords: encapsulation, flexible, low melting point alloy, OLED

Procedia PDF Downloads 579
404 Educational Turn towards Digitalization by Changing Leadership, Networks and Qualification Concepts

Authors: Patricia Girrbach

Abstract:

Currently, our society is facing a new and incremental upheaval technological revolution named digitalization. In order to face the relating challenges organizations have to be prepared. They need appropriate circumstances in order to cope with current issues concerning digital transformation processes. Nowadays digitalization emerged as top issues for companies and business leaders. In this context, it is a pressure on companies to have a positive, productive digital culture. And indeed, Organizations realize that they need to address this important issue. In this context 87 percent of organizations quote culture and engagement as one of their top challenges in terms of any change process, but especially in terms of the digital turn. Executives can give their company a competitive advantage and attract top talent by having a strong workplace culture that supports digitalization. Many current studies attest that fact. Digital-oriented companies can hire more easily, they have the lowest voluntary turnover rates, deliver better customer service, and are more profitable over the long run. Based on this background it is important to provide companies starting points and practical measurements how to reach this goal. The major findings are that firms need to make sense out of digitalization. In this context, they should focus on internal but also on external stakeholders. Furthermore, they should create certain working conditions and they should support the qualification of employees, e.g. by Virtual Reality. These measurements can create positive experiences in terms of digitalization in order to ensure the support of stuff in terms of the digital turn. Based on several current studies and literature research this paper provides concrete measurements for companies in order to enable the digital turn. Therefore, the aim of this paper is providing possible practical starting points which support both the education of employees by digitalization as well as the digital turn itself within the organization.

Keywords: digitalization, industry 4.0, education 4.0, virtual reality

Procedia PDF Downloads 139
403 Collapse Analysis of Planar Composite Frame under Impact Loads

Authors: Lian Song, Shao-Bo Kang, Bo Yang

Abstract:

Concrete filled steel tubular (CFST) structure has been widely used in construction practices due to its superior performances under various loading conditions. However, limited studies are available when this type of structure is subjected to impact or explosive loads. Current methods in relevant design codes are not specific for preventing progressive collapse of CFST structures. Therefore, it is necessary to carry out numerical simulations on CFST structure under impact loads. In this study, finite element analyses are conducted on the mechanical behaviour of composite frames which composed of CFST columns and steel beams subject to impact loading. In the model, CFST columns are simulated using finite element software ABAQUS. The model is verified by test results of solid and hollow CFST columns under lateral impacts, and reasonably good agreement is obtained through comparisons. Thereafter, a multi-scale finite element modelling technique is developed to evaluate the behaviour of a five-storey three-span planar composite frame. Alternate path method and direct simulation method are adopted to perform the dynamic response of the frame when a supporting column is removed suddenly. In the former method, the reason for column removal is not considered and only the remaining frame is simulated, whereas in the latter, a specific impact load is applied to the frame to take account of the column failure induced by vehicle impact. Comparisons are made between these two methods in terms of displacement history and internal force redistribution, and design recommendations are provided for the design of CFST structures under impact loads.

Keywords: planar composite frame, collapse analysis, impact loading, direct simulation method, alternate path method

Procedia PDF Downloads 500
402 Comparison of Various Landfill Ground Improvement Techniques for Redevelopment of Closed Landfills to Cater Transport Infrastructure

Authors: Michael D. Vinod, Hadi Khabbaz

Abstract:

Construction of infrastructure above or adjacent to landfills is becoming more common to capitalize on the limited space available within urban areas. However, development above landfills is a challenging task due to large voids, the presence of organic matter, heterogeneous nature of waste and ambiguity surrounding landfill settlement prediction. Prior to construction of infrastructure above landfills, ground improvement techniques are being employed to improve the geotechnical properties of landfill material. Although the ground improvement techniques have little impact on long term biodegradation and creep related landfill settlement, they have shown some notable short term success with a variety of techniques, including methods for verifying the level of effectiveness of ground improvement techniques. This paper provides geotechnical and landfill engineers a guideline for selection of landfill ground improvement techniques and their suitability to project-specific sites. Ground improvement methods assessed and compared in this paper include concrete injected columns (CIC), dynamic compaction, rapid impact compaction (RIC), preloading, high energy impact compaction (HEIC), vibro compaction, vibro replacement, chemical stabilization and the inclusion of geosynthetics such as geocells. For each ground improvement technique a summary of the existing theory, benefits, limitations, suitable modern ground improvement monitoring methods, the applicability of ground improvement techniques for landfills and supporting case studies are provided. The authors highlight the importance of implementing cost-effective monitoring techniques to allow observation and necessary remediation of the subsidence effects associated with long term landfill settlement. These ground improvement techniques are primarily for the purpose of construction above closed landfills to cater for transport infrastructure loading.

Keywords: closed landfills, ground improvement, monitoring, settlement, transport infrastructure

Procedia PDF Downloads 199
401 Improvement of Thermal Comfort Conditions in an Urban Space "Case Study: The Square of Independence, Setif, Algeria"

Authors: Ballout Amor, Yasmina Bouchahm, Lacheheb Dhia Eddine Zakaria

Abstract:

Several studies all around the world were conducted on the phenomenon of the urban heat island, and referring to the results obtained, one of the most important factors that influence this phenomenon is the mineralization of the cities which means the reducing of evaporative urban surfaces, replacing vegetation and wetlands with concrete and asphalt. The use of vegetation and water can change the urban environment and improve comfort, thus reduce the heat island. The trees act as a mask to the sun, wind, and sound, and also as a source of humidity which reduces air temperature and surrounding surfaces. Water also acts as a buffer to noise; it is also a source of moisture and regulates temperature not to mention the psychological effect on humans. Our main objective in this paper is to determine the impact of vegetation, ponds and fountains on the urban micro climate in general and on the thermal comfort of people along the Independence square in the Algerian city of Sétif, which is a semi-arid climate, in particularly. In order to reach this objective, a comparative study between different scenarios has been done; the use of the Envi-met program enabled us to model the urban environment of the Independence Square and to study the possibility of improving the conditions of comfort by adding an amount of vegetation and water ponds. After studying the results obtained (temperature, relative humidity, wind speed, PMV and PPD indicators), the efficiency of the additions we've made on the square was confirmed and this is what helped us to confirm our assumptions regarding the terms of comfort in the studied site, and in the end we are trying to develop recommendations and solutions which may contribute to improve the conditions for greater comfort in the Independence square.

Keywords: comfort in outer space, urban environment, scenarisation, vegetation, water ponds, public square, simulation

Procedia PDF Downloads 434
400 Drug Design Modelling and Molecular Virtual Simulation of an Optimized BSA-Based Nanoparticle Formulation Loaded with Di-Berberine Sulfate Acid Salt

Authors: Eman M. Sarhan, Doaa A. Ghareeb, Gabriella Ortore, Amr A. Amara, Mohamed M. El-Sayed

Abstract:

Drug salting and nanoparticle-based drug delivery formulations are considered to be an effective means for rendering the hydrophobic drugs’ nano-scale dispersion in aqueous media, and thus circumventing the pitfalls of their poor solubility as well as enhancing their membrane permeability. The current study aims to increase the bioavailability of quaternary ammonium berberine through acid salting and biodegradable bovine serum albumin (BSA)-based nanoparticulate drug formulation. Berberine hydroxide (BBR-OH) that was chemically synthesized by alkalization of the commercially available berberine hydrochloride (BBR-HCl) was then acidified to get Di-berberine sulfate (BBR)₂SO₄. The purified crystals were spectrally characterized. The desolvation technique was optimized for the preparation of size-controlled BSA-BBR-HCl, BSA-BBR-OH, and BSA-(BBR)₂SO₄ nanoparticles. Particle size, zeta potential, drug release, encapsulation efficiency, Fourier transform infrared spectroscopy (FTIR), tandem MS-MS spectroscopy, energy-dispersive X-ray spectroscopy (EDX), scanning and transmitting electron microscopic examination (SEM, TEM), in vitro bioactivity, and in silico drug-polymer interaction were determined. BSA (PDB ID; 4OR0) protonation state at different pH values was predicted using Amber12 molecular dynamic simulation. Then blind docking was performed using Lamarkian genetic algorithm (LGA) through AutoDock4.2 software. Results proved the purity and the size-controlled synthesis of berberine-BSA-nanoparticles. The possible binding poses, hydrophobic and hydrophilic interactions of berberine on BSA at different pH values were predicted. Antioxidant, anti-hemolytic, and cell differentiated ability of tested drugs and their nano-formulations were evaluated. Thus, drug salting and the potentially effective albumin berberine nanoparticle formulations can be successfully developed using a well-optimized desolvation technique and exhibiting better in vitro cellular bioavailability.

Keywords: berberine, BSA, BBR-OH, BBR-HCl, BSA-BBR-HCl, BSA-BBR-OH, (BBR)₂SO₄, BSA-(BBR)₂SO₄, FTIR, AutoDock4.2 Software, Lamarkian genetic algorithm, SEM, TEM, EDX

Procedia PDF Downloads 152
399 Concanavaline a Conjugated Bacterial Polyester Based PHBHHx Nanoparticles Loaded with Curcumin for the Ovarian Cancer Therapy

Authors: E. Kilicay, Z. Karahaliloglu, B. Hazer, E. B. Denkbas

Abstract:

In this study, we have prepared concanavaline A (ConA) functionalized curcumin (CUR) loaded PHBHHx (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) nanoparticles as a novel and efficient drug delivery system. CUR is a promising anticancer agent for various cancer types. The aim of this study was to evaluate therapeutic potential of curcumin loaded PHBHHx nanoparticles (CUR-NPs) and concanavaline A conjugated curcumin loaded NPs (ConA-CUR NPs) for ovarian cancer treatment. ConA was covalently connected to the carboxylic group of nanoparticles by EDC/NHS activation method. In the ligand attachment experiment, the binding capacity of ConA on the surface of NPs was found about 90%. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the prepared nanoparticles were smooth and spherical in shape. The size and zeta potential of prepared NPs were about 228±5 nm and −21.3 mV respectively. ConA-CUR NPs were characterized by FT-IR spectroscopy which confirmed the existence of CUR and ConA in the nanoparticles. The entrapment and loading efficiencies of different polymer/drug weight ratios, 1/0.125 PHBHHx/CUR= 1.25CUR-NPs; 1/0.25 PHBHHx/CUR= 2.5CUR-NPs; 1/0.5 PHBHHx/CUR= 5CUR-NPs, ConA-1.25CUR NPs, ConA-2.5CUR NPs and ConA-5CUR NPs were found to be ≈ 68%-16.8%; 55%-17.7 %; 45%-33.6%; 70%-15.7%; 60%-17%; 51%-30.2% respectively. In vitro drug release showed that the sustained release of curcumin was observed from CUR-NPs and ConA-CUR NPs over a period of 19 days. After binding of ConA, the release rate was slightly increased due to the migration of curcumin to the surface of the nanoparticles and the matrix integrities was decreased because of the conjugation reaction. This functionalized nanoparticles demonstrated high drug loading capacity, sustained drug release profile, and high and long term anticancer efficacy in human cancer cell lines. Anticancer activity of ConA-CUR NPs was proved by MTT assay and reconfirmed by apoptosis and necrosis assay. The anticancer activity of ConA-CUR NPs was measured in ovarian cancer cells (SKOV-3) and the results revealed that the ConA-CUR NPs had better tumor cells decline activity than free curcumin. The nacked nanoparticles have no cytotoxicity against human ovarian carcinoma cells. Thus the developed functionalized nanoformulation could be a promising candidate in cancer therapy.

Keywords: curcumin, curcumin-PHBHHx nanoparticles, concanavalin A, concanavalin A-curcumin PHBHHx nanoparticles, PHBHHx nanoparticles, ovarian cancer cell

Procedia PDF Downloads 380
398 Technique for Online Condition Monitoring of Surge Arresters

Authors: Anil S. Khopkar, Kartik S. Pandya

Abstract:

Overvoltage in power systems is a phenomenon that cannot be avoided. However, it can be controlled to a certain extent. Power system equipment is to be protected against overvoltage to avoid system failure. Metal Oxide Surge Arresters (MOSA) are connected to the system for the protection of the power system against overvoltages. The MOSA will behave as an insulator under normal working conditions, where it offers a conductive path under voltage conditions. MOSA consists of zinc oxide elements (ZnO Blocks), which have non-linear V-I characteristics. ZnO blocks are connected in series and fitted in ceramic or polymer housing. This degrades due to the aging effect under continuous operation. Degradation of zinc oxide elements increases the leakage current flowing from the surge arresters. This Increased leakage current results in the increased temperature of the surge arrester, which further decreases the resistance of zinc oxide elements. As a result, leakage current increases, which again increases the temperature of a MOSA. This creates thermal runaway conditions for MOSA. Once it reaches the thermal runaway condition, it cannot return to normal working conditions. This condition is a primary cause of premature failure of surge arresters, as MOSA constitutes a core protective device for electrical power systems against transients. It contributes significantly to the reliable operation of the power system network. Hence, the condition monitoring of surge arresters should be done at periodic intervals. Online and Offline condition monitoring techniques are available for surge arresters. Offline condition monitoring techniques are not very popular as they require removing surge arresters from the system, which requires system shutdown. Hence, online condition monitoring techniques are very popular. This paper presents the evaluation technique for the surge arrester condition based on the leakage current analysis. Maximum amplitude of total leakage current (IT), Maximum amplitude of fundamental resistive leakage current (IR) and maximum amplitude of third harmonic resistive leakage current (I3rd) have been analyzed as indicators for surge arrester condition monitoring.

Keywords: metal oxide surge arrester (MOSA), over voltage, total leakage current, resistive leakage current

Procedia PDF Downloads 45
397 Synthesis and Characterization of Mixed ligand complexes of Bipyridyl and Glycine with Different Counter Anions as Functional Antioxidant Enzyme Mimics

Authors: Mohamed M. Ibrahim, Gaber A. M. Mersal, Salih Al-Juaid, Samir A. El-Shazly

Abstract:

A series of mixed ligand complexes, viz., [Cu(BPy)(Gly)X]Y {X = Cl (1), Y = 0; X = 0, Y = ClO4- (2); X = H2O, Y = NO3- (3); X = H2O, Y = CH3COO- (4); and [Cu(BPy)(Gly)-(H2O)]2(SO4) (5) have been synthesized. Their structures and properties were characterized by elemental analysis, thermal analaysis, IR, UV–vis, and ESR spectroscopy, as well as electrochemical measurements including cyclic voltammetry, electrical molar conductivity, and magnetic moment measurements. Complexes 1 and 2 formed slightly distorted square-pyramidal coordination geometries of CuN3OCl and CuN3O2, respectively in which the N,O-donor glycine and N,N-donor bipyridyl bind at the basal plane with chloride ion or water as the axial ligand. Complex 3 shows square planar CuN3O coordination geometry, which exhibits chemically significant hydrogen bonding interactions besides showing coordination polymer formation. The superoxide dismutase and catalase-like activities of all complexes were tested and were found to be promising candidates as durable electron-transfer catalyst being close to the efficiency of the mimicking enzymes displaying either catalase or tyrosinase activity to serve for complete reactive oxygen species (ROS) detoxification, both with respect to superoxide radicals and related peroxides. The DNA binding interaction with super coiled pGEM-T plasmid DNA was investigated by using spectral (absorption and emission) titration and electrochemical techniques. The results revealed that DNA intercalate with complexes 1 and 2 through the groove binding mode. The calculated intrinsic binding constant (Kb) of 1 and 2 were 4.71 and 2.429 × 105 M−1, respectively. Gel electrophoresis study reveals the fact that both complexes cleave super coiled pGEM-T plasmid DNA to nicked and linear forms in the absence of any additives. On the other hand, the interaction of both complexes with DNA, the quasi-reversible CuII/CuI redox couple slightly improves its reversibility with considerable decrease in current intensity. All the experimental results indicate that the bipyridyl mixed copper(II) complex (1) intercalate more effectively into the DNA base pairs.

Keywords: enzyme mimics, mixed ligand complexes, X-ray structures, antioxidant, DNA-binding, DNA cleavage

Procedia PDF Downloads 526
396 Vulnerability Assessment of Vertically Irregular Structures during Earthquake

Authors: Pranab Kumar Das

Abstract:

Vulnerability assessment of buildings with irregularity in the vertical direction has been carried out in this study. The constructions of vertically irregular buildings are increasing in the context of fast urbanization in the developing countries including India. During two reconnaissance based survey performed after Nepal earthquake 2015 and Imphal (India) earthquake 2016, it has been observed that so many structures are damaged due to the vertically irregular configuration. These irregular buildings are necessary to perform safely during seismic excitation. Therefore, it is very urgent demand to point out the actual vulnerability of the irregular structure. So that remedial measures can be taken for protecting those structures during natural hazard as like earthquake. This assessment will be very helpful for India and as well as for the other developing countries. A sufficient number of research has been contributed to the vulnerability of plan asymmetric buildings. In the field of vertically irregular buildings, the effort has not been forwarded much to find out their vulnerability during an earthquake. Irregularity in vertical direction may be caused due to irregular distribution of mass, stiffness and geometrically irregular configuration. Detailed analysis of such structures, particularly non-linear/ push over analysis for performance based design seems to be challenging one. The present paper considered a number of models of irregular structures. Building models made of both reinforced concrete and brick masonry are considered for the sake of generality. The analyses are performed with both help of finite element method and computational method.The study, as a whole, may help to arrive at a reasonably good estimate, insight for fundamental and other natural periods of such vertically irregular structures. The ductility demand, storey drift, and seismic response study help to identify the location of critical stress concentration. Summarily, this paper is a humble step for understanding the vulnerability and framing up the guidelines for vertically irregular structures.

Keywords: ductility, stress concentration, vertically irregular structure, vulnerability

Procedia PDF Downloads 217
395 Development of a Sprayable Piezoelectric Material for E-Textile Applications

Authors: K. Yang, Y. Wei, M. Zhang, S. Yong, R. Torah, J. Tudor, S. Beeby

Abstract:

E-textiles are traditional textiles with integrated electronic functionality. It is an emerging innovation with numerous applications in fashion, wearable computing, health and safety monitoring, and the military and medical sectors. The piezoelectric effect is a widespread and versatile transduction mechanism used in sensor and actuator applications. Piezoelectric materials produce electric charge when stressed. Conversely, mechanical deformation occurs when an electric field is applied across the material. Lead Zirconate Titanate (PZT) is a widely used piezoceramic material which has been used to fabricate e-textiles through screen printing, electro spinning and hydrothermal synthesis. This paper explores an alternative fabrication process: Spray coating. Spray coating is a straightforward and cost effective fabrication method applicable on both flat and curved surfaces. It can also be applied selectively by spraying through a stencil which enables the required design to be realised on the substrate. This work developed a sprayable PZT based piezoelectric ink consisting of a binder (Fabink-Binder-01), PZT powder (80 % 2 µm and 20 % 0.8 µm) and acetone as a thinner. The optimised weight ratio of PZT/binder is 10:1. The components were mixed using a SpeedMixer DAC 150. The fabrication processes is as follows: 1) Screen print a UV-curable polyurethane interface layer on the textile to create a smooth textile surface. 2) Spray one layer of a conductive silver polymer ink through a pre-designed stencil and dry at 90 °C for 10 minutes to form the bottom electrode. 3) Spray three layers of the PZT ink through a pre-designed stencil and dry at 90 °C for 10 minutes for each layer to form a total thickness of ~250µm PZT layer. 4) Spray one layer of the silver ink through a pre-designed stencil on top of the PZT layer and dry at 90 °C for 10 minutes to form the top electrode. The domains of the PZT elements were aligned by polarising the material at an elevated temperature under a strong electric field. A d33 of 37 pC/N has been achieved after polarising at 90 °C for 6 minutes with an electric field of 3 MV/m. The application of the piezoelectric textile was demonstrated by fabricating a pressure sensor to switch an LED on/off. Other potential applications on e-textiles include motion sensing, energy harvesting, force sensing and a buzzer.

Keywords: piezoelectric, PZT, spray coating, pressure sensor, e-textile

Procedia PDF Downloads 449
394 Optimal Design of Tuned Inerter Damper-Based System for the Control of Wind-Induced Vibration in Tall Buildings through Cultural Algorithm

Authors: Luis Lara-Valencia, Mateo Ramirez-Acevedo, Daniel Caicedo, Jose Brito, Yosef Farbiarz

Abstract:

Controlling wind-induced vibrations as well as aerodynamic forces, is an essential part of the structural design of tall buildings in order to guarantee the serviceability limit state of the structure. This paper presents a numerical investigation on the optimal design parameters of a Tuned Inerter Damper (TID) based system for the control of wind-induced vibration in tall buildings. The control system is based on the conventional TID, with the main difference that its location is changed from the ground level to the last two story-levels of the structural system. The TID tuning procedure is based on an evolutionary cultural algorithm in which the optimum design variables defined as the frequency and damping ratios were searched according to the optimization criteria of minimizing the root mean square (RMS) response of displacements at the nth story of the structure. A Monte Carlo simulation was used to represent the dynamic action of the wind in the time domain in which a time-series derived from the Davenport spectrum using eleven harmonic functions with randomly chosen phase angles was reproduced. The above-mentioned methodology was applied on a case-study derived from a 37-story prestressed concrete building with 144 m height, in which the wind action overcomes the seismic action. The results showed that the optimally tuned TID is effective to reduce the RMS response of displacements up to 25%, which demonstrates the feasibility of the system for the control of wind-induced vibrations in tall buildings.

Keywords: evolutionary cultural algorithm, Monte Carlo simulation, tuned inerter damper, wind-induced vibrations

Procedia PDF Downloads 122
393 poly(N-Isopropylacrylamide)-Polyvinyl Alcohol Semi-Interpenetrating Network Hydrogel for Wound Dressing

Authors: Zi-Yan Liao, Shan-Yu Zhang, Ya-Xian Lin, Ya-Lun Lee, Shih-Chuan Huang, Hong-Ru Lin

Abstract:

Traditional wound dressings, such as gauze, bandages, etc., are easy to adhere to the tissue fluid exuded from the wound, causing secondary damage to the wound during removal. This study takes this as the idea to develop a hydrogel dressing, to explore that the dressing will not cause secondary damage to the wound when it is torn off, and at the same time, create an environment conducive to wound healing. First, the temperature-sensitive material N-isopropylacrylamide (NIPAAm) was used as the substrate. Due to its low mechanical properties, the hydrogel would break due to pulling during human activities. Polyvinyl alcohol (PVA) interpenetrates into it to enhance the mechanical properties, and a semi-interpenetration (semi-IPN) composed of poly(N-isopropylacrylamide) (PNIPAAm) and polyvinyl alcohol (PVA) was prepared by free radical polymerization. PNIPAAm was cross-linked with N,N'-methylenebisacrylamide (NMBA) in an ice bath in the presence of linear PVA, and tetramethylhexamethylenediamine (TEMED) was added as a promoter to speed up the gel formation. The polymerization stage was carried out at 16°C for 17 hours and washed with distilled water for three days after gel formation, and the water was changed several times in the middle to complete the preparation of semi-IPN hydrogel. Finally, various tests were used to analyze the effects of different ratios of PNIPAAm and PVA on semi-IPN hydrogels. In the swelling test, it was found that the maximum swelling ratio can reach about 50% under the environment of 21°C, and the higher the ratio of PVA, the more water can be absorbed. The saturated moisture content test results show that when more PVA is added, the higher saturated water content. The water vapor transmission rate test results show that the value of the semi-IPN hydrogel is about 57 g/m²/24hr, which is not much related to the proportion of PVA. It is found in the LCST test compared with the PNIPAAm hydrogel; the semi-IPN hydrogel possesses the same critical solution temperature (30-35°C). The semi-IPN hydrogel prepared in this study has a good effect on temperature response and has the characteristics of thermal sensitivity. It is expected that after improvement, it can be used in the treatment of surface wounds, replacing the traditional dressing shortcoming.

Keywords: hydrogel, N-isopropylacrylamide, polyvinyl alcohol, hydrogel wound dressing, semi-interpenetrating polymer network

Procedia PDF Downloads 63
392 Heritage Tourism and the Changing Rural Landscape: Case Study of Cultural Landscape of Honghe Hani Rice Terraces

Authors: Yan Wang; Mathis Stock

Abstract:

The World Heritage Site of Honghe Hani rice terrace, also a marginal rural region in Southern China, is undergoing rapid change because of urbanization and heritage tourism. Influenced by out-migration and changing ways of living in the urbanization process, the place sees a tendency of losing its rice terrace landscape, traditional housings and other forms of cultural traditions. However, heritage tourism tends to keep the past, valorize them for tourism purposes and diversifies rural livelihood strategies. The place stands at this development trajectories, where the same resources are subjected to different uses by different actors. The research seeks to answer the questions of how the site is transformed and co-constructed by different institutions, practices and actors, and the how heritage tourism affects local livelihood. The research aims to describe the transformation of villages, rice terraces, and cultural traditions, analyze the place-making process, and assess the role of heritage tourism in local livelihood transition. The research uses a mixed of methods including direct observation, participant observation, interviews; collects various data of images, words, narratives, and statistics, and analyze them qualitatively and qualitatively. Theoretically, it is hoped that the research would reexamine the concept of heritage, the world heritage practice from UNESCO, reveal the conflicts it entails in development and brings more thoughts from a functional perspective on heritage in relation to rural development. Practically, it is also anticipated that the research could access the linkage between heritage tourism and local livelihood, and generate concrete suggestions on how tourism could engage locals and improve their livelihood.

Keywords: cultural landscape, Hani rice terraces, heritage tourism, livelihood strategy, place making, rural development, transformation

Procedia PDF Downloads 213
391 Detection and Molecular Identification of Bacteria Forming Polyhydroxyalkanoate and Polyhydroxybutyrate Isolated from Soil in Saudi Arabia

Authors: Ali Bahkali, Rayan Yousef Booq, Mohammad Khiyami

Abstract:

Soil samples were collected from five different regions in the Kingdom of Saudi Arabia. Microbiological methods included dilution methods and pour plates to isolate and purify bacteria soil. The ability of isolates to develop biopolymer was investigated on petri dishes containing elements and substance concentrations stimulating developing biopolymer. Fluorescent stains, Nile red and Nile blue were used to stain the bacterial cells developing biopolymers. In addition, Sudan black was used to detect biopolymers in bacterial cells. The isolates which developed biopolymers were identified based on their gene sequence of 1 6sRNA and their ability to grow and synthesize PHAs on mineral medium supplemented with 1% dates molasses as the only carbon source under nitrogen limitation. During the study 293 bacterial isolates were isolated and detected. Through the initial survey on the petri dishes, 84 isolates showed the ability to develop biopolymers. These bacterial colonies developed a pink color due to accumulation of the biopolymers in the cells. Twenty-three isolates were able to grow on dates molasses, three strains of which showed the ability to accumulate biopolymers. These strains included Bacillus sp., Ralstonia sp. and Microbacterium sp. They were detected by Nile blue A stain with fluorescence microscopy (OLYMPUS IX 51). Among the isolated strains Ralstonia sp. was selected after its ability to grow on molasses dates in the presence of a limited nitrogen source was detected. The optimum conditions for formation of biopolymers by isolated strains were investigated. Conditions studied included, best incubation duration (2 days), temperature (30°C) and pH (7-8). The maximum PHB production was raised by 1% (v1v) when using concentrations of dates molasses 1, 2, 3, 4 and 5% in MSM. The best inoculated with 1% old inoculum (1= OD). The ideal extraction method of PHA and PHB proved to be 0.4% sodium hypochlorite solution, producing a quantity of polymer 98.79% of the cell's dry weight. The maximum PHB production was 1.79 g/L recorded by Ralstonia sp. after 48 h, while it was 1.40 g/L produced by R.eutropha ATCC 17697 after 48 h.

Keywords: bacteria forming polyhydroxyalkanoate, detection, molecular, Saudi Arabia

Procedia PDF Downloads 325
390 Influence of Crystal Orientation on Electromechanical Behaviors of Relaxor Ferroelectric P(VDF-TRFE-CTFE) Terpolymer

Authors: Qing Liu, Jean-fabien Capsal, Claude Richard

Abstract:

In this current contribution, authors are dedicated to investigate influence of the crystal lamellae orientation on electromechanical behaviors of relaxor ferroelectric Poly (vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) films by control of polymer microstructure, aiming to picture the full map of structure-property relationship. In order to define their crystal orientation films, terpolymer films were fabricated by solution-casting, stretching and hot-pressing process. Differential scanning calorimetry, impedance analyzer, and tensile strength techniques were employed to characterize crystallographic parameters, dielectric permittivity, and elastic Young’s modulus respectively. In addition, large electrical induced out-of-plane electrostrictive strain was obtained by cantilever beam mode. Consequently, as-casted pristine films exhibited surprisingly high electrostrictive strain 0.1774% due to considerably small value of elastic Young’s modulus although relatively low dielectric permittivity. Such reasons contributed to large mechanical elastic energy density. Instead, due to 2 folds increase of elastic Young’s modulus and less than 50% augmentation of dielectric constant, fully-crystallized film showed weak electrostrictive behavior and mechanical energy density as well. And subjected to mechanical stretching process, Film C exhibited stronger dielectric constant and out-performed electrostrictive strain over Film B because edge-on crystal lamellae orientation induced by uniaxially mechanical stretch. Hot-press films were compared in term of cooling rate. Rather large electrostrictive strain of 0.2788% for hot-pressed Film D in quenching process was observed although its dielectric permittivity equivalent to that of pristine as-casted Film A, showing highest mechanical elastic energy density value of 359.5 J/m^3. In hot-press cooling process, dielectric permittivity of Film E saw values at 48.8 concomitant with ca.100% increase of Young’s modulus. Films with intermediate mechanical energy density were obtained.

Keywords: crystal orientation, electrostroctive strain, mechanical energy density, permittivity, relaxor ferroelectric

Procedia PDF Downloads 359
389 Site Investigations and Mitigation Measures of Landslides in Sainj and Tirthan Valley of Kullu District, Himachal Pradesh, India

Authors: Laxmi Versain, R. S. Banshtu

Abstract:

Landslides are found to be the most commonly occurring geological hazards in the mountainous regions of the Himalaya. This mountainous zone is facing large number of seismic turbulences, climatic changes, and topography changes due to increasing urbanization. That eventually has lead several researchers working for best suitable methodologies to infer the ultimate results. Landslide Hazard Zonation has widely come as suitable method to know the appropriate factors that trigger the lansdslide phenomenon on higher reaches. Most vulnerable zones or zones of weaknesses are indentified and safe mitigation measures are to be suggested to mitigate and channelize the study of an effected area. Use of Landslide Hazard Zonation methodology in relative zones of weaknesses depend upon the data available for the particular site. The causative factors are identified and data is made available to infer the results. Factors like seismicity in mountainous region have closely associated to make the zones of thrust and faults or lineaments more vulnerable. Data related to soil, terrain, rainfall, geology, slope, nature of terrain, are found to be varied for various landforms and areas. Thus, the relative causes are to be identified and classified by giving specific weightage to each parameter. Factors which cause the instability of slopes are several and can be grouped to infer the potential modes of failure. The triggering factors of the landslides on the mountains are not uniform. The urbanization has crawled like ladder and emergence of concrete jungles are in a very fast pace on hilly region of Himalayas. The local terrains has largely been modified and hence instability of several zones are triggering at very fast pace. More strategic and pronounced methods are required to reduce the effect of landslide.

Keywords: zonation, LHZ, susceptible, weightages, methodology

Procedia PDF Downloads 178