Search results for: operational reliability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3158

Search results for: operational reliability

338 Profile of the Renal Failure Patients under Haemodialysis at B. P. Koirala Institute of Health Sciences Nepal

Authors: Ram Sharan Mehta, Sanjeev Sharma

Abstract:

Introduction: Haemodialysis (HD) is a mechanical process of removing waste products from the blood and replacing essential substances in patients with renal failure. First artificial kidney developed in Netherlands in 1943 AD First successful treatment of CRF reported in 1960AD, life-saving treatment begins for CRF in 1972 AD. In 1973 AD Medicare took over financial responsibility for many clients and after that method become popular. BP Koirala institute of health science is the only center outside the Kathmandu, where HD service is available. In BPKIHS PD started in Jan.1998, HD started in August 2002 till September 2003 about 278 patients received HD. Day by day the number of HD patients is increasing in BPKIHS as with institutional growth. No such type of study was conducted in past hence there is lack of valid & reliable baseline data. Hence, the investigators were interested to conduct the study on " Profile of the Renal Failure patients under Haemodialysis at B.P. Koirala Institute of Health Sciences Nepal". Objectives: The objectives of the study were: to find out the Socio-demographic characteristics of the patients, to explore the knowledge of the patients regarding disease process and Haemodialysis and to identify the problems encountered by the patients. Methods: It is a hospital-based exploratory study. The population of the study was the clients under HD and the sampling method was purposive. Fifty-four patients undergone HD during the period of 17 July 2012 to 16 July 2013 of complete one year were included in the study. Structured interview schedule was used for collect data after obtaining validity and reliability. Results: Total 54 subjects had undergone for HD, having age range of 5-75 years and majority of them were male (74%) and Hindu (93 %). Thirty-one percent illiterate, 28% had agriculture their occupation, 80% of them were from very poor community, and about 30% subjects were unaware about the disease they suffering. Majority of subjects reported that they had no complications during dialysis (61%), where as 20% reported nausea and vomiting, 9% Hypotension, 4% headache and 2%chest pain during dialysis. Conclusions: CRF leading to HD is a long battle for patients, required to make major and continuous adjustment, both physiologically and psychologically. The study suggests that non-compliance with HD regimen were common. The socio-demographic and knowledge profile will help in the management and early prevention of disease and evaluate aspects that will influence care and patients can select mode of treatment themselves properly.

Keywords: profile, haemodialysis, Nepal, patients, treatment

Procedia PDF Downloads 363
337 Carbon Capture and Storage by Continuous Production of CO₂ Hydrates Using a Network Mixing Technology

Authors: João Costa, Francisco Albuquerque, Ricardo J. Santos, Madalena M. Dias, José Carlos B. Lopes, Marcelo Costa

Abstract:

Nowadays, it is well recognized that carbon dioxide emissions, together with other greenhouse gases, are responsible for the dramatic climate changes that have been occurring over the past decades. Gas hydrates are currently seen as a promising and disruptive set of materials that can be used as a basis for developing new technologies for CO₂ capture and storage. Its potential as a clean and safe pathway for CCS is tremendous since it requires only water and gas to be mixed under favorable temperatures and mild high pressures. However, the hydrates formation process is highly exothermic; it releases about 2 MJ per kilogram of CO₂, and it only occurs in a narrow window of operational temperatures (0 - 10 °C) and pressures (15 to 40 bar). Efficient continuous hydrate production at a specific temperature range necessitates high heat transfer rates in mixing processes. Past technologies often struggled to meet this requirement, resulting in low productivity or extended mixing/contact times due to inadequate heat transfer rates, which consistently posed a limitation. Consequently, there is a need for more effective continuous hydrate production technologies in industrial applications. In this work, a network mixing continuous production technology has been shown to be viable for producing CO₂ hydrates. The structured mixer used throughout this work consists of a network of unit cells comprising mixing chambers interconnected by transport channels. These mixing features result in enhanced heat and mass transfer rates and high interfacial surface area. The mixer capacity emerges from the fact that, under proper hydrodynamic conditions, the flow inside the mixing chambers becomes fully chaotic and self-sustained oscillatory flow, inducing intense local laminar mixing. The device presents specific heat transfer rates ranging from 107 to 108 W⋅m⁻³⋅K⁻¹. A laboratory scale pilot installation was built using a device capable of continuously capturing 1 kg⋅h⁻¹ of CO₂, in an aqueous slurry of up to 20% in mass. The strong mixing intensity has proven to be sufficient to enhance dissolution and initiate hydrate crystallization without the need for external seeding mechanisms and to achieve, at the device outlet, conversions of 99% in CO₂. CO₂ dissolution experiments revealed that the overall liquid mass transfer coefficient is orders of magnitude larger than in similar devices with the same purpose, ranging from 1 000 to 12 000 h⁻¹. The present technology has shown itself to be capable of continuously producing CO₂ hydrates. Furthermore, the modular characteristics of the technology, where scalability is straightforward, underline the potential development of a modular hydrate-based CO₂ capture process for large-scale applications.

Keywords: network, mixing, hydrates, continuous process, carbon dioxide

Procedia PDF Downloads 37
336 Examining Employee Social Intrapreneurial Behaviour (ESIB) in Kuwait: Pilot Study

Authors: Ardita Malaj, Ahmad R. Alsaber, Bedour Alboloushi, Anwaar Alkandari

Abstract:

Organizations worldwide, particularly in Kuwait, are concerned with implementing a progressive workplace culture and fostering social innovation behaviours. The main aim of this research is to examine and establish a thorough comprehension of the relationship between an inventive organizational culture, employee intrapreneurial behaviour, authentic leadership, employee job satisfaction, and employee job commitment in the manufacturing sector of Kuwait, which is a developed economy. Literature reviews analyse the core concepts and their related areas by scrutinizing their definitions, dimensions, and importance to uncover any deficiencies in existing research. The examination of relevant research uncovered major gaps in understanding. This study examines the reliability and validity of a newly developed questionnaire designed to identify the appropriate applications for a large-scale investigation. A preliminary investigation was carried out, determining a sample size of 36 respondents selected randomly from a pool of 223 samples. SPSS was utilized to calculate the percentages of the demographic characteristics for the participants, assess the credibility of the measurements, evaluate the internal consistency, validate all agreements, and determine Pearson's correlation. The study's results indicated that the majority of participants were male (66.7%), aged between 35 and 44 (38.9%), and possessed a bachelor's degree (58.3%). Approximately 94.4% of the participants were employed full-time. 72.2% of the participants are employed in the electrical, computer, and ICT sector, whilst 8.3% work in the metal industry. Out of all the departments, the human resource department had the highest level of engagement, making up 13.9% of the total. Most participants (36.1%) possessed intermediate or advanced levels of experience, whilst 21% were classified as entry-level. Furthermore, 8.3% of individuals were categorized as first-level management, 22.2% were categorized as middle management, and 16.7% were categorized as executive or senior management. Around 19.4% of the participants have over a decade of professional experience. The Pearson's correlation coefficient for all 5 components varies between 0.4009 to 0.7183. The results indicate that all elements of the questionnaire were effectively verified, with a Cronbach alpha factor predominantly exceeding 0.6, which is the criterion commonly accepted by researchers. Therefore, the work on the larger scope of testing and analysis could continue.

Keywords: pilot study, ESIB, innovative organizational culture, Kuwait, validation

Procedia PDF Downloads 20
335 The Correlation between Emotional Intelligence and Locus of Control: Empirical Study on Lithuanian Youth

Authors: Dalia Antiniene, Rosita Lekaviciene

Abstract:

The qualitative methodology based study is designed to reveal a connection between emotional intelligence (EI) and locus of control (LC) within the population of Lithuanian youth. In the context of emotional problems, the locus of control reflects how one estimates the causes of his/her emotions: internals (internal locus of control) associate their emotions with their manner of thinking, whereas externals (external locus of control) consider emotions to be evoked by external circumstances. On the other hand, there is little empirical data about this connection, and the results in disposition are often contradictory. In the conducted study 1430 young people, aged 17 to 27, from various regions of Lithuania were surveyed. The subjects were selected by quota sampling, maintaining natural proportions of the general Lithuanian youth population. To assess emotional intelligence the EI-DARL test (i.e. self-report questionnaire consisting of 75 items) was implemented. The emotional intelligence test, created applying exploratory factor analysis, reveals four main dimensions of EI: understanding of one’s own emotions, regulation of one’s own emotions, understanding other’s emotions, and regulation of other’s emotions (subscale reliability coefficients fluctuate between 0,84 and 0,91). An original 16-item internality/externality scale was used to examine the locus of control (internal consistency of the Externality subscale - 0,75; Internality subscale - 0,65). The study has determined that the youth understands and regulates other people’s emotions better than their own. Using the K-mean cluster analysis method, it was established that there are three groups of subjects according to their EI level – people with low, medium and high EI. After comparing means of subjects’ favorability of statements on the Internality/Externality scale, a predominance of internal locus of control in the young population was established. The multiple regression models has shown that a rather strong statistically significant correlation exists between total EI, EI subscales and LC. People who tend to attribute responsibility for the outcome of their actions to their own abilities and efforts have higher EI and, conversely, the tendency to attribute responsibility to external forces is related more with lower EI. While pursuing their goals, young people with high internality have a predisposition to analyze perceived emotions and, therefore, gain emotional experience: they learn to control their natural reactions and to act adequately in a situation at hand. Thus the study unfolds, that a person’s locus of control and emotional intelligence are related phenomena and allows us to draw a conclusion, that a person’s internality/externality is a reliable predictor of total EI and its components.

Keywords: emotional intelligence, externality, internality, locus of control

Procedia PDF Downloads 206
334 Improving Working Memory in School Children through Chess Training

Authors: Veena Easvaradoss, Ebenezer Joseph, Sumathi Chandrasekaran, Sweta Jain, Aparna Anna Mathai, Senta Christy

Abstract:

Working memory refers to a cognitive processing space where information is received, managed, transformed, and briefly stored. It is an operational process of transforming information for the execution of cognitive tasks in different and new ways. Many class room activities require children to remember information and mentally manipulate it. While the impact of chess training on intelligence and academic performance has been unequivocally established, its impact on working memory needs to be studied. This study, funded by the Cognitive Science Research Initiative, Department of Science & Technology, Government of India, analyzed the effect of one-year chess training on the working memory of children. A pretest–posttest with control group design was used, with 52 children in the experimental group and 50 children in the control group. The sample was selected from children studying in school (grades 3 to 9), which included both the genders. The experimental group underwent weekly chess training for one year, while the control group was involved in extracurricular activities. Working memory was measured by two subtests of WISC-IV INDIA. The Digit Span Subtest involves recalling a list of numbers of increasing length presented orally in forward and in reverse order, and the Letter–Number Sequencing Subtest involves rearranging jumbled alphabets and numbers presented orally following a given rule. Both tasks require the child to receive and briefly store information, manipulate it, and present it in a changed format. The Children were trained using Winning Moves curriculum, audio- visual learning method, hands-on- chess training and recording the games using score sheets, analyze their mistakes, thereby increasing their Meta-Analytical abilities. They were also trained in Opening theory, Checkmating techniques, End-game theory and Tactical principles. Pre equivalence of means was established. Analysis revealed that the experimental group had significant gains in working memory compared to the control group. The present study clearly establishes a link between chess training and working memory. The transfer of chess training to the improvement of working memory could be attributed to the fact that while playing chess, children evaluate positions, visualize new positions in their mind, analyze the pros and cons of each move, and choose moves based on the information stored in their mind. If working-memory’s capacity could be expanded or made to function more efficiently, it could result in the improvement of executive functions as well as the scholastic performance of the child.

Keywords: chess training, cognitive development, executive functions, school children, working memory

Procedia PDF Downloads 245
333 Application of Multidimensional Model of Evaluating Organisational Performance in Moroccan Sport Clubs

Authors: Zineb Jibraili, Said Ouhadi, Jorge Arana

Abstract:

Introduction: Organizational performance is recognized by some theorists as one-dimensional concept, and by others as multidimensional. This concept, which is already difficult to apply in traditional companies, is even harder to identify, to measure and to manage when voluntary organizations are concerned, essentially because of the complexity of that form of organizations such as sport clubs who are characterized by the multiple goals and multiple constituencies. Indeed, the new culture of professionalization and modernization around organizational performance emerges new pressures from the state, sponsors, members and other stakeholders which have required these sport organizations to become more performance oriented, or to build their capacity in order to better manage their organizational performance. The evaluation of performance can be made by evaluating the input (e.g. available resources), throughput (e.g. processing of the input) and output (e.g. goals achieved) of the organization. In non-profit organizations (NPOs), questions of performance have become increasingly important in the world of practice. To our knowledge, most of studies used the same methods to evaluate the performance in NPSOs, but no recent study has proposed a club-specific model. Based on a review of the studies that specifically addressed the organizational performance (and effectiveness) of NPSOs at operational level, the present paper aims to provide a multidimensional framework in order to understand, analyse and measure organizational performance of sport clubs. This paper combines all dimensions founded in literature and chooses the most suited of them to our model that we will develop in Moroccan sport clubs case. Method: We propose to implicate our unified model of evaluating organizational performance that takes into account all the limitations found in the literature. On a sample of Moroccan sport clubs ‘Football, Basketball, Handball and Volleyball’, for this purpose we use a qualitative study. The sample of our study comprises data from sport clubs (football, basketball, handball, volleyball) participating on the first division of the professional football league over the period from 2011 to 2016. Each football club had to meet some specific criteria in order to be included in the sample: 1. Each club must have full financial data published in their annual financial statements, audited by an independent chartered accountant. 2. Each club must have sufficient data. Regarding their sport and financial performance. 3. Each club must have participated at least once in the 1st division of the professional football league. Result: The study showed that the dimensions that constitute the model exist in the field with some small modifications. The correlations between the different dimensions are positive. Discussion: The aim of this study is to test the unified model emerged from earlier and narrower approaches for Moroccan case. Using the input-throughput-output model for the sketch of efficiency, it was possible to identify and define five dimensions of organizational effectiveness applied to this field of study.

Keywords: organisational performance, model multidimensional, evaluation organizational performance, sport clubs

Procedia PDF Downloads 302
332 Transducers for Measuring Displacements of Rotating Blades in Turbomachines

Authors: Pavel Prochazka

Abstract:

The study deals with transducers for measuring vibration displacements of rotating blade tips in turbomachines. In order to prevent major accidents with extensive economic consequences, it shows an urgent need for every low-pressure steam turbine stage being equipped with modern non-contact measuring system providing information on blade loading, damage and residual lifetime under operation. The requirement of measuring vibration and static characteristics of steam turbine blades, therefore, calls for the development and operational verification of both new types of sensors and measuring principles and methods. The task is really demanding: to measure displacements of blade tips with a resolution of the order of 10 μm by speeds up to 750 m/s, humidity 100% and temperatures up to 200 °C. While in gas turbines are used primarily capacitive and optical transducers, these transducers cannot be used in steam turbines. The reason is moisture vapor, droplets of condensing water and dirt, which disable the function of sensors. Therefore, the most feasible approach was to focus on research of electromagnetic sensors featuring promising characteristics for given blade materials in a steam environment. Following types of sensors have been developed and both experimentally and theoretically studied in the Institute of Thermodynamics, Academy of Sciences of the Czech Republic: eddy-current, Hall effect, inductive and magnetoresistive. Eddy-current transducers demand a small distance of 1 to 2 mm and change properties in the harsh environment of steam turbines. Hall effect sensors have relatively low sensitivity, high values of offset, drift, and especially noise. Induction sensors do not require any supply current and have a simple construction. The magnitude of the sensors output voltage is dependent on the velocity of the measured body and concurrently on the varying magnetic induction, and they cannot be used statically. Magnetoresistive sensors are formed by magnetoresistors arranged into a Wheatstone bridge. Supplying the sensor from a current source provides better linearity. The MR sensors can be used permanently for temperatures up to 200 °C at lower values of the supply current of about 1 mA. The frequency range of 0 to 300 kHz is by an order higher comparing to the Hall effect and induction sensors. The frequency band starts at zero frequency, which is very important because the sensors can be calibrated statically. The MR sensors feature high sensitivity and low noise. The symmetry of the bridge arrangement leads to a high common mode rejection ratio and suppressing disturbances, which is important, especially in industrial applications. The MR sensors feature high sensitivity, high common mode rejection ratio, and low noise, which is important, especially in industrial applications. Magnetoresistive transducers provide a range of excellent properties indicating their priority for displacement measurements of rotating blades in turbomachines.

Keywords: turbines, blade vibration, blade tip timing, non-contact sensors, magnetoresistive sensors

Procedia PDF Downloads 104
331 Evaluation of the Boiling Liquid Expanding Vapor Explosion Thermal Effects in Hassi R'Mel Gas Processing Plant Using Fire Dynamics Simulator

Authors: Brady Manescau, Ilyas Sellami, Khaled Chetehouna, Charles De Izarra, Rachid Nait-Said, Fati Zidani

Abstract:

During a fire in an oil and gas refinery, several thermal accidents can occur and cause serious damage to people and environment. Among these accidents, the BLEVE (Boiling Liquid Expanding Vapor Explosion) is most observed and remains a major concern for risk decision-makers. It corresponds to a violent vaporization of explosive nature following the rupture of a vessel containing a liquid at a temperature significantly higher than its normal boiling point at atmospheric pressure. Their effects on the environment generally appear in three ways: blast overpressure, radiation from the fireball if the liquid involved is flammable and fragment hazards. In order to estimate the potential damage that would be caused by such an explosion, risk decision-makers often use quantitative risk analysis (QRA). This analysis is a rigorous and advanced approach that requires a reliable data in order to obtain a good estimate and control of risks. However, in most cases, the data used in QRA are obtained from the empirical correlations. These empirical correlations generally overestimate BLEVE effects because they are based on simplifications and do not take into account real parameters like the geometry effect. Considering that these risk analyses are based on an assessment of BLEVE effects on human life and plant equipment, more precise and reliable data should be provided. From this point of view, the CFD modeling of BLEVE effects appears as a solution to the empirical law limitations. In this context, the main objective is to develop a numerical tool in order to predict BLEVE thermal effects using the CFD code FDS version 6. Simulations are carried out with a mesh size of 1 m. The fireball source is modeled as a vertical release of hot fuel in a short time. The modeling of fireball dynamics is based on a single step combustion using an EDC model coupled with the default LES turbulence model. Fireball characteristics (diameter, height, heat flux and lifetime) issued from the large scale BAM experiment are used to demonstrate the ability of FDS to simulate the various steps of the BLEVE phenomenon from ignition up to total burnout. The influence of release parameters such as the injection rate and the radiative fraction on the fireball heat flux is also presented. Predictions are very encouraging and show good agreement in comparison with BAM experiment data. In addition, a numerical study is carried out on an operational propane accumulator in an Algerian gas processing plant of SONATRACH company located in the Hassi R’Mel Gas Field (the largest gas field in Algeria).

Keywords: BLEVE effects, CFD, FDS, fireball, LES, QRA

Procedia PDF Downloads 173
330 Tourists' Perception to the Service Quality of White Water Rafting in Bali: Case Study of Ayung River

Authors: Ni Putu Evi Wijayanti, Made Darmiati, Ni Ketut Wiwiek Agustina, Putu Gde Arie Yudhistira, Marcel Hardono

Abstract:

This research study discusses the tourists’ perception to white water rafting service quality in Bali (Case Study: Ayung River). The aim is to determine the tourists’ perception to: firstly, the services quality of white water rafting trip in Bali, secondly, is to determine which dimensions of the service quality that need to take main handling priority in accordance with the level of important service of white water rafting company’s working performance toward the service quality of rafting in Bali especially on Ayung Riveri, lastly, is to know the efforts are needed to improve the service quality of white water rafting trip for tourist in Bali, specifically on Ayung River. This research uses the concept of the service quality with five principal dimensions, namely: Tangibles, Reliability, Responsiveness, Assurance, Empathy. Location of the research is tourist destination area of the Ayung River, that lies between the boundary of Badung Regency at Western part and Gianyar Regency eastern side. There are three rafting companies located on the Ayung River. This research took 100 respondents who were selected as a sample by using purposive sampling method. Data were collected through questionnaires distributed to domestic tourists then tabulated using the weighting scale (Likert scale) and analyzed using analysis of the benefit performance (important performance analysis) in the form of Cartesian diagram. The results of the research are translated into three points. Firstly, there are 23 indicators assessed by the service aspect of domestic tourists where the highest value is the aspect of familiarity between the tourist and employees with points (0.29) and the lowest score is the aspect of the clarity of the Ayung River water discharge value (-0.35). This shows that the indicator has not been fully able to meet the expectations of service aspects of the rating. Secondly, the dimensions of service quality that requires serious attention is the dimension of tangibles. The third point is the efforts that needs to be done adapted to the results of the Cartesian diagram breaks down into four quadrants. Based on the results of the research suggested to the manager of the white water rafting tour in order to continuously improve the service quality to tourists, performing new innovations in terms of product variations, provide insight and training to its employees to increase their competence, especially in the field of excellent service so that the satisfaction rating can be achieved.

Keywords: perception, rafting, service quality, tourist satisfaction

Procedia PDF Downloads 224
329 Digital Twins in the Built Environment: A Systematic Literature Review

Authors: Bagireanu Astrid, Bros-Williamson Julio, Duncheva Mila, Currie John

Abstract:

Digital Twins (DT) are an innovative concept of cyber-physical integration of data between an asset and its virtual replica. They have originated in established industries such as manufacturing and aviation and have garnered increasing attention as a potentially transformative technology within the built environment. With the potential to support decision-making, real-time simulations, forecasting abilities and managing operations, DT do not fall under a singular scope. This makes defining and leveraging the potential uses of DT a potential missed opportunity. Despite its recognised potential in established industries, literature on DT in the built environment remains limited. Inadequate attention has been given to the implementation of DT in construction projects, as opposed to its operational stage applications. Additionally, the absence of a standardised definition has resulted in inconsistent interpretations of DT in both industry and academia. There is a need to consolidate research to foster a unified understanding of the DT. Such consolidation is indispensable to ensure that future research is undertaken with a solid foundation. This paper aims to present a comprehensive systematic literature review on the role of DT in the built environment. To accomplish this objective, a review and thematic analysis was conducted, encompassing relevant papers from the last five years. The identified papers are categorised based on their specific areas of focus, and the content of these papers was translated into a through classification of DT. In characterising DT and the associated data processes identified, this systematic literature review has identified 6 DT opportunities specifically relevant to the built environment: Facilitating collaborative procurement methods, Supporting net-zero and decarbonization goals, Supporting Modern Methods of Construction (MMC) and off-site manufacturing (OSM), Providing increased transparency and stakeholders collaboration, Supporting complex decision making (real-time simulations and forecasting abilities) and Seamless integration with Internet of Things (IoT), data analytics and other DT. Finally, a discussion of each area of research is provided. A table of definitions of DT across the reviewed literature is provided, seeking to delineate the current state of DT implementation in the built environment context. Gaps in knowledge are identified, as well as research challenges and opportunities for further advancements in the implementation of DT within the built environment. This paper critically assesses the existing literature to identify the potential of DT applications, aiming to harness the transformative capabilities of data in the built environment. By fostering a unified comprehension of DT, this paper contributes to advancing the effective adoption and utilisation of this technology, accelerating progress towards the realisation of smart cities, decarbonisation, and other envisioned roles for DT in the construction domain.

Keywords: built environment, design, digital twins, literature review

Procedia PDF Downloads 59
328 Further Development of Offshore Floating Solar and Its Design Requirements

Authors: Madjid Karimirad

Abstract:

Floating solar was not very well-known in the renewable energy field a decade ago; however, there has been tremendous growth internationally with a Compound Annual Growth Rate (CAGR) of nearly 30% in recent years. To reach the goal of global net-zero emission by 2050, all renewable energy sources including solar should be used. Considering that 40% of the world’s population lives within 100 kilometres of the coasts, floating solar in coastal waters is an obvious energy solution. However, this requires more robust floating solar solutions. This paper tries to enlighten the fundamental requirements in the design of floating solar for offshore installations from the hydrodynamic and offshore engineering points of view. In this regard, a closer look at dynamic characteristics, stochastic behaviour and nonlinear phenomena appearing in this kind of structure is a major focus of the current article. Floating solar structures are alternative and very attractive green energy installations with (a) Less strain on land usage for densely populated areas; (b) Natural cooling effect with efficiency gain; and (c) Increased irradiance from the reflectivity of water. Also, floating solar in conjunction with the hydroelectric plants can optimise energy efficiency and improve system reliability. The co-locating of floating solar units with other types such as offshore wind, wave energy, tidal turbines as well as aquaculture (fish farming) can result in better ocean space usage and increase the synergies. Floating solar technology has seen considerable developments in installed capacities in the past decade. Development of design standards and codes of practice for floating solar technologies deployed on both inland water-bodies and offshore is required to ensure robust and reliable systems that do not have detrimental impacts on the hosting water body. Floating solar will account for 17% of all PV energy produced worldwide by 2030. To enhance the development, further research in this area is needed. This paper aims to discuss the main critical design aspects in light of the load and load effects that the floating solar platforms are subjected to. The key considerations in hydrodynamics, aerodynamics and simultaneous effects from the wind and wave load actions will be discussed. The link of dynamic nonlinear loading, limit states and design space considering the environmental conditions is set to enable a better understanding of the design requirements of fast-evolving floating solar technology.

Keywords: floating solar, offshore renewable energy, wind and wave loading, design space

Procedia PDF Downloads 53
327 Performance Improvement of Piston Engine in Aeronautics by Means of Additive Manufacturing Technologies

Authors: G. Andreutti, G. Saccone, D. Lucariello, C. Pirozzi, S. Franchitti, R. Borrelli, C. Toscano, P. Caso, G. Ferraro, C. Pascarella

Abstract:

The reduction of greenhouse gases and pollution emissions is a worldwide environmental issue. The amount of CO₂ released by an aircraft is associated with the amount of fuel burned, so the improvement of engine thermo-mechanical efficiency and specific fuel consumption is a significant technological driver for aviation. Moreover, with the prospect that avgas will be phased out, an engine able to use more available and cheaper fuels is an evident advantage. An advanced aeronautical Diesel engine, because of its high efficiency and ability to use widely available and low-cost jet and diesel fuels, is a promising solution to achieve a more fuel-efficient aircraft. On the other hand, a Diesel engine has generally a higher overall weight, if compared with a gasoline one of same power performances. Fixing the MTOW, Max Take-Off Weight, and the operational payload, this extra-weight reduces the aircraft fuel fraction, partially vinifying the associated benefits. Therefore, an effort in weight saving manufacturing technologies is likely desirable. In this work, in order to achieve the mentioned goals, innovative Electron Beam Melting – EBM, Additive Manufacturing – AM technologies were applied to a two-stroke, common rail, GF56 Diesel engine, developed by the CMD Company for aeronautic applications. For this purpose, a consortium of academic, research and industrial partners, including CMD Company, Italian Aerospace Research Centre – CIRA, University of Naples Federico II and the University of Salerno carried out a technological project, funded by the Italian Minister of Education and Research – MIUR. The project aimed to optimize the baseline engine in order to improve its performance and increase its airworthiness features. This project was focused on the definition, design, development, and application of enabling technologies for performance improvement of GF56. Weight saving of this engine was pursued through the application of EBM-AM technologies and in particular using Arcam AB A2X machine, available at CIRA. The 3D printer processes titanium alloy micro-powders and it was employed to realize new connecting rods of the GF56 engine with an additive-oriented design approach. After a preliminary investigation of EBM process parameters and a thermo-mechanical characterization of titanium alloy samples, additive manufactured, innovative connecting rods were fabricated. These engine elements were structurally verified, topologically optimized, 3D printed and suitably post-processed. Finally, the overall performance improvement, on a typical General Aviation aircraft, was estimated, substituting the conventional engine with the optimized GF56 propulsion system.

Keywords: aeronautic propulsion, additive manufacturing, performance improvement, weight saving, piston engine

Procedia PDF Downloads 127
326 Landing Performance Improvement Using Genetic Algorithm for Electric Vertical Take Off and Landing Aircrafts

Authors: Willian C. De Brito, Hernan D. C. Munoz, Erlan V. C. Carvalho, Helder L. C. De Oliveira

Abstract:

In order to improve commute time for small distance trips and relieve large cities traffic, a new transport category has been the subject of research and new designs worldwide. The air taxi travel market promises to change the way people live and commute by using the concept of vehicles with the ability to take-off and land vertically and to provide passenger’s transport equivalent to a car, with mobility within large cities and between cities. Today’s civil air transport remains costly and accounts for 2% of the man-made CO₂ emissions. Taking advantage of this scenario, many companies have developed their own Vertical Take Off and Landing (VTOL) design, seeking to meet comfort, safety, low cost and flight time requirements in a sustainable way. Thus, the use of green power supplies, especially batteries, and fully electric power plants is the most common choice for these arising aircrafts. However, it is still a challenge finding a feasible way to handle with the use of batteries rather than conventional petroleum-based fuels. The batteries are heavy and have an energy density still below from those of gasoline, diesel or kerosene. Therefore, despite all the clear advantages, all electric aircrafts (AEA) still have low flight autonomy and high operational cost, since the batteries must be recharged or replaced. In this sense, this paper addresses a way to optimize the energy consumption in a typical mission of an aerial taxi aircraft. The approach and landing procedure was chosen to be the subject of an optimization genetic algorithm, while final programming can be adapted for take-off and flight level changes as well. A real tilt rotor aircraft with fully electric power plant data was used to fit the derived dynamic equations of motion. Although a tilt rotor design is used as a proof of concept, it is possible to change the optimization to be applied for other design concepts, even those with independent motors for hover and cruise flight phases. For a given trajectory, the best set of control variables are calculated to provide the time history response for aircraft´s attitude, rotors RPM and thrust direction (or vertical and horizontal thrust, for independent motors designs) that, if followed, results in the minimum electric power consumption through that landing path. Safety, comfort and design constraints are assumed to give representativeness to the solution. Results are highly dependent on these constraints. For the tested cases, performance improvement ranged from 5 to 10% changing initial airspeed, altitude, flight path angle, and attitude.

Keywords: air taxi travel, all electric aircraft, batteries, energy consumption, genetic algorithm, landing performance, optimization, performance improvement, tilt rotor, VTOL design

Procedia PDF Downloads 99
325 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 106
324 Experimental and Numerical Investigations on the Vulnerability of Flying Structures to High-Energy Laser Irradiations

Authors: Vadim Allheily, Rudiger Schmitt, Lionel Merlat, Gildas L'Hostis

Abstract:

Inflight devices are nowadays major actors in both military and civilian landscapes. Among others, missiles, mortars, rockets or even drones this last decade are increasingly sophisticated, and it is today of prior manner to develop always more efficient defensive systems from all these potential threats. In this frame, recent High Energy Laser weapon prototypes (HEL) have demonstrated some extremely good operational abilities to shot down within seconds flying targets several kilometers off. Whereas test outcomes are promising from both experimental and cost-related perspectives, the deterioration process still needs to be explored to be able to closely predict the effects of a high-energy laser irradiation on typical structures, heading finally to an effective design of laser sources and protective countermeasures. Laser matter interaction researches have a long history of more than 40 years at the French-German Research Institute (ISL). Those studies were tied with laser sources development in the mid-60s, mainly for specific metrology of fast phenomena. Nowadays, laser matter interaction can be viewed as the terminal ballistics of conventional weapons, with the unique capability of laser beams to carry energy at light velocity over large ranges. In the last years, a strong focus was made at ISL on the interaction process of laser radiation with metal targets such as artillery shells. Due to the absorbed laser radiation and the resulting heating process, an encased explosive charge can be initiated resulting in deflagration or even detonation of the projectile in flight. Drones and Unmanned Air Vehicles (UAVs) are of outmost interests in modern warfare. Those aerial systems are usually made up of polymer-based composite materials, whose complexity involves new scientific challenges. Aside this main laser-matter interaction activity, a lot of experimental and numerical knowledge has been gathered at ISL within domains like spectrometry, thermodynamics or mechanics. Techniques and devices were developed to study separately each aspect concerned by this topic; optical characterization, thermal investigations, chemical reactions analysis or mechanical examinations are beyond carried out to neatly estimate essential key values. Results from these diverse tasks are then incorporated into analytic or FE numerical models that were elaborated, for example, to predict thermal repercussion on explosive charges or mechanical failures of structures. These simulations highlight the influence of each phenomenon during the laser irradiation and forecast experimental observations with good accuracy.

Keywords: composite materials, countermeasure, experimental work, high-energy laser, laser-matter interaction, modeling

Procedia PDF Downloads 244
323 Public-Private Partnership for Community Empowerment and Sustainability: Exploring Save the Children’s 'School Me' Project in West Africa

Authors: Gae Hee Song

Abstract:

This paper aims to address the evolution of public-private partnerships for mainstreaming an evaluation approach in the community-based education project. It examines the distinctive features of Save the Children’s School Me project in terms of empowerment evaluation principles introduced by David M. Fetterman, especially community ownership, capacity building, and organizational learning. School Me is a Save the Children Korea funded-project, having been implemented in Cote d’Ivoire and Sierra Leone since 2016. The objective of this project is to reduce gender-based disparities in school completion and learning outcomes by creating an empowering learning environment for girls and boys. Both quasi-experimental and experimental methods for impact evaluation have been used to explore changes in learning outcomes, gender attitudes, and learning environments. To locate School Me in the public-private partnership framework for community empowerment and sustainability, the data have been collected from School Me progress/final reports, baseline, and endline reports, fieldwork observations, inter-rater reliability of baseline and endline data collected from a total of 75 schools in Cote d’Ivoire and Sierra Leone. The findings of this study show that School Me project has a significant evaluation component, including qualitative exploratory research, participatory monitoring, and impact evaluation. It strongly encourages key actors, girls, boys, parents, teachers, community leaders, and local education authorities, to participate in the collection and interpretation of data. For example, 45 community volunteers collected baseline data in Cote d’Ivoire; on the other hand, three local government officers and fourteen enumerators participated in the follow-up data collection of Sierra Leone. Not only does this public-private partnership improve local government and community members’ knowledge and skills of monitoring and evaluation, but the evaluative findings also help them find their own problems and solutions with a strong sense of community ownership. Such community empowerment enables Save the Children country offices and member offices to gain invaluable experiences and lessons learned. As a result, empowerment evaluation leads to community-oriented governance and the sustainability of the School Me project.

Keywords: community empowerment, Cote d’Ivoire, empowerment evaluation, public-private partnership, save the children, school me, Sierra Leone, sustainability

Procedia PDF Downloads 112
322 ENDO-β-1,4-Xylanase from Thermophilic Geobacillus stearothermophilus: Immobilization Using Matrix Entrapment Technique to Increase the Stability and Recycling Efficiency

Authors: Afsheen Aman, Zainab Bibi, Shah Ali Ul Qader

Abstract:

Introduction: Xylan is a heteropolysaccharide composed of xylose monomers linked together through 1,4 linkages within a complex xylan network. Owing to wide applications of xylan hydrolytic products (xylose, xylobiose and xylooligosaccharide) the researchers are focusing towards the development of various strategies for efficient xylan degradation. One of the most important strategies focused is the use of heat tolerant biocatalysts which acts as strong and specific cleaving agents. Therefore, the exploration of microbial pool from extremely diversified ecosystem is considerably vital. Microbial populations from extreme habitats are keenly explored for the isolation of thermophilic entities. These thermozymes usually demonstrate fast hydrolytic rate, can produce high yields of product and are less prone to microbial contamination. Another possibility of degrading xylan continuously is the use of immobilization technique. The current work is an effort to merge both the positive aspects of thermozyme and immobilization technique. Methodology: Geobacillus stearothermophilus was isolated from soil sample collected near the blast furnace site. This thermophile is capable of producing thermostable endo-β-1,4-xylanase which cleaves xylan effectively. In the current study, this thermozyme was immobilized within a synthetic and a non-synthetic matrice for continuous production of metabolites using entrapment technique. The kinetic parameters of the free and immobilized enzyme were studied. For this purpose calcium alginate and polyacrylamide beads were prepared. Results: For the synthesis of immobilized beads, sodium alginate (40.0 gL-1) and calcium chloride (0.4 M) was used amalgamated. The temperature (50°C) and pH (7.0) optima of immobilized enzyme remained same for xylan hydrolysis however, the enzyme-substrate catalytic reaction time raised from 5.0 to 30.0 minutes as compared to free counterpart. Diffusion limit of high molecular weight xylan (corncob) caused a decline in Vmax of immobilized enzyme from 4773 to 203.7 U min-1 whereas, Km value increased from 0.5074 to 0.5722 mg ml-1 with reference to free enzyme. Immobilized endo-β-1,4-xylanase showed its stability at high temperatures as compared to free enzyme. It retained 18% and 9% residual activity at 70°C and 80°C, respectively whereas; free enzyme completely lost its activity at both temperatures. The Immobilized thermozyme displayed sufficient recycling efficiency and can be reused up to five reaction cycles, indicating that this enzyme can be a plausible candidate in paper processing industry. Conclusion: This thermozyme showed better immobilization yield and operational stability with the purpose of hydrolyzing the high molecular weight xylan. However, the enzyme immobilization properties can be improved further by immobilizing it on different supports for industrial purpose.

Keywords: immobilization, reusability, thermozymes, xylanase

Procedia PDF Downloads 364
321 Three Foci of Trust as Potential Mediators in the Association Between Job Insecurity and Dynamic Organizational Capability: A Quantitative, Exploratory Study

Authors: Marita Heyns

Abstract:

Job insecurity is a distressing phenomenon which has far reaching consequences for both employees and their organizations. Previously, much attention has been given to the link between job insecurity and individual level performance outcomes, while less is known about how subjectively perceived job insecurity might transfer beyond the individual level to affect performance of the organization on an aggregated level. Research focusing on how employees’ fear of job loss might affect the organization’s ability to respond proactively to volatility and drastic change through applying its capabilities of sensing, seizing, and reconfiguring, appears to be practically non-existent. Equally little is known about the potential underlying mechanisms through which job insecurity might affect the dynamic capabilities of an organization. This study examines how job insecurity might affect dynamic organizational capability through trust as an underling process. More specifically, it considered the simultaneous roles of trust at an impersonal (organizational) level as well as trust at an interpersonal level (in leaders and co-workers) as potential underlying mechanisms through which job insecurity might affect the organization’s dynamic capability to respond to opportunities and imminent, drastic change. A quantitative research approach and a stratified random sampling technique enabled the collection of data among 314 managers at four different plant sites of a large South African steel manufacturing organization undergoing dramatic changes. To assess the study hypotheses, the following statistical procedures were employed: Structural equation modelling was performed in Mplus to evaluate the measurement and structural models. The Chi-square values test for absolute fit as well as alternative fit indexes such as the Comparative Fit Index and the Tucker-Lewis Index, the Root Mean Square Error of Approximation and the Standardized Root Mean Square Residual were used as indicators of model fit. Composite reliabilities were calculated to evaluate the reliability of the factors. Finally, interaction effects were tested by using PROCESS and the construction of two-sided 95% confidence intervals. The findings indicate that job insecurity had a lower-than-expected detrimental effect on evaluations of the organization’s dynamic capability through the conducive buffering effects of trust in the organization and in its leaders respectively. In contrast, trust in colleagues did not seem to have any noticeable facilitative effect. The study proposes that both job insecurity and dynamic capability can be managed more effectively by also paying attention to factors that could promote trust in the organization and its leaders; some practical recommendations are given in this regard.

Keywords: dynamic organizational capability, impersonal trust, interpersonal trust, job insecurity

Procedia PDF Downloads 70
320 Using Signature Assignments and Rubrics in Assessing Institutional Learning Outcomes and Student Learning

Authors: Leigh Ann Wilson, Melanie Borrego

Abstract:

The purpose of institutional learning outcomes (ILOs) is to assess what students across the university know and what they do not. The issue is gathering this information in a systematic and usable way. This presentation will explain how one institution has engineered this process for both student success and maximum faculty curriculum and course design input. At Brandman University, there are three levels of learning outcomes: course, program, and institutional. Institutional Learning Outcomes (ILOs) are mapped to specific courses. Faculty course developers write the signature assignments (SAs) in alignment with the Institutional Learning Outcomes for each course. These SAs use a specific rubric that is applied consistently by every section and every instructor. Each year, the 12-member General Education Team (GET), as a part of their work, conducts the calibration and assessment of the university-wide SAs and the related rubrics for one or two of the five ILOs. GET members, who are senior faculty and administrators who represent each of the university's schools, lead the calibration meetings. Specifically, calibration is a process designed to ensure the accuracy and reliability of evaluating signature assignments by working with peer faculty to interpret rubrics and compare scoring. These calibration meetings include the full time and adjunct faculty members who teach the course to ensure consensus on the application of the rubric. Each calibration session is chaired by a GET representative as well as the course custodian/contact where the ILO signature assignment resides. The overall calibration process GET follows includes multiple steps, such as: contacting and inviting relevant faculty members to participate; organizing and hosting calibration sessions; and reviewing and discussing at least 10 samples of student work from class sections during the previous academic year, for each applicable signature assignment. Conversely, the commitment for calibration teams consist of attending two virtual meetings lasting up to three hours in duration. The first meeting focuses on interpreting the rubric, and the second meeting involves comparing scores for sample work and sharing feedback about the rubric and assignment. Next, participants are expected to follow all directions provided and participate actively, and respond to scheduling requests and other emails within 72 hours. The virtual meetings are recorded for future institutional use. Adjunct faculty are paid a small stipend after participating in both calibration meetings. Full time faculty can use this work on their annual faculty report for "internal service" credit.

Keywords: assessment, assurance of learning, course design, institutional learning outcomes, rubrics, signature assignments

Procedia PDF Downloads 265
319 Evaluation of Mixing and Oxygen Transfer Performances for a Stirred Bioreactor Containing P. chrysogenum Broths

Authors: A. C. Blaga, A. Cârlescu, M. Turnea, A. I. Galaction, D. Caşcaval

Abstract:

The performance of an aerobic stirred bioreactor for fungal fermentation was analyzed on the basis of mixing time and oxygen mass transfer coefficient, by quantifying the influence of some specific geometrical and operational parameters of the bioreactor, as well as the rheological behavior of Penicillium chrysogenum broth (free mycelia and mycelia aggregates). The rheological properties of the fungus broth, controlled by the biomass concentration, its growth rate, and morphology strongly affect the performance of the bioreactor. Experimental data showed that for both morphological structures the accumulation of fungus biomass induces a significant increase of broths viscosity and modifies the rheological behavior. For lower P. chrysogenum concentrations (both morphological conformations), the mixing time initially increases with aeration rate, reaches a maximum value and decreases. This variation can be explained by the formation of small bubbles, due to the presence of solid phase which hinders the bubbles coalescence, the rising velocity of bubbles being reduced by the high apparent viscosity of fungus broths. By biomass accumulation, the variation of mixing time with aeration rate is gradually changed, the continuous reduction of mixing time with air input flow increase being obtained for 33.5 g/l d.w. P. chrysogenum. Owing to the superior apparent viscosity, which reduces considerably the relative contribution of mechanical agitation to the broths mixing, these phenomena are more pronounced for P. chrysogenum free mycelia. Due to the increase of broth apparent viscosity, the biomass accumulation induces two significant effects on oxygen transfer rate: the diminution of turbulence and perturbation of bubbles dispersion - coalescence equilibrium. The increase of P. chrysogenum free mycelia concentration leads to the decrease of kla values. Thus, for the considered variation domain of the main parameters taken into account, namely air superficial velocity from 8.36 10-4 to 5.02 10-3 m/s and specific power input from 100 to 500 W/m3, kla was reduced for 3.7 times for biomass concentration increase from 4 to 36.5 g/l d.w. The broth containing P. crysogenum mycelia aggregates exhibits a particular behavior from the point of view of oxygen transfer. Regardless of bioreactor operating conditions, the increase of biomass concentration leads initially to the increase of oxygen mass transfer rate, the phenomenon that can be explained by the interaction of pellets with bubbles. The results are in relation with the increase of apparent viscosity of broths corresponding to the variation of biomass concentration between the mentioned limits. Thus, the apparent viscosity of the suspension of fungus mycelia aggregates increased for 44.2 times and fungus free mycelia for 63.9 times for CX increase from 4 to 36.5 g/l d.w. By means of the experimental data, some mathematical correlations describing the influences of the considered factors on mixing time and kla have been proposed. The proposed correlations can be used in bioreactor performance evaluation, optimization, and scaling-up.

Keywords: biomass concentration, mixing time, oxygen mass transfer, P. chrysogenum broth, stirred bioreactor

Procedia PDF Downloads 324
318 Application of Forensic Entomology to Estimate the Post Mortem Interval

Authors: Meriem Taleb, Ghania Tail, Fatma Zohra Kara, Brahim Djedouani, T. Moussa

Abstract:

Forensic entomology has grown immensely as a discipline in the past thirty years. The main purpose of forensic entomology is to establish the post mortem interval or PMI. Three days after the death, insect evidence is often the most accurate and sometimes the only method of determining elapsed time since death. This work presents the estimation of the PMI in an experiment to test the reliability of the accumulated degree days (ADD) method and the application of this method in a real case. The study was conducted at the Laboratory of Entomology at the National Institute for Criminalistics and Criminology of the National Gendarmerie, Algeria. The domestic rabbit Oryctolagus cuniculus L. was selected as the animal model. On 08th July 2012, the animal was killed. Larvae were collected and raised to adulthood. Estimation of oviposition time was calculated by summing up average daily temperatures minus minimum development temperature (also specific to each species). When the sum is reached, it corresponds to the oviposition day. Weather data were obtained from the nearest meteorological station. After rearing was accomplished, three species emerged: Lucilia sericata, Chrysomya albiceps, and Sarcophaga africa. For Chrysomya albiceps species, a cumulation of 186°C is necessary. The emergence of adults occured on 22nd July 2012. A value of 193.4°C is reached on 9th August 2012. Lucilia sericata species require a cumulation of 207°C. The emergence of adults occurred on 23rd, July 2012. A value of 211.35°C is reached on 9th August 2012. We should also consider that oviposition may occur more than 12 hours after death. Thus, the obtained PMI is in agreement with the actual time of death. We illustrate the use of this method during the investigation of a case of a decaying human body found on 03rd March 2015 in Bechar, South West of Algerian desert. Maggots were collected and sent to the Laboratory of Entomology. Lucilia sericata adults were identified on 24th March 2015 after emergence. A sum of 211.6°C was reached on 1st March 2015 which corresponds to the estimated day of oviposition. Therefore, the estimated date of death is 1st March 2015 ± 24 hours. The estimated PMI by accumulated degree days (ADD) method seems to be very precise. Entomological evidence should always be used in homicide investigations when the time of death cannot be determined by other methods.

Keywords: forensic entomology, accumulated degree days, postmortem interval, diptera, Algeria

Procedia PDF Downloads 278
317 The Political Economy of Media Privatisation in Egypt: State Mechanisms and Continued Control

Authors: Mohamed Elmeshad

Abstract:

During the mid-1990's Egypt had become obliged to implement the Economic Reform and Structural Adjustment Program that included broad economic liberalization, expansion of the private sector and a contraction the size of government spending. This coincided as well with attempts to appear more democratic and open to liberalizing public space and discourse. At the same time, economic pressures and the proliferation of social media access and activism had led to increased pressure to open a mediascape and remove it from the clutches of the government, which had monopolized print and broadcast mass media for over 4 decades by that point. However, the mechanisms that governed the privatization of mass media allowed for sustained government control, even through the prism of ostensibly privately owned newspapers and television stations. These mechanisms involve barriers to entry from a financial and security perspective, as well as operational capacities of distribution and access to means of production. The power dynamics between mass media establishments and the state were moulded during this period in a novel way. Power dynamics within media establishments had also formed under such circumstances. The changes in the country's political economy itself somehow mirrored these developments. This paper will examine these dynamics and shed light on the political economy of Egypt's newly privatized mass media in the early 2000's especially. Methodology: This study will rely on semi-structured interviews from individuals involved with these changes from the perspective of the media organizations. It also will map out the process of media privatization by looking at the administrative, operative and legislative institutions and contexts in order to attempt to draw conclusions on methods of control and the role of the state during the process of privatization. Finally, a brief discourse analysis will be necessary in order to aptly convey how these factors ultimately reflected on media output. Findings and conclusion: The development of Egyptian private, “independent” mirrored the trajectory of transitions in the country’s political economy. Liberalization of the economy meant that a growing class of business owners would explore opportunities that such new markets would offer. However the regime’s attempts to control access to certain forms of capital, especially in sectors such as the media affected the structure of print and broadcast media, as well as the institutions that would govern them. Like the process of liberalisation, much of the regime’s manoeuvring with regards to privatization of media had been haphazardly used to indirectly expand the regime and its ruling party’s ability to retain influence, while creating a believable façade of openness. In this paper, we will attempt to uncover these mechanisms and analyse our findings in ways that explain how the manifestations prevalent in the context of a privatizing media space in a transitional Egypt provide evidence of both the intentions of this transition, and the ways in which it was being held back.

Keywords: business, mass media, political economy, power, privatisation

Procedia PDF Downloads 213
316 Two-Dimensional Dynamics Motion Simulations of F1 Rare Wing-Flap

Authors: Chaitanya H. Acharya, Pavan Kumar P., Gopalakrishna Narayana

Abstract:

In the realm of aerodynamics, numerous vehicles incorporate moving components to enhance their performance. For instance, airliners deploy hydraulically operated flaps and ailerons during take-off and landing, while Formula 1 racing cars utilize hydraulic tubes and actuators for various components, including the Drag Reduction System (DRS). The DRS, consisting of a rear wing and adjustable flaps, plays a crucial role in overtaking manoeuvres. The DRS has two positions: the default position with the flaps down, providing high downforce, and the lifted position, which reduces drag, allowing for increased speed and aiding in overtaking. Swift deployment of the DRS during races is essential for overtaking competitors. The fluid flow over the rear wing flap becomes intricate during deployment, involving flow reversal and operational changes, leading to unsteady flow physics that significantly influence aerodynamic characteristics. Understanding the drag and downforce during DRS deployment is crucial for determining race outcomes. While experiments can yield accurate aerodynamic data, they can be expensive and challenging to conduct across varying speeds. Computational Fluid Dynamics (CFD) emerges as a cost-effective solution to predict drag and downforce across a range of speeds, especially with the rapid deployment of the DRS. This study employs the finite volume-based solver Ansys Fluent, incorporating dynamic mesh motions and a turbulent model to capture the complex flow phenomena associated with the moving rear wing flap. A dedicated section for the rare wing-flap is considered in the present simulations, and the aerodynamics of these sections closely resemble S1223 aerofoils. Before delving into the simulations of the rare wing-flap aerofoil, numerical results undergo validation using experimental data from an NLR flap aerofoil case, encompassing different flap angles at two distinct angles of attack was carried out. The increase in flap angle as increase in lift and drag is observed for a given angle of attack. The simulation methodology for the rare-wing-flap aerofoil case involves specific time durations before lifting the flap. During this period, drag and downforce values are determined as 330 N and 1800N, respectively. Following the flap lift, a noteworthy reduction in drag to 55 % and a decrease in downforce to 17 % are observed. This understanding is critical for making instantaneous decisions regarding the deployment of the Drag Reduction System (DRS) at specific speeds, thereby influencing the overall performance of the Formula 1 racing car. Hence, this work emphasizes the utilization of dynamic mesh motion methodology to predict the aerodynamic characteristics during the deployment of the DRS in a Formula 1 racing car.

Keywords: DRS, CFD, drag, downforce, dynamics mesh motion

Procedia PDF Downloads 79
315 Identification and Quantification of Lisinopril from Pure, Formulated and Urine Samples by Micellar Thin Layer Chromatography

Authors: Sudhanshu Sharma

Abstract:

Lisinopril, 1-[N-{(s)-I-carboxy-3 phenyl propyl}-L-proline dehydrate is a lysine analog of enalaprilat, the active metabolite of enalapril. It is long-acting, non-sulhydryl angiotensin-converting enzyme (ACE) inhibitor that is used for the treatment of hypertension and congestive heart failure in daily dosage 10-80 mg. Pharmacological activity of lisinopril has been proved in various experimental and clinical studies. Owing to its importance and widespread use, efforts have been made towards the development of simple and reliable analytical methods. As per our literature survey, lisinopril in pharmaceutical formulations has been determined by various analytical methodologies like polaragraphy, potentiometry, and spectrophotometry, but most of these analytical methods are not too suitable for the Identification of lisinopril from clinical samples because of the interferences caused by the amino acids and amino groups containing metabolites present in biological samples. This report is an attempt in the direction of developing a simple and reliable method for on plate identification and quantification of lisinopril in pharmaceutical formulations as well as from human urine samples using silica gel H layers developed with a new mobile phase comprising of micellar solutions of N-cetyl-N, N, N-trimethylammonium bromide (CTAB). Micellar solutions have found numerous practical applications in many areas of separation science. Micellar liquid chromatography (MLC) has gained immense popularity and wider applicability due to operational simplicity, cost effectiveness, relatively non-toxicity and enhanced separation efficiency, low aggressiveness. Incorporation of aqueous micellar solutions as mobile phase was pioneered by Armstrong and Terrill as they accentuated the importance of TLC where simultaneous separation of ionic or non-ionic species in a variety of matrices is required. A peculiarity of the micellar mobile phases (MMPs) is that they have no macroscopic analogues, as a result the typical separations can be easily achieved by using MMPs than aqueous organic mobile phases. Previously MMPs were successfully employed in TLC based critical separations of aromatic hydrocarbons, nucleotides, vitamin K1 and K5, o-, m- and p- aminophenol, amino acids, separation of penicillins. The human urine analysis for identification of selected drugs and their metabolites has emerged as an important investigation tool in forensic drug analysis. Among all chromatographic methods available only thin layer chromatography (TLC) enables a simple fast and effective separation of the complex mixtures present in various biological samples and is recommended as an approved testing for forensic drug analysis by federal Law. TLC proved its applicability during successful separation of bio-active amines, carbohydrates, enzymes, porphyrins, and their precursors, alkaloid and drugs from urine samples.

Keywords: lisnopril, surfactant, chromatography, micellar solutions

Procedia PDF Downloads 345
314 Urban Seismic Risk Reduction in Algeria: Adaptation and Application of the RADIUS Methodology

Authors: Mehdi Boukri, Mohammed Naboussi Farsi, Mounir Naili, Omar Amellal, Mohamed Belazougui, Ahmed Mebarki, Nabila Guessoum, Brahim Mezazigh, Mounir Ait-Belkacem, Nacim Yousfi, Mohamed Bouaoud, Ikram Boukal, Aboubakr Fettar, Asma Souki

Abstract:

The seismic risk to which the urban centres are more and more exposed became a world concern. A co-operation on an international scale is necessary for an exchange of information and experiments for the prevention and the installation of action plans in the countries prone to this phenomenon. For that, the 1990s was designated as 'International Decade for Natural Disaster Reduction (IDNDR)' by the United Nations, whose interest was to promote the capacity to resist the various natural, industrial and environmental disasters. Within this framework, it was launched in 1996, the RADIUS project (Risk Assessment Tools for Diagnosis of Urban Areas Against Seismic Disaster), whose the main objective is to mitigate seismic risk in developing countries, through the development of a simple and fast methodological and operational approach, allowing to evaluate the vulnerability as well as the socio-economic losses, by probable earthquake scenarios in the exposed urban areas. In this paper, we will present the adaptation and application of this methodology to the Algerian context for the seismic risk evaluation in urban areas potentially exposed to earthquakes. This application consists to perform an earthquake scenario in the urban centre of Constantine city, located at the North-East of Algeria, which will allow the building seismic damage estimation of this city. For that, an inventory of 30706 building units was carried out by the National Earthquake Engineering Research Centre (CGS). These buildings were digitized in a data base which comprises their technical information by using a Geographical Information system (GIS), and then they were classified according to the RADIUS methodology. The study area was subdivided into 228 meshes of 500m on side and Ten (10) sectors of which each one contains a group of meshes. The results of this earthquake scenario highlights that the ratio of likely damage is about 23%. This severe damage results from the high concentration of old buildings and unfavourable soil conditions. This simulation of the probable seismic damage of the building and the GIS damage maps generated provide a predictive evaluation of the damage which can occur by a potential earthquake near to Constantine city. These theoretical forecasts are important for decision makers in order to take the adequate preventive measures and to develop suitable strategies, prevention and emergency management plans to reduce these losses. They can also help to take the adequate emergency measures in the most impacted areas in the early hours and days after an earthquake occurrence.

Keywords: seismic risk, mitigation, RADIUS, urban areas, Algeria, earthquake scenario, Constantine

Procedia PDF Downloads 246
313 Clinicians' and Nurses' Documentation Practices in Palliative and Hospice Care: A Mixed Methods Study Providing Evidence for Quality Improvement at Mobile Hospice Mbarara, Uganda

Authors: G. Natuhwera, M. Rabwoni, P. Ellis, A. Merriman

Abstract:

Aims: Health workers are likely to document patients’ care inaccurately, especially when using new and revised case tools, and this could negatively impact patient care. This study set out to; (1) assess nurses’ and clinicians’ documentation practices when using a new patients’ continuation case sheet (PCCS) and (2) explore nurses’ and clinicians’ experiences regarding documentation of patients’ information in the new PCCS. The purpose of introducing the PCCS was to improve continuity of care for patients attending clinics at which they were unlikely to see the same clinician or nurse consistently. Methods: This was a mixed methods study. The cross-sectional inquiry retrospectively reviewed 100 case notes of active patients on hospice and palliative care program. Data was collected using a structured questionnaire with constructs formulated from the new PCCS under study. The qualitative element was face-to-face audio-recorded, open-ended interviews with a purposive sample of one palliative care clinician, and four palliative care nurse specialists. Thematic analysis was used. Results: Missing patients’ biogeographic information was prevalent at 5-10%. Spiritual and psychosocial issues were not documented in 42.6%, and vital signs in 49.2%. Poorest documentation practices were observed in past medical history part of the PCCS at 40-63%. Four themes emerged from interviews with clinicians and nurses-; (1) what remains unclear and challenges, (2) comparing the past with the present, (3) experiential thoughts, and (4) transition and adapting to change. Conclusions: The PCCS seems to be a comprehensive and simple tool to be used to document patients’ information at subsequent visits. The comprehensiveness and utility of the PCCS does paper to be limited by the failure to train staff in its use prior to introducing. The authors find the PCCS comprehensive and suitable to capture patients’ information and recommend it can be adopted and used in other palliative and hospice care settings, if suitable introductory training accompanies its introduction. Otherwise, the reliability and validity of patients’ information collected by this PCCS can be significantly reduced if some sections therein are unclear to the clinicians/nurses. The study identified clinicians- and nurses-related pitfalls in documentation of patients’ care. Clinicians and nurses need to prioritize accurate and complete documentation of patient care in the PCCS for quality care provision. This study should be extended to other sites using similar tools to ensure representative and generalizable findings.

Keywords: documentation, information case sheet, palliative care, quality improvement

Procedia PDF Downloads 128
312 An Effort at Improving Reliability of Laboratory Data in Titrimetric Analysis for Zinc Sulphate Tablets Using Validated Spreadsheet Calculators

Authors: M. A. Okezue, K. L. Clase, S. R. Byrn

Abstract:

The requirement for maintaining data integrity in laboratory operations is critical for regulatory compliance. Automation of procedures reduces incidence of human errors. Quality control laboratories located in low-income economies may face some barriers in attempts to automate their processes. Since data from quality control tests on pharmaceutical products are used in making regulatory decisions, it is important that laboratory reports are accurate and reliable. Zinc Sulphate (ZnSO4) tablets is used in treatment of diarrhea in pediatric population, and as an adjunct therapy for COVID-19 regimen. Unfortunately, zinc content in these formulations is determined titrimetrically; a manual analytical procedure. The assay for ZnSO4 tablets involves time-consuming steps that contain mathematical formulae prone to calculation errors. To achieve consistency, save costs, and improve data integrity, validated spreadsheets were developed to simplify the two critical steps in the analysis of ZnSO4 tablets: standardization of 0.1M Sodium Edetate (EDTA) solution, and the complexometric titration assay procedure. The assay method in the United States Pharmacopoeia was used to create a process flow for ZnSO4 tablets. For each step in the process, different formulae were input into two spreadsheets to automate calculations. Further checks were created within the automated system to ensure validity of replicate analysis in titrimetric procedures. Validations were conducted using five data sets of manually computed assay results. The acceptance criteria set for the protocol were met. Significant p-values (p < 0.05, α = 0.05, at 95% Confidence Interval) were obtained from students’ t-test evaluation of the mean values for manual-calculated and spreadsheet results at all levels of the analysis flow. Right-first-time analysis and principles of data integrity were enhanced by use of the validated spreadsheet calculators in titrimetric evaluations of ZnSO4 tablets. Human errors were minimized in calculations when procedures were automated in quality control laboratories. The assay procedure for the formulation was achieved in a time-efficient manner with greater level of accuracy. This project is expected to promote cost savings for laboratory business models.

Keywords: data integrity, spreadsheets, titrimetry, validation, zinc sulphate tablets

Procedia PDF Downloads 155
311 A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method

Authors: Hanwei Gao, Louis Jezequel, Eric Cabrol, Bernard Vitry

Abstract:

The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system.

Keywords: chassis durability, Chebyshev polynomials, multi-objective optimization, polynomial chaos expansion, ride comfort, robust design

Procedia PDF Downloads 142
310 An Exploration of the Emergency Staff’s Perceptions and Experiences of Teamwork and the Skills Required in the Emergency Department in Saudi Arabia

Authors: Sami Alanazi

Abstract:

Teamwork practices have been recognized as a significant strategy to improve patient safety, quality of care, and staff and patient satisfaction in healthcare settings, particularly within the emergency department (ED). The EDs depend heavily on teams of interdisciplinary healthcare staff to carry out their operational goals and core business of providing care to the serious illness and injured. The ED is also recognized as a high-risk area in relation to service demand and the potential for human error. Few studies have considered the perceptions and experiences of the ED staff (physicians, nurses, allied health professionals, and administration staff) about the practice of teamwork, especially in Saudi Arabia (SA), and no studies have been conducted to explore the practices of teamwork in the EDs. Aim: To explore the practices of teamwork from the perspectives and experiences of staff (physicians, nurses, allied health professionals, and administration staff) when interacting with each other in the admission areas in the ED of a public hospital in the Northern Border region of SA. Method: A qualitative case study design was utilized, drawing on two methods for the data collection, comprising of semi-structured interviews (n=22) with physicians (6), nurses (10), allied health professionals (3), and administrative members (3) working in the ED of a hospital in the Northern Border region of SA. The second method is non-participant direct observation. All data were analyzed using thematic analysis. Findings: The main themes that emerged from the analysis were as follows: the meaningful of teamwork, reasons of teamwork, the ED environmental factors, the organizational factors, the value of communication, leadership, teamwork skills in the ED, team members' behaviors, multicultural teamwork, and patients and families behaviors theme. Discussion: Working in the ED environment played a major role in affecting work performance as well as team dynamics. However, Communication, time management, fast-paced performance, multitasking, motivation, leadership, and stress management were highlighted by the participants as fundamental skills that have a major impact on team members and patients in the ED. It was found that the behaviors of the team members impacted the team dynamics as well as ED health services. Behaviors such as disputes among team members, conflict, cooperation, uncooperative members, neglect, and emotions of the members. Besides that, the behaviors of the patients and their accompanies had a direct impact on the team and the quality of the services. In addition, the differences in the cultures have separated the team members and created undesirable gaps such the gender segregation, national origin discrimination, and similarity and different in interests. Conclusion: Effective teamwork, in the context of the emergency department, was recognized as an essential element to obtain the quality of care as well as improve staff satisfaction.

Keywords: teamwork, barrier, facilitator, emergencydepartment

Procedia PDF Downloads 117
309 For Whom Is Legal Aid: A Critical Analysis of the State-Funded Legal Aid in Criminal Cases in Tajikistan

Authors: Umeda Junaydova

Abstract:

Legal aid is a key element of access to justice. According to UN Principles and Guidelines on Access to Legal Aid in Criminal Justice Systems, state members bear the obligation to put in place accessible, effective, sustainable, and credible legal aid systems. Regarding this obligation, developing countries, such as Tajikistan, faced challenges in terms of financing this system. Thus, many developed nations have launched rule-of-law programs to support these states and ensure access to justice for all. Following independence from the Soviet Union, Tajikistan committed to introducing the rule of law and providing access to justice. This newly established country was weak, and the sudden outbreak of civil war aggravated the situation even more. The country needed external support and opened its door to attract foreign donors to assist it in its way to development. In 2015, Tajikistan, with the financial support of development partners, was able to establish a state-funded legal aid system that provides legal assistance to vulnerable and marginalized populations, including in criminal cases. In the beginning, almost the whole system was financed from donor funds; by that time, the contribution of the government gradually increased, and currently, it covers 80% of the total budget. All these governments' actions toward ensuring access to criminal legal aid for disadvantaged groups look promising; however, the reality is completely different. Currently, not all disadvantaged people are covered by these services, and their cases are most of the time considered without appropriate defense, which leads to violation of fundamental human rights. This research presents a comprehensive exploration of the interplay between donor assistance and the effectiveness of legal aid services in Tajikistan, with a specific focus on criminal cases involving vulnerable groups, such as women and children. In the context of Tajikistan, this study addresses a pressing concern: despite substantial financial support from international donors, state-funded legal aid services often fall short of meeting the needs of poor and vulnerable populations. The study delves into the underlying complexities of this issue and examines the structural, operational, and systemic challenges faced by legal aid providers, shedding light on the factors contributing to the ineffectiveness of legal aid services. Furthermore, it seeks to identify the root causes of these issues, revealing the barriers that hinder the delivery of adequate legal aid services. The research adopts a socio-legal methodology to ensure an appropriate combination of multiple methodologies. The findings of this research hold significant implications for both policymakers and practitioners, offering insights into the enhancement of legal aid services and access to justice for disadvantaged and marginalized populations in Tajikistan. By addressing these pressing questions, this study aims to fill the gap in legal literature and contribute to the development of a more equitable and efficient legal aid system that better serves the needs of the most vulnerable members of society.

Keywords: access to justice, legal aid, rule of law, rights for council

Procedia PDF Downloads 35