Search results for: hazardous organic compounds
1826 Sublethal Effects of Entomopathogenic Nematodes and Fungus against the Red Palm Weevil, Rhynchophorus Ferrugineus (Olivier) (Curculionidae: Coleoptera)
Authors: M. Manzoor, J. N. Ahmad, R. M. Giblin Davis, N. Javed, M. S. Haider
Abstract:
The invasive Red Palm Weevil (RPW) (Rhynchophorus ferrugineus [Olivier] (Coleoptera: Curculionidae) is one of the most destructive palm pests in the world. Synthetic pesticides are environmentally hazardous pest control strategies being used in the past with emerging need of eco-friendly biological approaches including microbial entomopathogens for RPW management. The sublethal effects of a single entomopathogenic fungus (EPF) Beauveria bassiana (WG-11) (Ascomycota: Hypocreales) and two entomopathogenic nematode (EPN) species Heterorhabditis bacteriophora (Poinar) and Steinernema carpocapsae (Weiser) (Nematoda: Rhabditida) were evaluated in various combinations against laboratory-reared 3rd, 5th and 8th instar larvae of RPW in laboratory assays. Individual and combined effects of both entomopathogens (EP) were observed after the pre-application of B. bassiana fungus at 1-2-week intervals. A number of parameters were measured after the application of sub-lethal doses of EPF such as diet consumption, development, frass production, mortality, and weight gain. Combined treatments were tested for additive and synergistic effects. Synergism was more frequently observed in B. bassiana and S. carpocapsae combined treatments than in B. bassiana and H. bacteriophora combinations. Early instar larvae of RPW were more susceptible than older instars. Synergistic effects were observed in the 3rd and 5th instars exposed to B. bassiana and S. carpocapsae at 0, 7 and 14-day intervals. Whereas, in 8th instar larvae, the synergistic effect was observed only in B. bassiana and S. carpocapsae treatments after 0 and 7 days intervals. EPN treatments decreased pupation, egg hatching and emergence of adults. Lethal effects of nematodes were also observed in all growth stages of R. ferrugineus. Reduced larval weight, increased larval, pre-pupal and pupal duration, reduced adult weight and life span were observed. Sub-lethal concentrations of both entomopathogens induced variations in the different developmental stages and reduced food consumption, frass production, growth, and weight gain. So, on the basis of results, it is concluded that synthetic pesticides should be replaced with environmentally friendly sustainable biopesticides.Keywords: H. bacteriophora, S. carpocapsae, B. bassiana, mortality
Procedia PDF Downloads 1691825 Impact on Soil Irrigated with Municipal and Industrial Wastewater from Korangi Drain near IoBM, Karachi
Authors: Farhan Ali
Abstract:
Use of wastewater for growing vegetables has become a common practice around big cities. Wastewater contains organic material and inorganic elements essential for plant growth but also contain heavy metals, which may be lethal for animals and humans if their concentration increases than permissible limit. To monitor this situation, a survey was conducted to ascertain the addition of heavy metals into agricultural fields through wastewater irrigation and their translocation in to the edible parts of the vegetables. The study highlighted that there is a large accumulation of heavy metals in the soil, which is irrigated with industrial wastewater Laden and people consume vegetables grown in soil irrigated with sewage water to absorb a large amount of these metals. This accumulation of heavy metals in food cause possible health risks for the consumer. Regular monitoring of the levels of pathogens and heavy metals from the waste water drain which effluent are used for growing vegetables and other foodstuffs is essential to monitor excessive accumulation of these metals in the food chain.Keywords: pathogens, wastewater, concentration, effluent
Procedia PDF Downloads 2971824 Assessment the Influence of Bitumen Emulsion PAHs Content in Arid Land
Authors: Jalil Badamfirooz
Abstract:
Soil wind erosion has a negative impact on the environment. Mulching is one of the most efficient soil protection techniques. Bitumen emulsion has recently been utilized as a soil cover that is sprayed directly over the soil and forms a thin film. The thin coating of bitumen emulsion prevents soil erosion and keeps moisture in the soil. Besides, some compounds release into the soil and cause environmental problems. In the present study, the effect of bitumen emulsion on the release of polycyclic aromatic hydrocarbons (PAHs) into the soil is studied in an arid land located in the central part of Iran. The soil was Loamy-Sand and saline with a pH of 8.03. Bitumen emulsion was used in this study as mulch at a rate of 4 L m2. The effect of this mulch on soil properties was investigated after 6 months of mulch application. Then PAHs concentrations were determined in samples collected from different depths in bitumen emulsion sprayed and control soils. In general, bitumen emulsion application on soil led to a significant increase in some PAHs, which was higher than soil pollution standards critical level of pollution for commerce, groundwater protection, pasture forest, and park and residence uses.Keywords: mulch, bitumen emulsion, arid land, PAH
Procedia PDF Downloads 891823 Distribution of Dynamical and Energy Parameters in Axisymmetric Air Plasma Jet
Authors: Vitas Valinčius, Rolandas Uscila, Viktorija Grigaitienė, Žydrūnas Kavaliauskas, Romualdas Kėželis
Abstract:
Determination of integral dynamical and energy characteristics of high-temperature gas flows is a very important task of gas-dynamic for hazardous substances destruction systems. They are also always necessary for the investigation of high-temperature turbulent flow dynamics, heat and mass transfer. It is well known that distribution of dynamical and thermal characteristics of high-temperature flows and jets is strongly related to heat flux variation over an imposed area of heating. As is visible from numerous experiments and theoretical considerations, the fundamental properties of an isothermal jet are well investigated. However, the establishment of regularities in high-temperature conditions meets certain specific behavior comparing with moderate-temperature jets and flows. Their structures have not been thoroughly studied yet, especially in the cases of plasma ambient. It is well known that the distribution of local plasma jet parameters in high temperature and isothermal jets and flows may significantly differ. High temperature axisymmetric air jet generated by atmospheric pressure DC arc plasma torch was investigated employing enthalpy probe 3.8∙10-3 m of diameter. Distribution of velocities and temperatures were established in different cross-sections of the plasma jet outflowing from 42∙10-3 m diameter pipe at the average mean velocity of 700 m∙s-1, and averaged temperature of 4000 K. It has been found that gas heating fractionally influences shape and values of a dimensionless profile of velocity and temperature in the main zone of plasma jet and has a significant influence in the initial zone of the plasma jet. The width of the initial zone of the plasma jet has been found to be lesser than in the case of isothermal flow. The relation between dynamical thickness and turbulent number of Prandtl has been established along jet axis. Experimental results were generalized in dimensionless form. The presence of convective heating shows that heat transfer in a moving high-temperature jet also occurs due to heat transfer by moving particles of the jet. In this case, the intensity of convective heat transfer is proportional to the instantaneous value of the flow velocity at a given point in space. Consequently, the configuration of the temperature field in moving jets and flows essentially depends on the configuration of the velocity field.Keywords: plasma jet, plasma torch, heat transfer, enthalpy probe, turbulent number of Prandtl
Procedia PDF Downloads 1821822 Investigation of Biogas from Slaughterhouse and Dairy Farm Waste
Authors: Saadelnour Abdueljabbar Adam
Abstract:
Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents a solution of organic waste from cow dairy farms and slaughterhouse. We present the findings of experimental investigation of biogas production using cow manure, blood and rumen content were mixed at three proportions :72.3%, 61%, 39% manure, 6%, 8.5%, 22% blood; and 21.7%, 30.5%, 39% rumen content in volume for bio-digester 1,2,3 respectively. This paper analyses the quantitative and qualitative composition of biogas: gas content, and the concentration of methane. The highest biogas output 0.116L/g dry matter from bio-digester1 together with a high-quality biogas of 85% methane Was from the mixture of cow manure with blood and rumen content were mixed at 72.3%manure, 6%blood and 21.7%rumen content which is useful for combustion and energy production. While bio-digester 2 and 3 gave 0.012L/g dry matter and 0.013L/g dry matter respectively with the weak concentration of methane (50%).Keywords: anaerobic digestion, bio-digester, blood, cow manure, rumen content
Procedia PDF Downloads 5671821 Biohydrogen Production from Starch Residues
Authors: Francielo Vendruscolo
Abstract:
This review summarizes the potential of starch agroindustrial residues as substrate for biohydrogen production. Types of potential starch agroindustrial residues, recent developments and bio-processing conditions for biohydrogen production will be discussed. Biohydrogen is a clean energy source with great potential to be an alternative fuel, because it releases energy explosively in heat engines or generates electricity in fuel cells producing water as only by-product. Anaerobic hydrogen fermentation or dark fermentation seems to be more favorable, since hydrogen is yielded at high rates and various organic waste enriched with carbohydrates as substrate result in low cost for hydrogen production. Abundant biomass from various industries could be source for biohydrogen production where combination of waste treatment and energy production would be an advantage. Carbohydrate-rich nitrogen-deficient solid wastes such as starch residues can be used for hydrogen production by using suitable bioprocess technologies. Alternatively, converting biomass into gaseous fuels, such as biohydrogen is possibly the most efficient way to use these agroindustrial residues.Keywords: biofuel, dark fermentation, starch residues, food waste
Procedia PDF Downloads 3981820 The Five Aggregates in Buddhism and Natural Sciences: A Revolutionary Perspective of Nature
Authors: Choo Fatt Foo
Abstract:
The Five Aggregates is core to Buddhism teaching. According to Buddhism, human beings and all sentient beings are made up of nothing but the Five Aggregates. If that is the case, the Five Aggregates must be found in all natural sciences. So far, there has not been any systematic connection between the Five Aggregates and natural sciences. This study aims at identifying traces of the Five Aggregates in various levels of natural sciences and pointing possible directions for future research. The following areas are briefly explored to identify the connection with the Five Aggregates: physics, chemistry, organic chemistry, DNA, cell, and human body and brain. Traces of the Five Aggregates should be found in each level of this hierarchy of natural sciences for human and sentient beings to be said to be made up of the Five Aggregates. This study proposes a hierarchical structure of nature cutting every level with the Five Aggregates and the Four Great Elements as its basis. The structure proposed by this study would revolutionize how we look at nature. Hopefully, better understanding of sciences in this manner will steer the application of scientific methods and technology towards a brighter future with compassion and tolerance.Keywords: the five aggregates, Buddhism, four great elements, physics, calabi-yau manifold
Procedia PDF Downloads 1901819 Removal of Methyl Green by an Algerian Calcic Clay
Authors: Feddal Imene, Boumediene Youssra, Mimanne Goussem
Abstract:
The history of the environment and its chemistry is above all the history of its pollution. For a large part, it is the changes made in the air, water and soil by human beings. From there, we can define that pollution is an unfavorable modification of the natural environment that appears as a by-product of human action, through direct and indirect effects. The protection and preservation of the environment is one of the pillars of sustainable development, which is currently a major issue for the future of man and the planet. Currently, humanity is facing an alarming increase in the pollution of the natural environment by various organic or inorganic materials. The objective of our work is to study the adsorption of a textile dye which is known in the industrial environment, methyl green, on raw calcic clay. Our material was characterized by X-ray diffraction (XRD) Fourier transform infrared (FTIR), we also determined its cation exchange capacity (CEC), pHzc and specific surface by Methylene Blue method. The kinetic and thermodynamic study of the adsorption of methyl green was studied, these experiments resulted that the adsorption of the dye follows pseudo second order kinetics, and according to the thermodynamic study and the study of the probability we can say that we have a physisorption.Keywords: calcic clay, dye, materials, environment
Procedia PDF Downloads 571818 OLED Encapsulation Process Using Low Melting Point Alloy and Epoxy Mixture by Instantaneous Discharge
Authors: Kyung Min Park, Cheol Hee Moon
Abstract:
In this study we are to develop a sealing process using a mixture of a LMPA and an epoxy for the atmospheric OLED sealing process as a substitute for the thin-film process. Electrode lines were formed on the substrates, which were covered with insulating layers and sacrificial layers. A mixture of a LMPA and an epoxy was screen printed between the two electrodes. In order to generate a heat for the melting of the mixture, Joule heating method was used. Were used instantaneous discharge process for generating Joule heating. Experimental conditions such as voltage, time and constituent of the electrode were varied to optimize the heating conditions. As a result, the mixture structure of this study showed a great potential for a low-cost, low-temperature, atmospheric OLED sealing process as a substitute for the thin-film process.Keywords: organic light emitting diode, encapsulation, low melting point alloy, joule heat
Procedia PDF Downloads 5491817 Response of Subfossile Diatoms, Cladocera, and Chironomidae in Sediments of Small Ponds to Changes in Wastewater Discharges from a Zn–Pb Mine
Authors: Ewa Szarek-Gwiazda, Agata Z. Wojtal, Agnieszka Pociecha, Andrzej Kownacki, Dariusz Ciszewski
Abstract:
Mining of metal ores is one of the largest sources of heavy metals, which deteriorate aquatic systems. The response of organisms to environmental changes can be well recorded in sediments of the affected water bodies and may be reconstructed based on analyses of organisms' remains. The present study aimed at the response of diatoms (Bacillariophyta), Cladocera, and Chironomidae communities to the impact of Zn-Pb mine water discharge recorded in sediment cores of small subsidence ponds on the Chechło River floodplain (Silesia–Krakow Region, southern Poland). We hypothesize various responses of the above groups to high metal concentrations (Cd, Pb, Zn, and Cu). The investigated ponds were formed either during the peak of the ore exploitation (DOWN) or after mining cessation (UP). Currently, the concentrations of dissolved metals (in µg g⁻¹) in water reached up to 0.53 for Cd, 7.3 for Pb, and up to 47.1 for Zn. All the sediment cores from subsidence ponds were heavily polluted with Cd 6.7–612 μg g⁻¹, Pb 0.1–10.2 mg g⁻¹, and Zn 0.5–23.1 mg g⁻¹. Core sediments varied also in respect to pH 5.8-7.1 and concentrations of organic matter (5.7-39.8%). The impact of high metal concentrations was expressed by the occurrence of metal-tolerant taxa like diatoms – Nitzschia amphibia, Sellaphora nigri, and Surirella brebisonii var. kuetzingii; Cladocera – Chydorus sphaericus (dominated in cores from all ponds), and Chironomidae – Chironomus and Cricotopus especially in the DOWN ponds. Statistical analysis exhibited a negative impact of metals on some taxa of diatoms and Cladocera but only on Polypedilum sp. from Chironomidae. The abundance of such diatoms like Gomphonema utae, Staurosirella pinnata, Eunotia bilunaris, and Cladocera like Alona, Chydorus, Graptoleberis, and Pleuroxus decreased with increasing Pb concentration. However, the occurrence or dominance of more sensitive species of diatoms and Cladocera indicates their adaptation to higher metal loads, which was facilitated by neutral pH and slightly alkaline waters. Diatom assemblages were generally resistant to Zn, Pb, Cu, and Cd pollution, as indicated by their large similarity to populations from non-contaminated waters. Comparison with reference objects clearly indicates the dominance of Achnanthidium minutissimum, Staurosira venter, and Fragilaria gracilis in very diverse assemblages of unpolluted waters. The distribution of the Cladocera and Chironomidae taxa depended on the habitat type. The DOWN ponds with stagnant water and overgrown with macrophytes were more suitable for cladocerans (14 taxa, higher diversity) than the UP ponds with river water flowing through their centre and with a small share of macrophytes (8 taxa). The Chironominae, mainly Chironomus and Microspectra, were abundant in cores from the UP ponds with muddy bottoms. Inversely, the density of Orthocladiinae, especially genus Cricotopus, was related to the organic matter content and dominated in cores from the DOWN ponds. The presence of diatoms like Nitzschia amphibia, Sellaphora nigri, and Surirella brebisonii var. kuetzingii, cladocerans: Bosmina longirostris, Chydorus sphaericus, Alona affinis, and A. rectangularis as well as Chironomidae Chironomus sp. (UP ponds) and Psecrotanypus varius (DOWN ponds) indicate the influence of the water trophy on their distribution.Keywords: Chironomidae, Cladocera, diatoms, metals, Zn-Pb mine, sediment cores, subsidence ponds
Procedia PDF Downloads 771816 Developing a Town Based Soil Database to Assess the Sensitive Zones in Nutrient Management
Authors: Sefa Aksu, Ünal Kızıl
Abstract:
For this study, a town based soil database created in Gümüşçay District of Biga Town, Çanakkale, Turkey. Crop and livestock production are major activities in the district. Nutrient management is mainly based on commercial fertilizer application ignoring the livestock manure. Within the boundaries of district, 122 soil sampling points determined over the satellite image. Soil samples collected from the determined points with the help of handheld Global Positioning System. Labeled samples were sent to a commercial laboratory to determine 11 soil parameters including salinity, pH, lime, organic matter, nitrogen, phosphorus, potassium, iron, manganese, copper and zinc. Based on the test results soil maps for mentioned parameters were developed using remote sensing, GIS, and geostatistical analysis. In this study we developed a GIS database that will be used for soil nutrient management. Methods were explained and soil maps and their interpretations were summarized in the study.Keywords: geostatistics, GIS, nutrient management, soil mapping
Procedia PDF Downloads 3751815 Theoretical and Experimental Investigations of Binary Systems for Hydrogen Storage
Authors: Gauthier Lefevre, Holger Kohlmann, Sebastien Saitzek, Rachel Desfeux, Adlane Sayede
Abstract:
Hydrogen is a promising energy carrier, compatible with the sustainable energy concept. In this context, solid-state hydrogen-storage is the key challenge in developing hydrogen economy. The capability of absorption of large quantities of hydrogen makes intermetallic systems of particular interest. In this study, efforts have been devoted to the theoretical investigation of binary systems with constraints consideration. On the one hand, besides considering hydrogen-storage, a reinvestigation of crystal structures of the palladium-arsenic system shows, with experimental validations, that binary systems could still currently present new or unknown relevant structures. On the other hand, various binary Mg-based systems were theoretically scrutinized in order to find new interesting alloys for hydrogen storage. Taking the effect of pressure into account reveals a wide range of alternative structures, changing radically the stable compounds of studied binary systems. Similar constraints, induced by Pulsed Laser Deposition, have been applied to binary systems, and results are presented.Keywords: binary systems, evolutionary algorithm, first principles study, pulsed laser deposition
Procedia PDF Downloads 2721814 Protein and Mineral Removal from Dairy Waste-Water Using Precipitation Process
Authors: Zahra Akbari, Farzin Zokaee, Talat Ghomashchi
Abstract:
Whey is a by-product of the dairy industry whose major components are lactose (44–52 g/L), proteins (6–8 g/L) and mineral salts (4–9 g/L). Approximately 50% of 121 million tons of whey produced in the world in 1993 were disposed into rivers, lakes or other water bodies, treated in wastewater treatment plants or loaded onto land. This represents a significant loss of resources and causes serious pollution problems since whey is a heavy organic pollutant with high COD and BOD values, 40–60 g/L and 50–80 g/L, respectively. The removal of cheese whey proteins and minerals represent an important task both in environmental and in food sciences. The most important treatments which are considered in this study, have been done by using lime, Al2O3, FeCl3 and AlCl3 along with heating and also acidic-alkaline method. Results show that the best way for removal of protein is accomplished with adding HCl to decrease pH from 6 to 4, boiling for 20 min, and filtering protein aggregates. Also partial demineralization in whey solution for reducing ash is accomplished by adding NaOH to increase pH to 7.2 and heating solution for 20 min.Keywords: whey treatment, dairy industry, precipitation, protein, mineral
Procedia PDF Downloads 4151813 Use of Zikani’s Ribosome Modulating Agents for Treating Recessive Dystrophic & Junctional Epidermolysis Bullosa with Nonsense Mutations
Authors: Mei Chen, Yingping Hou, Michelle Hao, Soheil Aghamohammadzadeh, Esteban Terzo, Roger Clark, Vijay Modur
Abstract:
Background: Recessive Dystrophic Epidermolysis Bullosa (RDEB) is a genetic skin condition characterized by skin tearing and unremitting blistering upon minimal trauma. Repeated blistering, fibrosis, and scarring lead to aggressive squamous cell carcinoma later in life. RDEB is caused by mutations in the COL7A1 gene encoding collagen type VII (C7), the major component of anchoring fibrils mediating epidermis-dermis adherence. Nonsense mutations in the COL7A1 gene of a subset of RDEB patients leads to premature termination codons (PTC). Similarly, most Junctional Epidermolysis Bullosa (JEB) cases are caused by nonsense mutations in the LAMB3 gene encoding the β3 subunit of laminin 332. Currently, there is an unmet need for the treatment of RDEB and JEB. Zikani Therapeutics has discovered an array of macrocyclic compounds with ring structures similar to macrolide antibiotics that can facilitate readthrough activity of nonsense mutations in the COL7A1 and LAMB3 genes by acting as Ribosome Modulating Agents (RMAs). The medicinal chemistry synthetic advancements of these macrocyclic compounds have allowed targeting the human ribosome while preserving the structural elements responsible for the safety and pharmacokinetic profile of clinically used macrolide antibiotics. Methods: C7 expression was used as a measure of readthrough activity by immunoblot assays in two primary human fibroblasts from RDEB patients (R578X/R578X and R163X/R1683X-COL7A1). Similarly, immunoblot assays in C325X/c.629-12T > A-LAMB3 keratinocytes were used to measure readthrough activity for JEB. The relative readthrough activity of each compound was measured relative to Gentamicin. An imaging-based fibroblast migration assay was used as an assessment of C7 functionality in RDEB-fibroblasts over 16-20 hrs. The incubation period for the above experiments was 48 hrs for RDEB fibroblasts and 72 hours for JEB keratinocytes. Results: 9 RMAs demonstrated increased protein expression in both patient RDEB fibroblasts. The highest readthrough activity at tested concentrations without cytotoxicities increased protein expression up to 179% of Gentamicin (400 µg/ml), with favored readthrough activity in R163X/R1683X-COL7A1 fibroblasts. Concurrent with protein expression, fibroblast hypermotility phenotype observed in RDEB was rescued by reducing motility by ~35% to WT levels (the same level as 690 µM Gentamicin treated cells). Laminin β3 expression was also shown to be increased by 6 RMAs in keratinocytes to 33-83% of (400 µg/ml) Gentamicin. Conclusions: To date, 9 RMAs have been identified that enhance the expression of functional C7 in a mutation-dependent manner in two different RDEB patient fibroblast backgrounds (R578X/R578X and R163X/R1683X-COL7A1). A further 6 RMAs have been identified that enhance the readthrough of C325X-LAMB3 in JEB patient keratinocytes. Based on the clinical trial conducted by us with topical gentamycin in 2017, Zikani’s RMAs achieve clinically significant levels of read-through for the treatment of recessive dystrophic and Junctional Epidermolysis Bullosa.Keywords: epidermolysis bullosa, nonsense mutation, readthrough, ribosome modulation
Procedia PDF Downloads 981812 Photocatalytic Activity of Polypyrrole/ZnO Composites for Degradation of Dye Reactive Red 45 in Wastewater
Authors: Ljerka Kratofil Krehula, Vanja Gilja, Andrea Husak, Sniježana Šuka, Zlata Hrnjak-Murgić
Abstract:
Zinc oxide (ZnO) can be used as photocatalysts for water purification. However, one particular interest is given on the integration of inorganic ZnO nanoclusters with conducting polymers because the resulting nanocomposites may possess unique properties and enhanced photocatalytic activity in comparison to pure ZnO, using UV and also visible light. It is needed to explore the appropriate structure of polypyrrole that can induce activation of ZnO photocatalyst since the synthesis of organic/inorganic hybrid materials can result in a synergistic and complementary feature, increasing ZnO photocatalytic efficiency. In this paper several different composites of polypyrrole/zinc oxide (ZnO) were studied. Composite samples were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and scanning electron microscopy (SEM). The photocatalytic efficiency of prepared samples was studied as a decomposition of Reactive Red 45 (RR 45) dye, which was monitored by UV-Vis spectroscopy as a change in absorbance of characteristic wavelength at 542 nm. Results show good photocatalytic efficiency of all nanocomposite samples.Keywords: photocatalysis, polypyrrole, wastewater, zinc oxide
Procedia PDF Downloads 2661811 Hybrid Method Development for the Removal of Crystal Violet Dye from Aqueous Medium
Authors: D. Nareshyadav, K. Anand Kishore, D. Bhagawan
Abstract:
Water scarcity is the much-identified issue all over the world. The available sources of water need to be reused to sustainable future. The present work explores the treatment of dye wastewater using combinative photocatalysis and ceramic nanofiltration membrane. Commercial ceramic membrane and TiO₂ catalyst were used in this study to investigate the removal of crystal violet dye from the aqueous solution. The effect of operating parameters such as inlet pressure, initial concentration of crystal violet dye, catalyst (TiO₂) loading, initial pH was investigated in the individual system as well as the combined system. In this study, 95 % of dye water was decolorized and 89 % of total organic carbon (TOC) was removed by the hybrid system for 500 ppm of dye and 0.75 g/l of TiO₂ concentrations at pH 9. The operation of the integrated photocatalytic reactor and ceramic membrane filtration has shown the maximum removal of crystal violet dye compared to individual systems. Hence this proposed method may be effective for the removal of Crystal violet dye from effluents.Keywords: advanced oxidation process, ceramic nanoporous membrane, dye degradation/removal, hybrid system, photocatalysis
Procedia PDF Downloads 1771810 Engineering Parameters and Classification of Marly Soils of Tabriz
Authors: Amirali Mahouti, Hooshang Katebi
Abstract:
Enlargement of Tabriz metropolis to the east and north-east caused urban construction to be built on Marl layers and because of increase in excavations depth, further information of this layer is inescapable. Looking at geotechnical investigation shows there is not enough information about Tabriz Marl and this soil has been classified only by color. Tabriz Marl is lacustrine carbonate sediment outcrops, surrounds eastern, northern and southern region of city in the East Azerbaijan Province of Iran and is known as bed rock of city under alluvium sediments. This investigation aims to characterize geotechnical parameters of this soil to identify and set it in classification system of carbonated soils. For this purpose, specimens obtained from 80 locations over the city and subjected to physical and mechanical tests, such as Atterberg limits, density, moisture content, unconfined compression, direct shear and consolidation. CaCO3 content, organic content, PH, XRD, XRF, TGA and geophysical downhole tests also have been done on some of them.Keywords: carbonated soils, classification of soils, mineralogy, physical and mechanical tests for Marls, Tabriz Marl
Procedia PDF Downloads 3171809 Advantages of Matrix Solid Phase Dispersive (MSPD) Extraction Associated to MIPS versus MAE Liquid Extraction for the Simultaneous Analysis of PAHs, PCBs and Some Hydroxylated PAHs in Sediments
Authors: F. Portet-Koltalo, Y. Tian, I. Berger, C. Boulanger-Lecomte, A. Benamar, N. Machour
Abstract:
Sediments are complex environments which can accumulate a great variety of persistent toxic contaminants such as polychlorobiphenyles (PCBs), polycyclic aromatic hydrocarbons (PAHs) and some of their more toxic degradation metabolites such as hydroxylated PAHs (OH-PAHs). Owing to their composition, fine clayey sediments can be more difficult to extract than soils using conventional solvent extraction processes. So this study aimed to compare the potential of MSPD (matrix solid phase dispersive extraction) to extract PCBs, PAHs and OH-PAHs, in comparison with microwave assisted extraction (MAE). Methodologies: MAE extraction with various solvent mixtures was used to extract PCBs, PAHs and OH-PAHs from sediments in two runs, followed by two GC-MS analyses. MSPD consisted in crushing the dried sediment with dispersive agents, introducing the mixture in cartridges and eluting the target compounds with an appropriate volume of selected solvents. So MSPD combined with cartridges containing MIPs (molecularly imprinted polymers) designed for OH-PAHs was used to extract the three families of target compounds in only one run, followed by parallel analyses in GC-MS for PAHs/PCBs and HPLC-FLD for OH-PAHs. Results: MAE extraction was optimized to extract from clayey sediments, in two runs, PAHs/PCBs in one hand and OH-PAHs in the other hand. Indeed, the best conditions of extractions (mixtures of extracting solvents, temperature) were different if we consider the polarity and the thermodegradability of the different families of target contaminants: PAHs/PCBs were better extracted using an acetone/toluene 50/50 mixture at 130°C whereas OH-PAHs were better extracted using an acetonitrile/toluene 90/10 mixture at 100°C. Moreover, the two consecutive GC-MS analyses contributed to double the total analysis time. A matrix solid phase dispersive (MSPD) extraction procedure was also optimized, with the first objective of increasing the extraction recovery yields of PAHs and PCBs from fine-grained sediment. The crushing time (2-10 min), the nature of the dispersing agents added for purifying and increasing the extraction yields (Florisil, octadecylsilane, 3-chloropropyle, 4-benzylchloride), the nature and the volume of eluting solvents (methylene chloride, hexane, hexane/acetone…) were studied. It appeared that in the best conditions, MSPD was a better extraction method than MAE for PAHs and PCBs, with respectively, mean increases of 8.2% and 71%. This method was also faster, easier and less expensive. But the other advantage of MSPD was that it allowed to introduce easily, just after the first elution process of PAHs/PCBs, a step permitting the selective recovery of OH-PAHs. A cartridge containing MIPs designed for phenols was coupled to the cartridge containing the dispersed sediment, and various eluting solvents, different from those used for PAHs and PCBs, were tested to selectively concentrate and extract OH-PAHs. Thereafter OH-PAHs could be analyzed at the same time than PAHs and PCBs: the OH-PAH extract could be analyzed with HPLC-FLD, whereas the PAHs/PCBs extract was analyzed with GC-MS, adding only few minutes more to the total duration of the analytical process. Conclusion: MSPD associated to MIPs appeared to be an easy, fast and low expensive method, able to extract in one run a complex mixture of toxic apolar and more polar contaminants present in clayey fine-grained sediments, an environmental matrix which is generally difficult to analyze.Keywords: contaminated fine-grained sediments, matrix solid phase dispersive extraction, microwave assisted extraction, molecularly imprinted polymers, multi-pollutant analysis
Procedia PDF Downloads 3531808 Acid Fuchsin Dye Based PMMA Film for Holographic Investigations
Authors: G. Vinitha, A. Ramalingam
Abstract:
In view of a possible application in optical data storage devices, diffraction grating efficiency of an organic dye, Acid Fuchsin doped in PMMA matrix was studied under excitation with CW diode pumped Nd: YAG laser at 532 nm. The open aperture Z-scan of dye doped polymer displayed saturable absorption and the closed aperture Z-scan of the samples exhibited negative nonlinearity. The diffraction efficiency of the grating is the ratio of the intensity of the first order diffracted power to the incident read beam power. The dye doped polymer films were found to be good media for recording. It is observed that the formation of gratings strongly depend on the concentration of dye in the polymer film, the intensity ratios of the writing beams and the angle between the writing beams. It has been found that efficient writing can be made at an angle of 20° and when the intensity ratio of the writing beams is unity.Keywords: diffraction efficiency, nonlinear optical material, saturable absorption, surface-relief-gratings
Procedia PDF Downloads 2991807 Development of Folding Based Aptasensor for Ochratoxin a Using Different Pulse Voltammetry
Authors: Rupesh K. Mishra, Gaëlle Catanante, Akhtar Hayat, Jean-Louis Marty
Abstract:
Ochratoxins (OTA) are secondary metabolites present in a wide variety of food stuff. They are dangerous by-products mainly produced by several species of storage fungi including the Aspergillus and Penicillium genera. OTA is known to have nephrotoxic, immunotoxic, teratogenic and carcinogenic effects. Thus, needs a special attention for a highly sensitive and selective detection system that can quantify these organic toxins in various matrices such as cocoa beans. This work presents a folding based aptasensors by employing an aptamer conjugated redox probe (methylene blue) specifically designed for OTA. The aptamers were covalently attached to the screen printed carbon electrodes using diazonium grafting. Upon sensing the OTA, it binds with the immobilized aptamer on the electrode surface, which induces the conformational changes of the aptamer, consequently increased in the signal. This conformational change of the aptamer before and after biosensing of target OTA could produce the distinguishable electrochemical signal. The obtained limit of detection was 0.01 ng/ml for OTA samples with recovery of up to 88% in contaminated cocoa samples.Keywords: ochratoxin A, cocoa, DNA aptamer, labelled probe
Procedia PDF Downloads 2851806 Comparative Analysis on the Evolution of Chlorinated Solvents Pollution in Granular Aquifers and Transition Zones to Aquitards
Authors: José M. Carmona, Diana Puigserver, Jofre Herrero
Abstract:
Chlorinated solvents belong to the group of nonaqueous phase liquids (DNAPL) and have been involved in many contamination episodes. They are carcinogenic and recalcitrant pollutants that may be found in granular aquifers as: i) pools accumulated on low hydraulic conductivity layers; ii) immobile residual phase retained at the pore-scale by capillary forces; iii) dissolved phase in groundwater; iv) sorbed by particulate organic matter; and v) stored into the matrix of low hydraulic conductivity layers where they penetrated by molecular diffusion. The transition zone between granular aquifers and basal aquitards constitute the lowermost part of the aquifer and presents numerous fine-grained interbedded layers that give rise to significant textural contrasts. These layers condition the transport and fate of contaminants and lead to differences from the rest of the aquifer, given that: i) hydraulic conductivity of these layers is lower; ii) DNAPL tends to accumulate on them; iii) groundwater flow is slower in the transition zone and consequently pool dissolution is much slower; iv) sorbed concentrations are higher in the fine-grained layers because of their higher content in organic matter; v) a significant mass of pollutant penetrates into the matrix of these layers; and vi) this contaminant mass back-diffuses after remediation and the aquifer becomes contaminated again. Thus, contamination sources of chlorinated solvents are extremely more recalcitrant in transition zones, which has far-reaching implications for the environment. The aim of this study is to analyze the spatial and temporal differences in the evolution of biogeochemical processes in the transition zone and in the rest of the aquifer. For this, an unconfined aquifer with a transition zone in the lower part was selected at Vilafant (NE Spain). This aquifer was contaminated by perchloroethylene (PCE) in the 80’s. Distribution of PCE and other chloroethenes in groundwater and porewater was analyzed in: a) conventional piezometers along the plume and in two multilevel wells at the source of contamination; and b) porewater of fine grained materials from cores recovered when drilled the two multilevel wells. Currently, the highest concentrations continue to be recorded in the source area in the transition zone. By contrast, the lowest concentrations in this area correspond to the central part of the aquifer, where flow velocities are higher and a greater washing of the residual phase initially retained has occurred. The major findings of the study were: i) PCE metabolites were detected in the transition zone, where conditions were more reducing than in the rest of the aquifer; ii) however, reductive dechlorination was partial since only the formation of cis-dicholoroethylene (DCE) was reached; iii) In the central part of the aquifer, where conditions were predominantly oxidizing, the presence of nitrate significantly hindered the reductive declination of PCE. The remediation strategies to be implemented should be directed to enhance dissolution of the source, especially in the transition zone, where it is more recalcitrant. For example, by combining chemical and bioremediation methods, already tested at the laboratory scale with groundwater and sediments of this site.Keywords: chlorinated solvents, chloroethenes, DNAPL, partial reductive dechlorination, PCE, transition zone to basal aquitard
Procedia PDF Downloads 1471805 An Investigation of the Compliance of Kermanian College Students' Diet with Who/Fao Nutrition Targets
Authors: Farideh Doostan, Sahar Mohseni Taklloo, Mohammad Nosrati
Abstract:
Chronic diseases are non-communicable and largely preventable by lifestyle changes including healthy diet consumption. They are the most common cause of death in the world and projected to increase by 15% globally between 2010 and 2020.The hazardous effects of behavioral and dietary risk factors on chronic disease have been established in prospective cohort studies and randomized trials. Because of some changes occur in college students’ lifestyle, assessment of dietary risk factors is important in these populations. Objective: This research was the first study that conducted to evaluate dietary intakes of Kermanian college students with WHO/FAO nutritional objectives. Material and Methods: In this descriptive cross-sectional study, 229 healthy college students of health faculty in Kerman University of Medical Sciences that do not intake any medical drugs were recruited using multistage sampling in 2013.Usual dietary intake was collected using a valid Food Frequency Questionnaire (FFQ) and diet quality was calculated based on WHO nutrient goals. To analysis of data between two groups, independent sample t. test and man whitney were applied. Results: Two hundred and twenty-nine college students; 151 females (65.9%) and 78 males (34.1%), the mean age of 21.9 years were studied. The mean of the Body Mass Index (Kg/m2) and Waist Circumference (cm) in males were 22.34 ±3.52 and 80.76±11.16 and in females were 21.19±2.62 and 73.67±7.65 respectively. Mean of daily cholesterol intake in males was significantly more than females (305±101 VS 268±98; P=0.008) and more than WHO/FAO recommendation (less than 300 mg/day). The mean of daily sodium intake in men and women were 10.4±1 and 10.9±5.3 respectively. These amounts were more than WHO/FAO recommendation (less than 2g/day). In addition, women were consumed fruit and vegetables more than men (839±336 VS 638±281; p ‹ 0.001) and these amounts were more than WHO/FAO recommendation (more than 400g/day) in both groups. Other intake indices were in the range of WHO/FAO recommendations, So that Percent of calories intake from total fat, saturated fatty acids, polyunsaturated fatty acids and added sugar were in compliance with WHO/FAO recommendations. Conclusion: Cholesterol intake in men and sodium intake in all participants were more than WHO/FAO recommendation. These dietary components are the most important causes of cardiovascular disease (one of the main causes of death in our population). These results indicated that proper nutritional education and interventions are needed in this population.Keywords: college students, food intake, WHO /FAO nutrient intake goals, Kerman
Procedia PDF Downloads 4041804 Impact of Climate Change on Crop Production: Climate Resilient Agriculture Is the Need of the Hour
Authors: Deepak Loura
Abstract:
Climate change is considered one of the major environmental problems of the 21st century and a lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. Agriculture and climate change are internally correlated with each other in various aspects, as the threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting a negative impact on global crop production and compromising food security worldwide. The fast pace of development and industrialization and indiscriminate destruction of the natural environment, more so in the last century, have altered the concentration of atmospheric gases that lead to global warming. Carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (NO) are important biogenic greenhouse gases (GHGs) from the agricultural sector contributing to global warming and their concentration is increasing alarmingly. Agricultural productivity can be affected by climate change in 2 ways: first, directly, by affecting plant growth development and yield due to changes in rainfall/precipitation and temperature and/or CO₂ levels, and second, indirectly, there may be considerable impact on agricultural land use due to snow melt, availability of irrigation, frequency and intensity of inter- and intra-seasonal droughts and floods, soil organic matter transformations, soil erosion, distribution and frequency of infestation by insect pests, diseases or weeds, the decline in arable areas (due to submergence of coastal lands), and availability of energy. An increase in atmospheric CO₂ promotes the growth and productivity of C3 plants. On the other hand, an increase in temperature, can reduce crop duration, increase crop respiration rates, affect the equilibrium between crops and pests, hasten nutrient mineralization in soils, decrease fertilizer- use efficiencies, and increase evapotranspiration among others. All these could considerably affect crop yield in long run. Climate resilient agriculture consisting of adaptation, mitigation, and other agriculture practices can potentially enhance the capacity of the system to withstand climate-related disturbances by resisting damage and recovering quickly. Climate resilient agriculture turns the climate change threats that have to be tackled into new business opportunities for the sector in different regions and therefore provides a triple win: mitigation, adaptation, and economic growth. Improving the soil organic carbon stock of soil is integral to any strategy towards adapting to and mitigating the abrupt climate change, advancing food security, and improving the environment. Soil carbon sequestration is one of the major mitigation strategies to achieve climate-resilient agriculture. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation before it might affect global crop production drastically. To cope with these extreme changes, future development needs to make adjustments in technology, management practices, and legislation. Adaptation and mitigation are twin approaches to bringing resilience to climate change in agriculture.Keywords: climate change, global warming, crop production, climate resilient agriculture
Procedia PDF Downloads 741803 The Solvent Extraction of Uranium, Plutonium and Thorium from Aqueous Solution by 1-Hydroxyhexadecylidene-1,1-Diphosphonic Acid
Authors: M. Bouhoun Ali, A. Y. Badjah Hadj Ahmed, M. Attou, A. Elias, M. A. Didi
Abstract:
In this paper, the solvent extraction of uranium(VI), plutonium(IV) and thorium(IV) from aqueous solutions using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) in treated kerosene has been investigated. The HHDPA was previously synthesized and characterized by FT-IR, 1H NMR, 31P NMR spectroscopy and elemental analysis. The effects contact time, initial pH, initial metal concentration, aqueous/organic phase ratio, extractant concentration and temperature on the extraction process have been studied. An empirical modelling was performed by using a 25 full factorial design, and regression equation for extraction metals was determined from the data. The conventional log-log analysis of the extraction data reveals that ratios of extractant to extracted U(VI), Pu(IV) and Th(IV) are 1:1, 1:2 and 1:2, respectively. Thermodynamic parameters showed that the extraction process was exothermic heat and spontaneous. The obtained optimal parameters were applied to real effluents containing uranium(VI), plutonium(IV) and thorium(IV) ions.Keywords: solvent extraction, uranium, plutonium, thorium, 1-hydroxyhexadecylidene-1-1-diphosphonic acid, aqueous solution
Procedia PDF Downloads 2881802 Genome-Scale Analysis of Streptomyces Caatingaensis CMAA 1322 Metabolism, a New Abiotic Stress-Tolerant Actinomycete
Authors: Suikinai Nobre Santos, Ranko Gacesa, Paul F. Long, Itamar Soares de Melo
Abstract:
Extremophilic microorganism are adapted to biotopes combining several stress factors (temperature, pressure, radiation, salinity and pH), which indicate the richness valuable resource for the exploitation of novel biotechnological processes and constitute unique models for investigations their biomolecules (1, 2). The above information encourages us investigate bioprospecting synthesized compounds by a noval actinomycete, designated thermotolerant Streptomyces caatingaensis CMAA 1322, isolated from sample soil tropical dry forest (Caatinga) in the Brazilian semiarid region (3-17°S and 35-45°W). This set of constrating physical and climatic factores provide the unique conditions and a diversity of well adapted species, interesting site for biotechnological purposes. Preliminary studies have shown the great potential in the production of cytotoxic, pesticidal and antimicrobial molecules (3). Thus, to extend knowledge of the genes clusters responsible for producing biosynthetic pathways of natural products in strain CMAA1322, whole-genome shotgun (WGS) DNA sequencing was performed using paired-end long sequencing with PacBio RS (Pacific Biosciences). Genomic DNA was extracted from a pure culture grown overnight on LB medium using the PureLink genomic DNA kit (Life Technologies). An approximately 3- to 20-kb-insert PacBio library was constructed and sequenced on an 8 single-molecule real-time (SMRT) cell, yielding 116,269 reads (average length, 7,446 bp), which were allocated into 18 contigs, with 142.11x coverage and N50 value of 20.548 bp (BioProject number PRJNA288757). The assembled data were analyzed by Rapid Annotations using Subsystems Technology (RAST) (4) the genome size was found to be 7.055.077 bp, comprising 6167 open reading frames (ORFs) and 413 subsystems. The G+C content was estimated to be 72 mol%. The closest-neighbors tool, available in RAST through functional comparison of the genome, revealed that strain CMAA1322 is more closely related to Streptomyces hygroscopicus ATCC 53653 (similarity score value, 537), S. violaceusniger Tu 4113 (score value, 483), S. avermitilis MA-4680 (score value, 475), S. albus J1074 (score value, 447). The Streptomyces sp. CMAA1322 genome contains 98 tRNA genes and 135 genes copies related to stress response, mainly osmotic stress (14), heat shock (16), oxidative stress (49). Functional annotation by antiSMASH version 3.0 (5) identified 41 clusters for secondary metabolites (including two clusters for lanthipeptides, ten clusters for nonribosomal peptide synthetases [NRPS], three clusters for siderophores, fourteen for polyketide synthetase [PKS], six clusters encoding a terpene, two clusters encoding a bacteriocin, and one cluster encoding a phenazine). Our work provide in comparative analyse of genome and extract produced (data no published) by lineage CMAA1322, revealing the potential of microorganisms accessed from extreme environments as Caatinga” to produce a wide range of biotechnological relevant compounds.Keywords: caatinga, streptomyces, environmental stresses, biosynthetic pathways
Procedia PDF Downloads 2421801 Imidocloprid as a Systemic-Acquired Resistant (SAR) Inducer in Nicotiana tabacum Var. Samsun NN Infected with Tobacco Mild Green Mosaic Virus
Authors: Mohammad Reza Hossein Zadeh
Abstract:
Plants have different layers of defense responses against biotic and abiotic stresses. One of the well-defined defense mechanism in plants is systemic acquired resistance (SAR) against a broad-range of pathogens. Salicylic acid (SA) plays a crucial role in regulation of the SAR pathway. It has been proved that Chemically SA-like compounds can mimic the SA signaling role. Imidocloprid is an insecticide being used to control whiteflies on crop plants. In order to study the possible role of Imidocloprid as an elicitor of SAR in plants, experiments were conducted in a completely randomized design frame with three treatments and duplicates on the detached leaves and whole Nicotiana tabacum var. Samsun NN. plants inoculated with Tobacco mild green mosaic virus (TMGMV). Compared with the effect of other SAR-inducers such as SA, Imidoclorid conferred a robust SAR induction in the infected plants. The results suggested that Imidocloprid even more powerful than SA can be considered as strong SAR inducer in the infected plants with viruses, which develop the local lesion symptoms.Keywords: imidocloprid, Nicotiana tabacum var. Samsun NN, SAR, tobacco mild green, mosaic virus
Procedia PDF Downloads 5871800 Effect of Chain Length on Skeletonema pseudocostatum as Probed by THz Spectroscopy
Authors: Ruqyyah Mushtaq, Chiacar Gamberdella, Roberta Miroglio, Fabio Novelli, Domenica Papro, M. Paturzo, A. Rubano, Angela Sardo
Abstract:
Microalgae, particularly diatoms, are well suited for monitoring environmental health, especially in assessing the quality of seas and rivers in terms of organic matter, nutrients, and heavy metal pollution. They respond rapidly to changes in habitat quality. In this study, we focused on Skeletonema pseudocostatum, a unicellular alga that forms chains depending on environmental conditions. Specifically, we explored whether metal toxicants could affect the growth of these algal chains, potentially serving as an ecotoxicological indicator of heavy metal pollution. We utilized THz spectroscopy in conjunction with standard optical microscopy to observe the formation of these chains and their response to toxicants. Despite the strong absorption of terahertz radiation in water, we demonstrate that changes in water absorption in the terahertz range due to water-diatom interaction can provide insights into diatom chain length.Keywords: THz-TDS spectroscopy, diatoms, marine ecotoxicology, marine pollution
Procedia PDF Downloads 311799 Fermentation with Lactobacillus plantarum CK10 Enhanced Antioxidant Activity of Blueberry Puree
Authors: So Yae Koh, YeonWoo Song, Ji-Yeon Ryu, Jeong Yong Moon, Somi Kim Cho
Abstract:
Blueberry, a perennial shrub, is one of the most popular fruits due to its flavor and strong free radical scavenging properties. In this study, the blueberry puree was fermented by Lactobacillus plantarum CK10 and the antioxidant activities of fermentation products were examined. Various conditions with different supplements (5% sucrose or 10% skim milk) were evaluated for fermentation efficiency and the effects on antioxidant properties. The viable cell count of lactic acid bacteria, pH, total phenolic compounds and flavonoids contents were measured after 7 days of fermentation. DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS [2,2’-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid)] radical scavenging activities were highly enhanced compared to non-fermented blueberry puree after fermentation. Interestingly, the antioxidant activities were greatly increased in the fermentation of blueberry puree alone without supplements. The present results indicate that the blueberry puree fermented by Lactobacillus plantarum CK10 could be used as a potential source of natural antioxidants and these findings will facilitate the utilization of blueberry as a resource for food additive.Keywords: antioxidant activity, blueberry, lactobacillus plantarum CK10, fermentation
Procedia PDF Downloads 3491798 Effect of Process Variables of Wire Electrical Discharge Machining on Surface Roughness for AA-6063 by Response Surface Methodology
Authors: Deepak
Abstract:
WEDM is an amazingly potential electro-wire process for machining of hard metal compounds and metal grid composites without making contact. Wire electrical machining is a developing noncustomary machining process for machining hard to machine materials that are electrically conductive. It is an exceptionally exact, precise, and one of the most famous machining forms in nontraditional machining. WEDM has turned into the fundamental piece of many assembling process ventures, which require precision, variety, and accuracy. In the present examination, AA-6063 is utilized as a workpiece, and execution investigation is done to discover the critical control factors. Impact of different parameters like a pulse on time, pulse off time, servo voltage, peak current, water pressure, wire tension, wire feed upon surface hardness has been researched while machining on AA-6063. RSM has been utilized to advance the yield variable. A variety of execution measures with input factors was demonstrated by utilizing the response surface methodology.Keywords: AA-6063, response surface methodology, WEDM, surface roughness
Procedia PDF Downloads 1161797 Synthesis of Green Fuel Additive from Waste Bio-Glycerol
Authors: Ala’a H. Al-Muhtaseb, Farrukh Jamil, Lamya Al-Haj, Mohab Al-Hinai
Abstract:
Bio-glycerol is considered as high boiling polar triol and immiscible with fossil fuel fractions due to which it is transformed into its respective ketals and acetals which help to improve the quality of diesel emitting less amount of aldehydes and carbon monoxide. Solketal visual appearance is transparent and it is odorless organic liquid used as fuel additive for diesel to improve its cold flow properties. Condensation of bio-glycerol with bio-acetone in presence of beta zeolite has been done for synthesizing solketal. It was observed that glycerol conversion and selectivity of solketal was largely effected by temperature, as it increases from 40 ºC to 60 ºC the conversion of glycerol rises from 80.04 % to 94.26 % and selectivity of solketal from 80.0 % to 94.21 % but further increase in temperature to 100 ºC glycerol conversion reduced to 93.06 % and solketal selectivity to 92.08 %. At the optimum conditions, the bio-glycerol conversion and solketal yield were about 94.26% and 94.21wt% respectively. This process offers an attractive route for converting bio-glycerol, the main by-product of biodiesel to solketal with bio-acetone; a value-added green product with potential industrial applications as a valuable green fuel additive or combustion promoter for gasoline/diesel engines.Keywords: bio-acetone, bio-glycerol, acetylation, solketal
Procedia PDF Downloads 263