Search results for: electronic interface
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3035

Search results for: electronic interface

215 Detection of High Fructose Corn Syrup in Honey by Near Infrared Spectroscopy and Chemometrics

Authors: Mercedes Bertotto, Marcelo Bello, Hector Goicoechea, Veronica Fusca

Abstract:

The National Service of Agri-Food Health and Quality (SENASA), controls honey to detect contamination by synthetic or natural chemical substances and establishes and controls the traceability of the product. The utility of near-infrared spectroscopy for the detection of adulteration of honey with high fructose corn syrup (HFCS) was investigated. First of all, a mixture of different authentic artisanal Argentinian honey was prepared to cover as much heterogeneity as possible. Then, mixtures were prepared by adding different concentrations of high fructose corn syrup (HFCS) to samples of the honey pool. 237 samples were used, 108 of them were authentic honey and 129 samples corresponded to honey adulterated with HFCS between 1 and 10%. They were stored unrefrigerated from time of production until scanning and were not filtered after receipt in the laboratory. Immediately prior to spectral collection, honey was incubated at 40°C overnight to dissolve any crystalline material, manually stirred to achieve homogeneity and adjusted to a standard solids content (70° Brix) with distilled water. Adulterant solutions were also adjusted to 70° Brix. Samples were measured by NIR spectroscopy in the range of 650 to 7000 cm⁻¹. The technique of specular reflectance was used, with a lens aperture range of 150 mm. Pretreatment of the spectra was performed by Standard Normal Variate (SNV). The ant colony optimization genetic algorithm sample selection (ACOGASS) graphical interface was used, using MATLAB version 5.3, to select the variables with the greatest discriminating power. The data set was divided into a validation set and a calibration set, using the Kennard-Stone (KS) algorithm. A combined method of Potential Functions (PF) was chosen together with Partial Least Square Linear Discriminant Analysis (PLS-DA). Different estimators of the predictive capacity of the model were compared, which were obtained using a decreasing number of groups, which implies more demanding validation conditions. The optimal number of latent variables was selected as the number associated with the minimum error and the smallest number of unassigned samples. Once the optimal number of latent variables was defined, we proceeded to apply the model to the training samples. With the calibrated model for the training samples, we proceeded to study the validation samples. The calibrated model that combines the potential function methods and PLSDA can be considered reliable and stable since its performance in future samples is expected to be comparable to that achieved for the training samples. By use of Potential Functions (PF) and Partial Least Square Linear Discriminant Analysis (PLS-DA) classification, authentic honey and honey adulterated with HFCS could be identified with a correct classification rate of 97.9%. The results showed that NIR in combination with the PT and PLS-DS methods can be a simple, fast and low-cost technique for the detection of HFCS in honey with high sensitivity and power of discrimination.

Keywords: adulteration, multivariate analysis, potential functions, regression

Procedia PDF Downloads 103
214 The Effects of Exercise Training on LDL Mediated Blood Flow in Coronary Artery Disease: A Systematic Review

Authors: Aziza Barnawi

Abstract:

Background: Regular exercise reduces risk factors associated with cardiovascular diseases. Over the past decade, exercise interventions have been introduced to reduce the risk of and prevent coronary artery disease (CAD). Elevated low-density lipoproteins (LDL) contribute to the formation of atherosclerosis, its manifestations on the endothelial narrow the coronary artery and affect the endothelial function. Therefore, flow-mediated dilation (FMD) technique is used to assess the function. The results of previous studies have been inconsistent and difficult to interpret across different types of exercise programs. The relationship between exercise therapy and lipid levels has been extensively studied, and it is known to improve the lipid profile and endothelial function. However, the effectiveness of exercise in altering LDL levels and improving blood flow is controversial. Objective: This review aims to explore the evidence and quantify the impact of exercise training on LDL levels and vascular function by FMD. Methods: Electronic databases were searched PubMed, Google Scholar, Web of Science, the Cochrane Library, and EBSCO using the keywords: “low and/or moderate aerobic training”, “blood flow”, “atherosclerosis”, “LDL mediated blood flow”, “Cardiac Rehabilitation”, “low-density lipoproteins”, “flow-mediated dilation”, “endothelial function”, “brachial artery flow-mediated dilation”, “oxidized low-density lipoproteins” and “coronary artery disease”. The studies were conducted for 6 weeks or more and influenced LDL levels and/or FMD. Studies with different intensity training and endurance training in healthy or CAD individuals were included. Results: Twenty-one randomized controlled trials (RCTs) (14 FMD and 7 LDL studies) with 776 participants (605 exercise participants and 171 control participants) met eligibility criteria and were included in the systematic review. Endurance training resulted in a greater reduction in LDL levels and their subfractions and a better FMD response. Overall, the training groups showed improved physical fitness status compared with the control groups. Participants whose exercise duration was ≥150 minutes /week had significant improvement in FMD and LDL levels compared with those with <150 minutes/week.Conclusion: In conclusion, although the relationship between physical training, LDL levels, and blood flow in CAD is complex and multifaceted, there are promising results for controlling primary and secondary prevention of CAD by exercise. Exercise training, including resistance, aerobic, and interval training, is positively correlated with improved FMD. However, the small body of evidence for LDL studies (resistance and interval training) did not prove to be significantly associated with improved blood flow. Increasing evidence suggests that exercise training is a promising adjunctive therapy to improve cardiovascular health, potentially improving blood flow and contributing to the overall management of CAD.

Keywords: exercise training, low density lipoprotein, flow mediated dilation, coronary artery disease

Procedia PDF Downloads 51
213 Prevalence of Behavioral and Emotional Problems in School Going Adolescents in India

Authors: Anshu Gupta, Charu Gupta

Abstract:

Background: Adolescence is the transitional period between puberty and adulthood. It is marked by immense turmoil in emotional and behavioral spheres. Adolescents are at risk of an array of behavioral and emotional problems, resulting in social, academic and vocational function impairments. Conflicts in the family and inability of the parents to cope with the changing demands of an adolescent have a negative impact on the overall development of the child. This augers ill for the individual’s future, resulting in depression, delinquency and suicides among other problems. Aim: The aim of the study was to compare the prevalence of behavioral and emotional problems in school going adolescents aged 13 to 15 years residing in Ludhiana city. Method: A total of 1380 school children in the age group of 13 to 15 years were assessed by the adolescent health screening questionnaire (FAPS) and Youth Self-Report (2001) questionnaire. Statistical significance was ascertained by t-test, chi-square test (x²) and ANOVA, as appropriate. Results: A considerably high prevalence of behavioral and emotional problems was found in school going adolescents (26.5%), more in girls (31.7%) than in boys (24.4%). In case of boys, the maximum problem was in the 13 year age group, i.e., 28.2%, followed by a significant decline by the age of 14 years, i.e., 24.2% and 15 years, i.e., 19.6%. In case of girls also, the maximum problem was in the 13 year age group, i.e., 32.4% followed by a marginal decline in the 14 years i.e., 31.8% and 15 year age group, i.e., 30.2%. Demographic factors were non contributory. Internalizing syndrome (22.4%) was the most common problem followed by the neither internalizing nor externalizing (17.6%) group. In internalizing group, most (26.5%) of the students were observed to be anxious/ depressed. Social problem was observed to be the most frequent (10.6%) among neither internalizing nor externalizing group. Aggressive behavior was the commonest (8.4%) among externalizing group. Internalizing problems, mainly anxiety and depression, were commoner in females (30.6%) than males (24.6%). More boys (16%) than girls (13.4%) were reported to suffer from externalizing disorders. A critical review of the data showed that most of the adolescents had poor knowledge about reproductive health. Almost 36% reported that the source of their information on sexual and reproductive health being friends and the electronic media. There was a high percentage of adolescents who reported being worried about sexual abuse (20.2%) with majority of them being girls (93.6%) reflecting poorly on the social setup in the country. About 41% of adolescents reported being concerned about body weight and most of them being girls (92.4%). Up to 14.5% reported having thoughts of using alcohol or drugs perhaps due to the easy availability of substances of abuse in this part of the country. 12.8% (mostly girls) reported suicidal thoughts. Summary/conclusion: There is a high prevalence of emotional and behavioral problems among school-going adolescents. Resolution of these problems during adolescence is essential for attaining a healthy adulthood. The need of the hour is to spread awareness among caregivers and formulation of effective management strategies including school mental health programme.

Keywords: adolescence, behavioral, emotional, internalizing problem

Procedia PDF Downloads 256
212 The Use of Stroke Journey Map in Improving Patients' Perceived Knowledge in Acute Stroke Unit

Authors: C. S. Chen, F. Y. Hui, B. S. Farhana, J. De Leon

Abstract:

Introduction: Stroke can lead to long-term disability, affecting one’s quality of life. Providing stroke education to patient and family members is essential to optimize stroke recovery and prevent recurrent stroke. Currently, nurses conduct stroke education by handing out pamphlets and explaining their contents to patients. However, this is not always effective as nurses have varying levels of knowledge and depth of content discussed with the patient may not be consistent. With the advancement of information technology, health education is increasingly being disseminated via electronic software and studies have shown this to have benefitted patients. Hence, a multi-disciplinary team consisting of doctors, nurses and allied health professionals was formed to create the stroke journey map software to deliver consistent and concise stroke education. Research Objectives: To evaluate the effectiveness of using a stroke journey map software in improving patients’ perceived knowledge in the acute stroke unit during hospitalization. Methods: Patients admitted to the acute stroke unit were given stroke journey map software during patient education. The software consists of 31 interactive slides that are brightly coloured and 4 videos, based on input provided by the multi-disciplinary team. Participants were then assessed with pre-and-post survey questionnaires before and after viewing the software. The questionnaire consists of 10 questions with a 5-point Likert scale which sums up to a total score of 50. The inclusion criteria are patients diagnosed with ischemic stroke and are cognitively alert and oriented. This study was conducted between May 2017 to October 2017. Participation was voluntary. Results: A total of 33 participants participated in the study. The results demonstrated that the use of a stroke journey map as a stroke education medium was effective in improving patients’ perceived knowledge. A comparison of pre- and post-implementation data of stroke journey map revealed an overall mean increase in patients’ perceived knowledge from 24.06 to 40.06. The data is further broken down to evaluate patients’ perceived knowledge in 3 domains: (1) Understanding of disease process; (2) Management and treatment plans; (3) Post-discharge care. Each domain saw an increase in mean score from 10.7 to 16.2, 6.9 to 11.9 and 6.6 to 11.7 respectively. Project Impact: The implementation of stroke journey map has a positive impact in terms of (1) Increasing patient’s perceived knowledge which could contribute to greater empowerment of health; (2) Reducing need for stroke education material printouts making it environmentally friendly; (3) Decreasing time nurses spent on giving education resulting in more time to attend to patients’ needs. Conclusion: This study has demonstrated the benefit of using stroke journey map as a platform for stroke education. Overall, it has increased patients’ perceived knowledge in understanding their disease process, the management and treatment plans as well as the discharge process.

Keywords: acute stroke, education, ischemic stroke, knowledge, stroke

Procedia PDF Downloads 140
211 Multiscale Modelization of Multilayered Bi-Dimensional Soils

Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur

Abstract:

Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.

Keywords: multiscale, bidimensional, wavelets, backscattering, multilayer, SPM, air pockets

Procedia PDF Downloads 103
210 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays

Authors: Min Han, Di Wu, Lin Yuan, Fei Liu

Abstract:

Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.

Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance

Procedia PDF Downloads 256
209 Exploring the Benefits of Hiring Individuals with Disabilities in the Workplace

Authors: Rosilyn Sanders

Abstract:

This qualitative study examined the impact of hiring people with intellectual disabilities (ID). The research questions were: What defines a disability? What accommodations are needed to ensure the success of a person with a disability? As a leader, what benefits do people with intellectual disabilities bring to the organization? What are the benefits of hiring people with intellectual disabilities in retail organizations? Moreover, how might people with intellectual disabilities contribute to the organizational culture of retail organizations? A narrative strength approach was used as a theoretical framework to guide the discussion and uncover the benefits of hiring individuals with intellectual disabilities in various retail organizations. Using qualitative interviews, the following themes emerged: diversity and inclusion, accommodations, organizational culture, motivation, and customer service. These findings put to rest some negative stereotypes and perceptions of persons with ID as being unemployable or unable to perform tasks when employed, showing instead that persons with ID can work efficiently when given necessary work accommodations and support in an enabling organizational culture. All participants were recruited and selected through various forms of electronic communication via social media, email invitations, and phone; this was conducted through the methodology of snowball sampling with the following demographics: age, ethnicity, gender, number of years in retail, number of years in management, and number of direct reports. The sample population was employed in several retail organizations throughout Arkansas and Texas. The small sample size for qualitative research in this study helped the researcher develop, build, and maintain close relationships that encouraged participants to be forthcoming and honest with information (Clow & James, 2014 ). Participants were screened to ensure they met the researcher's study; and screened to ensure that they were over 18 years of age. Participants were asked if they recruit, interview, hire, and supervise individuals with intellectual disabilities. Individuals were given consent forms via email to indicate their interest in participating in this study. Due to COVID-19, all interviews were conducted via teleconferencing (Zoom or Microsoft Teams) that lasted approximately 1 hour, which were transcribed, coded for themes, and grouped based on similar responses. Further, the participants were not privy to the interview questions beforehand, and demographic questions were asked at the end, including questions concerning age, education level, and job status. Each participant was assigned random numbers using an app called ‘The Random Number Generator ‘to ensure that all personal or identifying information of participants were removed. Regarding data storage, all documentation was stored on a password-protected external drive, inclusive of consent forms, recordings, transcripts, and researcher notes.

Keywords: diversity, positive psychology, organizational development, leadership

Procedia PDF Downloads 34
208 Mathematical Toolbox for editing Equations and Geometrical Diagrams and Graphs

Authors: Ayola D. N. Jayamaha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Currently there are lot of educational tools designed for mathematics. Open source software such as GeoGebra and Octave are bulky in their architectural structure. In addition, there is MathLab software, which facilitates much more than what we ask for. Many of the computer aided online grading and assessment tools require integrating editors to their software. However, there are not exist suitable editors that cater for all their needs in editing equations and geometrical diagrams and graphs. Some of the existing software for editing equations is Alfred’s Equation Editor, Codecogs, DragMath, Maple, MathDox, MathJax, MathMagic, MathFlow, Math-o-mir, Microsoft Equation Editor, MiraiMath, OpenOffice, WIRIS Editor and MyScript. Some of them are commercial, open source, supports handwriting recognition, mobile apps, renders MathML/LaTeX, Flash / Web based and javascript display engines. Some of the diagram editors are GeoKone.NET, Tabulae, Cinderella 1.4, MyScript, Dia, Draw2D touch, Gliffy, GeoGebra, Flowchart, Jgraph, JointJS, J painter Online diagram editor and 2D sketcher. All these software are open source except for MyScript and can be used for editing mathematical diagrams. However, they do not fully cater the needs of a typical computer aided assessment tool or Educational Platform for Mathematics. This solution provides a Web based, lightweight, easy to implement and integrate solution of an html5 canvas that renders on all of the modern web browsers. The scope of the project is an editor that covers equations and mathematical diagrams and drawings on the O/L Mathematical Exam Papers in Sri Lanka. Using the tool the students can enter any equation to the system which can be on an online remote learning platform. The users can also create and edit geometrical drawings, graphs and do geometrical constructions that require only Compass and Ruler from the Editing Interface provided by the Software. The special feature of this software is the geometrical constructions. It allows the users to create geometrical constructions such as angle bisectors, perpendicular lines, angles of 600 and perpendicular bisectors. The tool correctly imitates the functioning of rulers and compasses to create the required geometrical construction. Therefore, the users are able to do geometrical drawings on the computer successfully and we have a digital format of the geometrical drawing for further processing. Secondly, we can create and edit Venn Diagrams, color them and label them. In addition, the students can draw probability tree diagrams and compound probability outcome grids. They can label and mark regions within the grids. Thirdly, students can draw graphs (1st order and 2nd order). They can mark points on a graph paper and the system connects the dots to draw the graph. Further students are able to draw standard shapes such as circles and rectangles by selecting points on a grid or entering the parametric values.

Keywords: geometrical drawings, html5 canvas, mathematical equations, toolbox

Procedia PDF Downloads 354
207 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques

Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.

Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel

Procedia PDF Downloads 237
206 i-Plastic: Surface and Water Column Microplastics From the Coastal North Eastern Atlantic (Portugal)

Authors: Beatriz Rebocho, Elisabete Valente, Carla Palma, Andreia Guilherme, Filipa Bessa, Paula Sobral

Abstract:

The global accumulation of plastic in the oceans is a growing problem. Plastic is transported from its source to the oceans via rivers, which are considered the main route for plastic particles from land-based sources to the ocean. These plastics undergo physical and chemical degradation resulting in microplastics. The i-Plastic project aims to understand and predict the dispersion, accumulation and impacts of microplastics (5 mm to 1 µm) and nano plastics (below 1 µm) in marine environments from the tropical and temperate land-ocean interface to the open ocean under distinct flow and climate regimes. Seasonal monitoring of the fluxes of microplastics was carried out in (three) coastal areas in Brazil, Portugal and Spain. The present work shows the first results of in-situ seasonal monitoring and mapping of microplastics in ocean waters between Ovar and Vieira de Leiria (Portugal), in which 43 surface water samples and 43 water column samples were collected in contrasting seasons (spring and autumn). The spring and autumn surface water samples were collected with a 300 µm and 150 µm pore neuston net, respectively. In both campaigns, water column samples were collected using a conical mesh with a 150 µm pore. The experimental procedure comprises the following steps: i) sieving by a metal sieve; ii) digestion with potassium hydroxide to remove the organic matter original from the sample matrix. After a filtration step, the content is retained on a membrane and observed under a stereomicroscope, and physical and chemical characterization (type, color, size, and polymer composition) of the microparticles is performed. Results showed that 84% and 88% of the surface water and water column samples were contaminated with microplastics, respectively. Surface water samples collected during the spring campaign averaged 0.35 MP.m-3, while surface water samples collected during autumn recorded 0.39 MP.m-3. Water column samples from the spring campaign had an average of 1.46 MP.m-3, while those from the autumn recorded 2.54 MP.m-3. In the spring, all microplastics found were fibers, predominantly black and blue. In autumn, the dominant particles found in the surface waters were fibers, while in the water column, fragments were dominant. In spring, the average size of surface water particles was 888 μm, while in the water column was 1063 μm. In autumn, the average size of surface and water column microplastics was 1333 μm and 1393 μm, respectively. The main polymers identified by Attenuated Total Reflectance (ATR) and micro-ATR Fourier Transform Infrared (FTIR) spectroscopy from all samples were low-density polyethylene (LDPE), polypropylene (PP), polyethylene terephthalate (PET), and polyvinyl chloride (PVC). The significant difference between the microplastic concentration in the water column between the two campaigns could be due to the remixing of the water masses that occurred that week due to the occurrence of a storm. This work presents preliminary results since the i-Plastic project is still in progress. These results will contribute to the understanding of the spatial and temporal dispersion and accumulation of microplastics in this marine environment.

Keywords: microplastics, Portugal, Atlantic Ocean, water column, surface water

Procedia PDF Downloads 53
205 Fabrication of All-Cellulose Composites from End-of-Life Textiles

Authors: Behnaz Baghaei, Mikael Skrifvars

Abstract:

Sustainability is today a trend that is seen everywhere, with no exception for the textiles 31 industry. However, there is a rather significant downside regarding how the textile industry currently operates, namely the huge amount of end-of-life textiles coming along with it. Approximately 73% of the 53 million tonnes of fibres used annually for textile production is landfilled or incinerated, while only 12% is recycled as secondary products. Mechanical recycling of end-of-life textile fabrics into yarns and fabrics was before very common, but due to the low costs for virgin man-made fibres, the current textile material composition diversity, the fibre material quality variations and the high recycling costs this route is not feasible. Another way to decrease the ever-growing pile of textile waste is to repurpose the textile. If a feasible methodology can be found to reuse end-of life textiles as secondary market products including a manufacturing process that requires rather low investment costs, then this can be highly beneficial to counteract the increasing textile waste volumes. In structural composites, glass fibre textiles are used as reinforcements, but today there is a growing interest in biocomposites where the reinforcement and/or the resin are from a biomass resource. All-cellulose composites (ACCs) are monocomponent or single polymer composites, and they are entirely made from cellulose, ideally leading to a homogeneous biocomposite. Since the matrix and the reinforcement are both made from cellulose, and therefore chemically identical, they are fully compatible with each other which allow efficient stress transfer and adhesion at their interface. Apart from improving the mechanical performance of the final products, the recycling of the composites will be facilitated. This paper reports the recycling of end-of-life cellulose containing textiles by fabrication of all-cellulose composites (ACCs). Composite laminates were prepared by using an ionic liquid (IL) in a hot process, involving a partial dissolving of the cellulose fibres. Discharged denim fabrics were used as the reinforcement while dissolved cellulose from two different cellulose resources was used as the matrix phase. Virgin cotton staple fibres and recovered cotton from polyester/cotton (polycotton) waste fabrics were used to form the matrix phase. The process comprises the dissolving 6 wt.% cellulose solution in the ionic liquid 1-butyl-3-methyl imidazolium acetate ([BMIM][Ac]), this solution acted as a precursor for the matrix component. The denim fabrics were embedded in the cellulose/IL solution after which laminates were formed, which also involved removal of the IL by washing. The effect of reuse of the recovered IL was also investigated. The mechanical properties of the obtained ACCs were determined regarding tensile, impact and flexural properties. Mechanical testing revealed that there are no clear differences between the values measured for mechanical strength and modulus of the manufactured ACCs from denim/cotton-fresh IL, denim/recovered cotton-fresh IL and denim/cotton-recycled IL. This could be due to the low weight fraction of the cellulose matrix in the final ACC laminates and presumably the denim as cellulose reinforcement strongly influences and dominates the mechanical properties. Fabricated ACC composite laminates were further characterized regarding scanning electron microscopy.

Keywords: all-cellulose composites, denim fabrics, ionic liquid, mechanical properties

Procedia PDF Downloads 94
204 Radiofrequency and Near-Infrared Responsive Core-Shell Multifunctional Nanostructures Using Lipid Templates for Cancer Theranostics

Authors: Animesh Pan, Geoffrey D. Bothun

Abstract:

With the development of nanotechnology, research in multifunctional delivery systems has a new pace and dimension. An incipient challenge is to design an all-in-one delivery system that can be used for multiple purposes, including tumor targeting therapy, radio-frequency (RF-), near-infrared (NIR-), light-, or pH-induced controlled release, photothermal therapy (PTT), photodynamic therapy (PDT), and medical diagnosis. In this regard, various inorganic nanoparticles (NPs) are known to show great potential as the 'functional components' because of their fascinating and tunable physicochemical properties and the possibility of multiple theranostic modalities from individual NPs. Magnetic, luminescent, and plasmonic properties are the three most extensively studied and, more importantly biomedically exploitable properties of inorganic NPs. Although successful attempts of combining any two of them above mentioned functionalities have been made, integrating them in one system has remained challenge. Keeping those in mind, controlled designs of complex colloidal nanoparticle system are one of the most significant challenges in nanoscience and nanotechnology. Therefore, systematic and planned studies providing better revelation are demanded. We report a multifunctional delivery platform-based liposome loaded with drug, iron-oxide magnetic nanoparticles (MNPs), and a gold shell on the surface of liposomes, were synthesized using a lipid with polyelectrolyte (layersomes) templating technique. MNPs and the anti-cancer drug doxorubicin (DOX) were co-encapsulated inside liposomes composed by zwitterionic phophatidylcholine and anionic phosphatidylglycerol using reverse phase evaporation (REV) method. The liposomes were coated with positively charge polyelectrolyte (poly-L-lysine) to enrich the interface with gold anion, exposed to a reducing agent to form a gold nanoshell, and then capped with thio-terminated polyethylene glycol (SH-PEG2000). The core-shell nanostructures were characterized by different techniques like; UV-Vis/NIR scanning spectrophotometer, dynamic light scattering (DLS), transmission electron microscope (TEM). This multifunctional system achieves a variety of functions, such as radiofrequency (RF)-triggered release, chemo-hyperthermia, and NIR laser-triggered for photothermal therapy. Herein, we highlight some of the remaining major design challenges in combination with preliminary studies assessing therapeutic objectives. We demonstrate an efficient loading and delivery system to significant cell death of human cancer cells (A549) with therapeutic capabilities. Coupled with RF and NIR excitation to the doxorubicin-loaded core-shell nanostructure helped in securing targeted and controlled drug release to the cancer cells. The present core-shell multifunctional system with their multimodal imaging and therapeutic capabilities would be eminent candidates for cancer theranostics.

Keywords: cancer thernostics, multifunctional nanostructure, photothermal therapy, radiofrequency targeting

Procedia PDF Downloads 106
203 Diagnostic Performance of Mean Platelet Volume in the Diagnosis of Acute Myocardial Infarction: A Meta-Analysis

Authors: Kathrina Aseanne Acapulco-Gomez, Shayne Julieane Morales, Tzar Francis Verame

Abstract:

Mean platelet volume (MPV) is the most accurate measure of the size of platelets and is routinely measured by most automated hematological analyzers. Several studies have shown associations between MPV and cardiovascular risks and outcomes. Although its measurement may provide useful data, MPV remains to be a diagnostic tool that is yet to be included in routine clinical decision making. The aim of this systematic review and meta-analysis is to determine summary estimates of the diagnostic accuracy of mean platelet volume for the diagnosis of myocardial infarction among adult patients with angina and/or its equivalents in terms of sensitivity, specificity, diagnostic odds ratio, and likelihood ratios, and to determine the difference of the mean MPV values between those with MI and those in the non-MI controls. The primary search was done through search in electronic databases PubMed, Cochrane Review CENTRAL, HERDIN (Health Research and Development Information Network), Google Scholar, Philippine Journal of Pathology, and Philippine College of Physicians Philippine Journal of Internal Medicine. The reference list of original reports was also searched. Cross-sectional, cohort, and case-control articles studying the diagnostic performance of mean platelet volume in the diagnosis of acute myocardial infarction in adult patients were included in the study. Studies were included if: (1) CBC was taken upon presentation to the ER or upon admission (within 24 hours of symptom onset); (2) myocardial infarction was diagnosed with serum markers, ECG, or according to accepted guidelines by the Cardiology societies (American Heart Association (AHA), American College of Cardiology (ACC), European Society of Cardiology (ESC); and, (3) if outcomes were measured as significant difference AND/OR sensitivity and specificity. The authors independently screened for inclusion of all the identified potential studies as a result of the search. Eligible studies were appraised using well-defined criteria. Any disagreement between the reviewers was resolved through discussion and consensus. The overall mean MPV value of those with MI (9.702 fl; 95% CI 9.07 – 10.33) was higher than in those of the non-MI control group (8.85 fl; 95% CI 8.23 – 9.46). Interpretation of the calculated t-value of 2.0827 showed that there was a significant difference in the mean MPV values of those with MI and those of the non-MI controls. The summary sensitivity (Se) and specificity (Sp) for MPV were 0.66 (95% CI; 0.59 - 0.73) and 0.60 (95% CI; 0.43 – 0.75), respectively. The pooled diagnostic odds ratio (DOR) was 2.92 (95% CI; 1.90 – 4.50). The positive likelihood ratio of MPV in the diagnosis of myocardial infarction was 1.65 (95% CI; 1.20 – 22.27), and the negative likelihood ratio was 0.56 (95% CI; 0.50 – 0.64). The intended role for MPV in the diagnostic pathway of myocardial infarction would perhaps be best as a triage tool. With a DOR of 2.92, MPV values can discriminate between those who have MI and those without. For a patient with angina presenting with elevated MPV values, it is 1.65 times more likely that he has MI. Thus, it is implied that the decision to treat a patient with angina or its equivalents as a case of MI could be supported by an elevated MPV value.

Keywords: mean platelet volume, MPV, myocardial infarction, angina, chest pain

Procedia PDF Downloads 59
202 Nonlinear Optics of Dirac Fermion Systems

Authors: Vipin Kumar, Girish S. Setlur

Abstract:

Graphene has been recognized as a promising 2D material with many new properties. However, pristine graphene is gapless which hinders its direct application towards graphene-based semiconducting devices. Graphene is a zero-gapp and linearly dispersing semiconductor. Massless charge carriers (quasi-particles) in graphene obey the relativistic Dirac equation. These Dirac fermions show very unusual physical properties such as electronic, optical and transport. Graphene is analogous to two-level atomic systems and conventional semiconductors. We may expect that graphene-based systems will also exhibit phenomena that are well-known in two-level atomic systems and in conventional semiconductors. Rabi oscillation is a nonlinear optical phenomenon well-known in the context of two-level atomic systems and also in conventional semiconductors. It is the periodic exchange of energy between the system of interest and the electromagnetic field. The present work describes the phenomenon of Rabi oscillations in graphene based systems. Rabi oscillations have already been described theoretically and experimentally in the extensive literature available on this topic. To describe Rabi oscillations they use an approximation known as rotating wave approximation (RWA) well-known in studies of two-level systems. RWA is valid only near conventional resonance (small detuning)- when the frequency of the external field is nearly equal to the particle-hole excitation frequency. The Rabi frequency goes through a minimum close to conventional resonance as a function of detuning. Far from conventional resonance, the RWA becomes rather less useful and we need some other technique to describe the phenomenon of Rabi oscillation. In conventional systems, there is no second minimum - the only minimum is at conventional resonance. But in graphene we find anomalous Rabi oscillations far from conventional resonance where the Rabi frequency goes through a minimum that is much smaller than the conventional Rabi frequency. This is known as anomalous Rabi frequency and is unique to graphene systems. We have shown that this is attributable to the pseudo-spin degree of freedom in graphene systems. A new technique, which is an alternative to RWA called asymptotic RWA (ARWA), has been invoked by our group to discuss the phenomenon of Rabi oscillation. Experimentally accessible current density shows different types of threshold behaviour in frequency domain close to the anomalous Rabi frequency depending on the system chosen. For single layer graphene, the exponent at threshold is equal to 1/2 while in case of bilayer graphene, it is computed to be equal to 1. Bilayer graphene shows harmonic (anomalous) resonances absent in single layer graphene. The effect of asymmetry and trigonal warping (a weak direct inter-layer hopping in bilayer graphene) on these oscillations is also studied in graphene systems. Asymmetry has a remarkable effect only on anomalous Rabi oscillations whereas the Rabi frequency near conventional resonance is not significantly affected by the asymmetry parameter. In presence of asymmetry, these graphene systems show Rabi-like oscillations (offset oscillations) even for vanishingly small applied field strengths (less than the gap parameter). The frequency of offset oscillations may be identified with the asymmetry parameter.

Keywords: graphene, Bilayer graphene, Rabi oscillations, Dirac fermion systems

Procedia PDF Downloads 269
201 A Technology of Hot Stamping and Welding of Carbon Reinforced Plastic Sheets Using High Electric Resistance

Authors: Tomofumi Kubota, Mitsuhiro Okayasu

Abstract:

In recent years, environmental problems and energy problems typified by global warming are intensifying, and transportation devices are required to reduce the weight of structural materials from the viewpoint of strengthening fuel efficiency regulations and energy saving. Carbon fiber reinforced plastic (CFRP) used in this research is attracting attention as a structural material to replace metallic materials. Among them, thermoplastic CFRP is expected to expand its application range in terms of recyclability and cost. High formability and weldability of the unidirectional CFRP sheets conducted by a proposed hot stamping process were proposed, in which the carbon fiber reinforced plastic sheets are heated by a designed technique. In this case, the CFRP sheets are heated by the high electric voltage applied through carbon fibers. In addition, the electric voltage was controlled by the area ratio of exposed carbon fiber on the sample surfaces. The lower exposed carbon fiber on the sample surface makes high electric resistance leading to the high sample temperature. In this case, the CFRP sheets can be heated to more than 150 °C. With the sample heating, the stamping and welding technologies can be carried out. By changing the sample temperature, the suitable stamping condition can be detected. Moreover, the proper welding connection of the CFRP sheets was proposed. In this study, we propose a fusion bonding technique using thermoplasticity, high current flow, and heating caused by electrical resistance. This technology uses the principle of resistance spot welding. In particular, the relationship between the carbon fiber exposure rate and the electrical resistance value that affect the bonding strength is investigated. In this approach, the mechanical connection using rivet is also conducted to make a comparison of the severity of welding. The change of connecting strength is reflected by the fracture mechanism. The low and high connecting strength are obtained for the separation of two CFRP sheets and fractured inside the CFRP sheet, respectively. In addition to the two fracture modes, micro-cracks in CFRP are also detected. This approach also includes mechanical connections using rivets to compare the severity of the welds. The change in bond strength is reflected by the destruction mechanism. Low and high bond strengths were obtained to separate the two CFRP sheets, each broken inside the CFRP sheets. In addition to the two failure modes, micro cracks in CFRP are also detected. In this research, from the relationship between the surface carbon fiber ratio and the electrical resistance value, it was found that different carbon fiber ratios had similar electrical resistance values. Therefore, we investigated which of carbon fiber and resin is more influential to bonding strength. As a result, the lower the carbon fiber ratio, the higher the bonding strength. And this is 50% better than the conventional average strength. This can be evaluated by observing whether the fracture mode is interface fracture or internal fracture.

Keywords: CFRP, hot stamping, weliding, deforamtion, mechanical property

Procedia PDF Downloads 103
200 Survival Analysis after a First Ischaemic Stroke Event: A Case-Control Study in the Adult Population of England.

Authors: Padma Chutoo, Elena Kulinskaya, Ilyas Bakbergenuly, Nicholas Steel, Dmitri Pchejetski

Abstract:

Stroke is associated with a significant risk of morbidity and mortality. There is scarcity of research on the long-term survival after first-ever ischaemic stroke (IS) events in England with regards to effects of different medical therapies and comorbidities. The objective of this study was to model the all-cause mortality after an IS diagnosis in the adult population of England. Using a retrospective case-control design, we extracted the electronic medical records of patients born prior to or in year 1960 in England with a first-ever ischaemic stroke diagnosis from January 1986 to January 2017 within the Health and Improvement Network (THIN) database. Participants with a history of ischaemic stroke were matched to 3 controls by sex and age at diagnosis and general practice. The primary outcome was the all-cause mortality. The hazards of the all-cause mortality were estimated using a Weibull-Cox survival model which included both scale and shape effects and a shared random effect of general practice. The model included sex, birth cohort, socio-economic status, comorbidities and medical therapies. 20,250 patients with a history of IS (cases) and 55,519 controls were followed up to 30 years. From 2008 to 2015, the one-year all-cause mortality for the IS patients declined with an absolute change of -0.5%. Preventive treatments to cases increased considerably over time. These included prescriptions of statins and antihypertensives. However, prescriptions for antiplatelet drugs decreased in the routine general practice since 2010. The survival model revealed a survival benefit of antiplatelet treatment to stroke survivors with hazard ratio (HR) of 0.92 (0.90 – 0.94). IS diagnosis had significant interactions with gender and age at entry and hypertension diagnosis. IS diagnosis was associated with high risk of all-cause mortality with HR= 3.39 (3.05-3.72) for cases compared to controls. Hypertension was associated with poor survival with HR = 4.79 (4.49 - 5.09) for hypertensive cases relative to non-hypertensive controls, though the detrimental effect of hypertension has not reached significance for hypertensive controls, HR = 1.19(0.82-1.56). This study of English primary care data showed that between 2008 and 2015, the rates of prescriptions of stroke preventive treatments increased, and a short-term all-cause mortality after IS stroke declined. However, stroke resulted in poor long-term survival. Hypertension, a modifiable risk factor, was found to be associated with poor survival outcomes in IS patients. Antiplatelet drugs were found to be protective to survival. Better efforts are required to reduce the burden of stroke through health service development and primary prevention.

Keywords: general practice, hazard ratio, health improvement network (THIN), ischaemic stroke, multiple imputation, Weibull-Cox model.

Procedia PDF Downloads 147
199 Creative Mapping Landuse and Human Activities: From the Inventories of Factories to the History of the City and Citizens

Authors: R. Tamborrino, F. Rinaudo

Abstract:

Digital technologies offer possibilities to effectively convert historical archives into instruments of knowledge able to provide a guide for the interpretation of historical phenomena. Digital conversion and management of those documents allow the possibility to add other sources in a unique and coherent model that permits the intersection of different data able to open new interpretations and understandings. Urban history uses, among other sources, the inventories that register human activities in a specific space (e.g. cadastres, censuses, etc.). The geographic localisation of that information inside cartographic supports allows for the comprehension and visualisation of specific relationships between different historical realities registering both the urban space and the peoples living there. These links that merge the different nature of data and documentation through a new organisation of the information can suggest a new interpretation of other related events. In all these kinds of analysis, the use of GIS platforms today represents the most appropriate answer. The design of the related databases is the key to realise the ad-hoc instrument to facilitate the analysis and the intersection of data of different origins. Moreover, GIS has become the digital platform where it is possible to add other kinds of data visualisation. This research deals with the industrial development of Turin at the beginning of the 20th century. A census of factories realized just prior to WWI provides the opportunity to test the potentialities of GIS platforms for the analysis of urban landscape modifications during the first industrial development of the town. The inventory includes data about location, activities, and people. GIS is shaped in a creative way linking different sources and digital systems aiming to create a new type of platform conceived as an interface integrating different kinds of data visualisation. The data processing allows linking this information to an urban space, and also visualising the growth of the city at that time. The sources, related to the urban landscape development in that period, are of a different nature. The emerging necessity to build, enlarge, modify and join different buildings to boost the industrial activities, according to their fast development, is recorded by different official permissions delivered by the municipality and now stored in the Historical Archive of the Municipality of Turin. Those documents, which are reports and drawings, contain numerous data on the buildings themselves, including the block where the plot is located, the district, and the people involved such as the owner, the investor, and the engineer or architect designing the industrial building. All these collected data offer the possibility to firstly re-build the process of change of the urban landscape by using GIS and 3D modelling technologies thanks to the access to the drawings (2D plans, sections and elevations) that show the previous and the planned situation. Furthermore, they access information for different queries of the linked dataset that could be useful for different research and targets such as economics, biographical, architectural, or demographical. By superimposing a layer of the present city, the past meets to the present-industrial heritage, and people meet urban history.

Keywords: digital urban history, census, digitalisation, GIS, modelling, digital humanities

Procedia PDF Downloads 172
198 X-Ray Detector Technology Optimization In CT Imaging

Authors: Aziz Ikhlef

Abstract:

Most of multi-slices CT scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80kVp and 140kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.

Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts

Procedia PDF Downloads 237
197 Empowering Learners: From Augmented Reality to Shared Leadership

Authors: Vilma Zydziunaite, Monika Kelpsiene

Abstract:

In early childhood and preschool education, play has an important role in learning and cognitive processes. In the context of a changing world, personal autonomy and the use of technology are becoming increasingly important for the development of a wide range of learner competencies. By integrating technology into learning environments, the educational reality is changed, promoting unusual learning experiences for children through play-based activities. Alongside this, teachers are challenged to develop encouragement and motivation strategies that empower children to act independently. The aim of the study was to reveal the changes in the roles and experiences of teachers in the application of AR technology for the enrichment of the learning process. A quantitative research approach was used to conduct the study. The data was collected through an electronic questionnaire. Participants: 319 teachers of 5-6-year-old children using AR technology tools in their educational process. Methods of data analysis: Cronbach alpha, descriptive statistical analysis, normal distribution analysis, correlation analysis, regression analysis (SPSS software). Results. The results of the study show a significant relationship between children's learning and the educational process modeled by the teacher. The strongest predictor of child learning was found to be related to the role of the educator. Other predictors, such as pedagogical strategies, the concept of AR technology, and areas of children's education, have no significant relationship with child learning. The role of the educator was found to be a strong determinant of the child's learning process. Conclusions. The greatest potential for integrating AR technology into the teaching-learning process is revealed in collaborative learning. Teachers identified that when integrating AR technology into the educational process, they encourage children to learn from each other, develop problem-solving skills, and create inclusive learning contexts. A significant relationship has emerged - how the changing role of the teacher relates to the child's learning style and the aspiration for personal leadership and responsibility for their learning. Teachers identified the following key roles: observer of the learning process, proactive moderator, and creator of the educational context. All these roles enable the learner to become an autonomous and active participant in the learning process. This provides a better understanding and explanation of why it becomes crucial to empower the learner to experiment, explore, discover, actively create, and foster collaborative learning in the design and implementation of the educational content, also for teachers to integrate AR technologies and the application of the principles of shared leadership. No statistically significant relationship was found between the understanding of the definition of AR technology and the teacher’s choice of role in the learning process. However, teachers reported that their understanding of the definition of AR technology influences their choice of role, which has an impact on children's learning.

Keywords: teacher, learner, augmented reality, collaboration, shared leadership, preschool education

Procedia PDF Downloads 19
196 Investigating the Algorithm to Maintain a Constant Speed in the Wankel Engine

Authors: Adam Majczak, Michał Bialy, Zbigniew Czyż, Zdzislaw Kaminski

Abstract:

Increasingly stringent emission standards for passenger cars require us to find alternative drives. The share of electric vehicles in the sale of new cars increases every year. However, their performance and, above all, range cannot be today successfully compared to those of cars with a traditional internal combustion engine. Battery recharging lasts hours, which can be hardly accepted due to the time needed to refill a fuel tank. Therefore, the ways to reduce the adverse features of cars equipped with electric motors only are searched for. One of the methods is a combination of an electric engine as a main source of power and a small internal combustion engine as an electricity generator. This type of drive enables an electric vehicle to achieve a radically increased range and low emissions of toxic substances. For several years, the leading automotive manufacturers like the Mazda and the Audi together with the best companies in the automotive industry, e.g., AVL have developed some electric drive systems capable of recharging themselves while driving, known as a range extender. An electricity generator is powered by a Wankel engine that has seemed to pass into history. This low weight and small engine with a rotating piston and a very low vibration level turned out to be an excellent source in such applications. Its operation as an energy source for a generator almost entirely eliminates its disadvantages like high fuel consumption, high emission of toxic substances, or short lifetime typical of its traditional application. The operation of the engine at a constant rotational speed enables a significant increase in its lifetime, and its small external dimensions enable us to make compact modules to drive even small urban cars like the Audi A1 or the Mazda 2. The algorithm to maintain a constant speed was investigated on the engine dynamometer with an eddy current brake and the necessary measuring apparatus. The research object was the Aixro XR50 rotary engine with the electronic power supply developed at the Lublin University of Technology. The load torque of the engine was altered during the research by means of the eddy current brake capable of giving any number of load cycles. The parameters recorded included speed and torque as well as a position of a throttle in an inlet system. Increasing and decreasing load did not significantly change engine speed, which means that control algorithm parameters are correctly selected. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: electric vehicle, power generator, range extender, Wankel engine

Procedia PDF Downloads 132
195 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 97
194 New Findings on the Plasma Electrolytic Oxidation (PEO) of Aluminium

Authors: J. Martin, A. Nominé, T. Czerwiec, G. Henrion, T. Belmonte

Abstract:

The plasma electrolytic oxidation (PEO) is a particular electrochemical process to produce protective oxide ceramic coatings on light-weight metals (Al, Mg, Ti). When applied to aluminum alloys, the resulting PEO coating exhibit improved wear and corrosion resistance because thick, hard, compact and adherent crystalline alumina layers can be achieved. Several investigations have been carried out to improve the efficiency of the PEO process and one particular way consists in tuning the suitable electrical regime. Despite the considerable interest in this process, there is still no clear understanding of the underlying discharge mechanisms that make possible metal oxidation up to hundreds of µm through the ceramic layer. A key parameter that governs the PEO process is the numerous short-lived micro-discharges (micro-plasma in liquid) that occur continuously over the processed surface when the high applied voltage exceeds the critical dielectric breakdown value of the growing ceramic layer. By using a bipolar pulsed current to supply the electrodes, we previously observed that micro-discharges are delayed with respect to the rising edge of the anodic current. Nevertheless, explanation of the origin of such phenomena is still not clear and needs more systematic investigations. The aim of the present communication is to identify the relationship that exists between this delay and the mechanisms responsible of the oxide growth. For this purpose, the delay of micro-discharges ignition is investigated as the function of various electrical parameters such as the current density (J), the current pulse frequency (F) and the anodic to cathodic charge quantity ratio (R = Qp/Qn) delivered to the electrodes. The PEO process was conducted on Al2214 aluminum alloy substrates in a solution containing potassium hydroxide [KOH] and sodium silicate diluted in deionized water. The light emitted from micro-discharges was detected by a photomultiplier and the micro-discharge parameters (number, size, life-time) were measured during the process by means of ultra-fast video imaging (125 kfr./s). SEM observations and roughness measurements were performed to characterize the morphology of the elaborated oxide coatings while XRD was carried out to evaluate the amount of corundum -Al203 phase. Results show that whatever the applied current waveform, the delay of micro-discharge appearance increases as the process goes on. Moreover, the delay is shorter when the current density J (A/dm2), the current pulse frequency F (Hz) and the ratio of charge quantity R are high. It also appears that shorter delays are associated to stronger micro-discharges (localized, long and large micro-discharges) which have a detrimental effect on the elaborated oxide layers (thin and porous). On the basis of the results, a model for the growth of the PEO oxide layers will be presented and discussed. Experimental results support that a mechanism of electrical charge accumulation at the oxide surface / electrolyte interface takes place until the dielectric breakdown occurs and thus until micro-discharges appear.

Keywords: aluminium, micro-discharges, oxidation mechanisms, plasma electrolytic oxidation

Procedia PDF Downloads 234
193 Study of Chemical State Analysis of Rubidium Compounds in Lα, Lβ₁, Lβ₃,₄ and Lγ₂,₃ X-Ray Emission Lines with Wavelength Dispersive X-Ray Fluorescence Spectrometer

Authors: Harpreet Singh Kainth

Abstract:

Rubidium salts have been commonly used as an electrolyte to improve the efficiency cycle of Li-ion batteries. In recent years, it has been implemented into the large scale for further technological advances to improve the performance rate and better cyclability in the batteries. X-ray absorption spectroscopy (XAS) is a powerful tool for obtaining the information in the electronic structure which involves the chemical state analysis in the active materials used in the batteries. However, this technique is not well suited for the industrial applications because it needs a synchrotron X-ray source and special sample file for in-situ measurements. In contrast to this, conventional wavelength dispersive X-ray fluorescence (WDXRF) spectrometer is nondestructive technique used to study the chemical shift in all transitions (K, L, M, …) and does not require any special pre-preparation planning. In the present work, the fluorescent Lα, Lβ₁ , Lβ₃,₄ and Lγ₂,₃ X-ray spectra of rubidium in different chemical forms (Rb₂CO₃ , RbCl, RbBr, and RbI) have been measured first time with high resolution wavelength dispersive X-ray fluorescence (WDXRF) spectrometer (Model: S8 TIGER, Bruker, Germany), equipped with an Rh anode X-ray tube (4-kW, 60 kV and 170 mA). In ₃₇Rb compounds, the measured energy shifts are in the range (-0.45 to - 1.71) eV for Lα X-ray peak, (0.02 to 0.21) eV for Lβ₁ , (0.04 to 0.21) eV for Lβ₃ , (0.15 to 0.43) eV for Lβ₄ and (0.22 to 0.75) eV for Lγ₂,₃ X-ray emission lines. The chemical shifts in rubidium compounds have been measured by considering Rb₂CO₃ compounds taking as a standard reference. A Voigt function is used to determine the central peak position of all compounds. Both positive and negative shifts have been observed in L shell emission lines. In Lα X-ray emission lines, all compounds show negative shift while in Lβ₁, Lβ₃,₄, and Lγ₂,₃ X-ray emission lines, all compounds show a positive shift. These positive and negative shifts result increase or decrease in X-ray energy shifts. It looks like that ligands attached with central metal atom attract or repel the electrons towards or away from the parent nucleus. This pulling and pushing character of rubidium affects the central peak position of the compounds which causes a chemical shift. To understand the chemical effect more briefly, factors like electro-negativity, line intensity ratio, effective charge and bond length are responsible for the chemical state analysis in rubidium compounds. The effective charge has been calculated from Suchet and Pauling method while the line intensity ratio has been calculated by calculating the area under the relevant emission peak. In the present work, it has been observed that electro-negativity, effective charge and intensity ratio (Lβ₁/Lα, Lβ₃,₄/Lα and Lγ₂,₃/Lα) are inversely proportional to the chemical shift (RbCl > RbBr > RbI), while bond length has been found directly proportional to the chemical shift (RbI > RbBr > RbCl).

Keywords: chemical shift in L emission lines, bond length, electro-negativity, effective charge, intensity ratio, Rubidium compounds, WDXRF spectrometer

Procedia PDF Downloads 481
192 An Integrated HCV Testing Model as a Method to Improve Identification and Linkage to Care in a Network of Community Health Centers in Philadelphia, PA

Authors: Catelyn Coyle, Helena Kwakwa

Abstract:

Objective: As novel and better tolerated therapies become available, effective HCV testing and care models become increasingly necessary to not only identify individuals with active infection but also link them to HCV providers for medical evaluation and treatment. Our aim is to describe an effective HCV testing and linkage to care model piloted in a network of five community health centers located in Philadelphia, PA. Methods: In October 2012, National Nursing Centers Consortium piloted a routine opt-out HCV testing model in a network of community health centers, one of which treats HCV, HIV, and co-infected patients. Key aspects of the model were medical assistant initiated testing, the use of laboratory-based reflex test technology, and electronic medical record modifications to prompt, track, report and facilitate payment of test costs. Universal testing on all adult patients was implemented at health centers serving patients at high-risk for HCV. The other sites integrated high-risk based testing, where patients meeting one or more of the CDC testing recommendation risk factors or had a history of homelessness were eligible for HCV testing. Mid-course adjustments included the integration of dual HIV testing, development of a linkage to care coordinator position to facilitate the transition of HIV and/or HCV-positive patients from primary to specialist care, and the transition to universal HCV testing across all testing sites. Results: From October 2012 to June 2015, the health centers performed 7,730 HCV tests and identified 886 (11.5%) patients with a positive HCV-antibody test. Of those with positive HCV-antibody tests, 838 (94.6%) had an HCV-RNA confirmatory test and 590 (70.4%) progressed to current HCV infection (overall prevalence=7.6%); 524 (88.8%) received their RNA-positive test result; 429 (72.7%) were referred to an HCV care specialist and 271 (45.9%) were seen by the HCV care specialist. The best linkage to care results were seen at the test and treat the site, where of the 333 patients were current HCV infection, 175 (52.6%) were seen by an HCV care specialist. Of the patients with active HCV infection, 349 (59.2%) were unaware of their HCV-positive status at the time of diagnosis. Since the integration of dual HCV/HIV testing in September 2013, 9,506 HIV tests were performed, 85 (0.9%) patients had positive HIV tests, 81 (95.3%) received their confirmed HIV test result and 77 (90.6%) were linked to HIV care. Dual HCV/HIV testing increased the number of HCV tests performed by 362 between the 9 months preceding dual testing and first 9 months after dual testing integration, representing a 23.7% increment. Conclusion: Our HCV testing model shows that integrated routine testing and linkage to care is feasible and improved detection and linkage to care in a primary care setting. We found that prevalence of current HCV infection was higher than that seen in locally in Philadelphia and nationwide. Intensive linkage services can increase the number of patients who successfully navigate the HCV treatment cascade. The linkage to care coordinator position is an important position that acts as a trusted intermediary for patients being linked to care.

Keywords: HCV, routine testing, linkage to care, community health centers

Procedia PDF Downloads 336
191 Investigating Learners’ Online Learning Experiences in a Blended-Learning School Environment

Authors: Abraham Ampong

Abstract:

BACKGROUND AND SIGNIFICANCE OF THE STUDY: The development of information technology and its influence today is inevitable in the world of education. The development of information technology and communication (ICT) has an impact on the use of teaching aids such as computers and the Internet, for example, E-learning. E-learning is a learning process attained through electronic means. But learning is not merely technology because learning is essentially more about the process of interaction between teacher, student, and source study. The main purpose of the study is to investigate learners’ online learning experiences in a blended learning approach, evaluate how learners’ experience of an online learning environment affects the blended learning approach and examine the future of online learning in a blended learning environment. Blended learning pedagogies have been recognized as a path to improve teacher’s instructional strategies for teaching using technology. Blended learning is perceived to have many advantages for teachers and students, including any-time learning, anywhere access, self-paced learning, inquiry-led learning and collaborative learning; this helps institutions to create desired instructional skills such as critical thinking in the process of learning. Blended learning as an approach to learning has gained momentum because of its widespread integration into educational organizations. METHODOLOGY: Based on the research objectives and questions of the study, the study will make use of the qualitative research approach. The rationale behind the selection of this research approach is that participants are able to make sense of their situations and appreciate their construction of knowledge and understanding because the methods focus on how people understand and interpret their experiences. A case study research design is adopted to explore the situation under investigation. The target population for the study will consist of selected students from selected universities. A simple random sampling technique will be used to select the targeted population. The data collection instrument that will be adopted for this study will be questions that will serve as an interview guide. An interview guide is a set of questions that an interviewer asks when interviewing respondents. Responses from the in-depth interview will be transcribed into word and analyzed under themes. Ethical issues to be catered for in this study include the right to privacy, voluntary participation, and no harm to participants, and confidentiality. INDICATORS OF THE MAJOR FINDINGS: It is suitable for the study to find out that online learning encourages timely feedback from teachers or that online learning tools are okay to use without issues. Most of the communication with the teacher can be done through emails and text messages. It is again suitable for sampled respondents to prefer online learning because there are few or no distractions. Learners can have access to technology to do other activities to support their learning”. There are, again, enough and enhanced learning materials available online. CONCLUSION: Unlike the previous research works focusing on the strengths and weaknesses of blended learning, the present study aims at the respective roles of its two modalities, as well as their interdependencies.

Keywords: online learning, blended learning, technologies, teaching methods

Procedia PDF Downloads 67
190 Monitoring and Evaluation of Web-Services Quality and Medium-Term Impact on E-Government Agencies' Efficiency

Authors: A. F. Huseynov, N. T. Mardanov, J. Y. Nakhchivanski

Abstract:

This practical research is aimed to improve the management quality and efficiency of public administration agencies providing e-services. The monitoring system developed will provide continuous review of the websites compliance with the selected indicators, their evaluation based on the selected indicators and ranking of services according to the quality criteria. The responsible departments in the government agencies were surveyed; the questionnaire includes issues of management and feedback, e-services provided, and the application of information systems. By analyzing the main affecting factors and barriers, the recommendations will be given that lead to the relevant decisions to strengthen the state agencies competencies for the management and the provision of their services. Component 1. E-services monitoring system. Three separate monitoring activities are proposed to be executed in parallel: Continuous tracing of e-government sites using built-in web-monitoring program; this program generates several quantitative values which are basically related to the technical characteristics and the performance of websites. The expert assessment of e-government sites in accordance with the two general criteria. Criterion 1. Technical quality of the site. Criterion 2. Usability/accessibility (load, see, use). Each high-level criterion is in turn subdivided into several sub-criteria, such as: the fonts and the color of the background (Is it readable?), W3C coding standards, availability of the Robots.txt and the site map, the search engine, the feedback/contact and the security mechanisms. The on-line survey of the users/citizens – a small group of questions embedded in the e-service websites. The questionnaires comprise of the information concerning navigation, users’ experience with the website (whether it was positive or negative), etc. Automated monitoring of web-sites by its own could not capture the whole evaluation process, and should therefore be seen as a complement to expert’s manual web evaluations. All of the separate results were integrated to provide the complete evaluation picture. Component 2. Assessment of the agencies/departments efficiency in providing e-government services. - the relevant indicators to evaluate the efficiency and the effectiveness of e-services were identified; - the survey was conducted in all the governmental organizations (ministries, committees and agencies) that provide electronic services for the citizens or the businesses; - the quantitative and qualitative measures are covering the following sections of activities: e-governance, e-services, the feedback from the users, the information systems at the agencies’ disposal. Main results: 1. The software program and the set of indicators for internet sites evaluation has been developed and the results of pilot monitoring have been presented. 2. The evaluation of the (internal) efficiency of the e-government agencies based on the survey results with the practical recommendations related to the human potential, the information systems used and e-services provided.

Keywords: e-government, web-sites monitoring, survey, internal efficiency

Procedia PDF Downloads 275
189 Recirculation Type Photocatalytic Reactor for Degradation of Monocrotophos Using TiO₂ and W-TiO₂ Coated Immobilized Clay Beads

Authors: Abhishek Sraw, Amit Sobti, Yamini Pandey, R. K. Wanchoo, Amrit Pal Toor

Abstract:

Monocrotophos (MCP) is a widely used pesticide in India, which belong to an extremely toxic organophosphorus family, is persistent in nature and its toxicity is widely reported in all environmental segments in the country. Advanced Oxidation Process (AOP) is a promising solution to the problem of water pollution. TiO₂ is being widely used as a photocatalyst because of its many advantages, but it has a large band gap, due to which it is modified using metal and nonmetal dopant to make it active under sunlight and visible light. The use of nanosized powdered catalysts makes the recovery process extremely complicated. Hence the aim is to use low cost, easily available, eco-friendly clay material in form of bead as the support for the immobilization of catalyst, to solve the problem of post-separation of suspended catalyst from treated water. A recirculation type photocatalytic reactor (RTPR), using ultraviolet light emitting source (blue black lamp) was designed which work effectively for both suspended catalysts and catalyst coated clay beads. The bare, TiO₂ and W-TiO₂ coated clay beads were characterized by scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and N₂ adsorption–desorption measurements techniques (BET) for their structural, textural and electronic properties. The study involved variation of different parameters like light conditions, recirculation rate, light intensity and initial MCP concentration under UV and sunlight for the degradation of MCP. The degradation and mineralization studies of the insecticide solution were performed using UV-Visible spectrophotometer, and COD vario-photometer and GC-MS analysis respectively. The main focus of the work lies in checking the recyclability of the immobilized TiO₂ over clay beads in the developed RTPR up to 30 continuous cycles without reactivation of catalyst. The results demonstrated the economic feasibility of the utilization of developed RTPR for the efficient purification of pesticide polluted water. The prepared TiO₂ clay beads delivered 75.78% degradation of MCP under UV light with negligible catalyst loss. Application of W-TiO₂ coated clay beads filled RTPR for the degradation of MCP under sunlight, however, shows 32% higher degradation of MCP than the same system based on undoped TiO₂. The COD measurements of TiO₂ coated beads led to 73.75% COD reduction while W-TiO₂ resulted in 87.89% COD reduction. The GC-MS analysis confirms the efficient breakdown of complex MCP molecules into simpler hydrocarbons. This supports the promising application of clay beads as a support for the photocatalyst and proves its eco-friendly nature, excellent recyclability, catalyst holding capacity, and economic viability.

Keywords: immobilized clay beads, monocrotophos, recirculation type photocatalytic reactor, TiO₂

Procedia PDF Downloads 151
188 “Divorced Women are Like Second-Hand Clothes” - Hate Language in Media Discourse

Authors: Sopio Totibadze

Abstract:

Although the legal framework of Georgia reflects the main principles of gender equality and is in line with the international situation, Georgia remains a male-dominated society. This means that men prevail in many areas of social, economic, and political life, which frequently gives women a subordinate status in society and the family. According to the latest studies, “violence against women and girls in Georgia is also recognized as a public problem, and it is necessary to focus on it”. Moreover, the Public Defender's report (2019) reveals that “in the last five years, 151 women were killed in Georgia due to gender and family violence”. Unfortunately, there are frequent cases of crimes based on gender-based oppression in Georgia, which pose a threat not only to women but also to people of any gender whose desires and aspirations do not correspond to the gender norms and roles prevailing in society. It is well-known that language is often used as a tool for gender oppression. Therefore, feminist and gender studies in linguistics ultimately serve to represent the problem, reflect on it, and propose ways to solve it. Together with technical advancement in communication, a new form of discrimination has arisen- hate language against women in electronic media discourse. Due to the nature of social media and the internet, messages containing hate language can spread in seconds and reach millions of people. However, only a few know about the detrimental effects they may have on the addressee and society. This paper aims to analyse the hateful comments directed at women on various media platforms to determine the linguistic strategies used while attacking women and the reasons why women may fall victim to this type of hate language. The data have been collected over six months, and overall, 500 comments will be examined for the paper. Qualitative and quantitative analysis was chosen for the methodology of the study. The comments posted on various media platforms have been selected manually due to several reasons, the most important being the problem of identifying hate speech as it can disguise itself in different ways- humour, memes, etc. The comments on the articles, posts, pictures, and videos selected for sociolinguistic analysis depict a woman, a taboo topic, or a scandalous event centred on a woman that triggered hate language towards the person to whom the post/article was dedicated. The study has revealed that a woman can become a victim of hatred directed at them if they do something considered to be a deviation from a societal norm, namely, get a divorce, be sexually active, be vocal about feministic values, and talk about taboos. Interestingly, people who utilize hate language are not only men trying to “normalize” the prejudiced patriarchal values but also women who are equally active in bringing down a "strong" woman. The paper also aims to raise awareness about the hate language directed at women, as being knowledgeable about the issue at hand is the first step to tackling it.

Keywords: femicide, hate language, media discourse, sociolinguistics

Procedia PDF Downloads 64
187 X-Ray Detector Technology Optimization in Computed Tomography

Authors: Aziz Ikhlef

Abstract:

Most of multi-slices Computed Tomography (CT) scanners are built with detectors composed of scintillator - photodiodes arrays. The photodiodes arrays are mainly based on front-illuminated technology for detectors under 64 slices and on back-illuminated photodiode for systems of 64 slices or more. The designs based on back-illuminated photodiodes were being investigated for CT machines to overcome the challenge of the higher number of runs and connection required in front-illuminated diodes. In backlit diodes, the electronic noise has already been improved because of the reduction of the load capacitance due to the routing reduction. This is translated by a better image quality in low signal application, improving low dose imaging in large patient population. With the fast development of multi-detector-rows CT (MDCT) scanners and the increasing number of examinations, the clinical community has raised significant concerns on radiation dose received by the patient in both medical and regulatory community. In order to reduce individual exposure and in response to the recommendations of the International Commission on Radiological Protection (ICRP) which suggests that all exposures should be kept as low as reasonably achievable (ALARA), every manufacturer is trying to implement strategies and solutions to optimize dose efficiency and image quality based on x-ray emission and scanning parameters. The added demands on the CT detector performance also comes from the increased utilization of spectral CT or dual-energy CT in which projection data of two different tube potentials are collected. One of the approaches utilizes a technology called fast-kVp switching in which the tube voltage is switched between 80 kVp and 140 kVp in fraction of a millisecond. To reduce the cross-contamination of signals, the scintillator based detector temporal response has to be extremely fast to minimize the residual signal from previous samples. In addition, this paper will present an overview of detector technologies and image chain improvement which have been investigated in the last few years to improve the signal-noise ratio and the dose efficiency CT scanners in regular examinations and in energy discrimination techniques. Several parameters of the image chain in general and in the detector technology contribute in the optimization of the final image quality. We will go through the properties of the post-patient collimation to improve the scatter-to-primary ratio, the scintillator material properties such as light output, afterglow, primary speed, crosstalk to improve the spectral imaging, the photodiode design characteristics and the data acquisition system (DAS) to optimize for crosstalk, noise and temporal/spatial resolution.

Keywords: computed tomography, X-ray detector, medical imaging, image quality, artifacts

Procedia PDF Downloads 175
186 Biomaterials Solutions to Medical Problems: A Technical Review

Authors: Ashish Thakur

Abstract:

This technical paper was written in view of focusing the biomaterials and its various applications in modern industries. Author tires to elaborate not only the medical, infect plenty of application in other industries. The scope of the research area covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. Biomaterials are invariably in contact with living tissues. Thus, interactions between the surface of a synthetic material and biological environment must be well understood. This paper reviews the benefits and challenges associated with surface modification of the metals in biomedical applications. The paper also elaborates how the surface characteristics of metallic biomaterials, such as surface chemistry, topography, surface charge, and wettability, influence the protein adsorption and subsequent cell behavior in terms of adhesion, proliferation, and differentiation at the biomaterial–tissue interface. The chapter also highlights various techniques required for surface modification and coating of metallic biomaterials, including physicochemical and biochemical surface treatments and calcium phosphate and oxide coatings. In this review, the attention is focused on the biomaterial-associated infections, from which the need for anti-infective biomaterials originates. Biomaterial-associated infections differ markedly for epidemiology, aetiology and severity, depending mainly on the anatomic site, on the time of biomaterial application, and on the depth of the tissues harbouring the prosthesis. Here, the diversity and complexity of the different scenarios where medical devices are currently utilised are explored, providing an overview of the emblematic applicative fields and of the requirements for anti-infective biomaterials. In addition to this, chapter introduces nanomedicine and the use of both natural and synthetic polymeric biomaterials, focuses on specific current polymeric nanomedicine applications and research, and concludes with the challenges of nanomedicine research. Infection is currently regarded as the most severe and devastating complication associated to the use of biomaterials. Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. Polymeric nanomaterial-based therapeutics plays a key role in the field of medicine in treatment areas such as drug delivery, tissue engineering, cancer, diabetes, and neurodegenerative diseases. Advantages in the use of polymers over other materials for nanomedicine include increased functionality, design flexibility, improved processability, and, in some cases, biocompatibility.

Keywords: nanomedicine, tissue, infections, biomaterials

Procedia PDF Downloads 240