Search results for: density peak clustering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5180

Search results for: density peak clustering

2360 Thin and Flexible Zn-Air Battery by Inexpensive Screen Printing Technique

Authors: Sira Suren, Soorathep Kheawhom

Abstract:

This work focuses the development of thin and flexible zinc-air battery. The battery with an overall thickness of about 300 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder and ZnO was used to prepare the anode electrode. Types of conductive materials (Bi2O3, Na2O3Si and carbon black) for the anode and its concentration were investigated. Results showed that the battery using 29% carbon black showed the best performance. The open-circuit voltage and energy density observed were 1.6 V and 694 Wh/kg, respectively. When the battery was discharged at 10 mA/cm2, the potential voltage observed was 1.35 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.

Keywords: flexible, Gel Electrolyte, screen printing, thin battery, Zn-Air battery

Procedia PDF Downloads 193
2359 Charge Carrier Mobility Dependent Open-Circuit Voltage in Organic and Hybrid Solar Cells

Authors: David Ompong, Jai Singh

Abstract:

A better understanding of the open-circuit voltage (Voc) related losses in organic solar cells (OSCs) is desirable in order to assess the photovoltaic performance of these devices. We have derived Voc as a function of charge carrier mobilities (μe and μh) for organic and hybrid solar cells by optimizing the drift-diffusion current density. The optimum Voc thus obtained depends on the energy difference between the highest occupied molecular orbital (HOMO) level and the quasi-Fermi level of holes of the donor material. We have found that the Voc depends on the ratio of the electron (μe) and hole (μh) mobilities and when μh > μe the Voc increases. The most important loss term in the Voc arises from the energetics of the donor and acceptor materials, which will be discussed in detail in this paper.

Keywords: charge carrier mobility, open-circuit voltage, organic solar cells, quasi-fermi levels

Procedia PDF Downloads 432
2358 The Power of in situ Characterization Techniques in Heterogeneous Catalysis: A Case Study of Deacon Reaction

Authors: Ramzi Farra, Detre Teschner, Marc Willinger, Robert Schlögl

Abstract:

Introduction: The conventional approach of characterizing solid catalysts under static conditions, i.e., before and after reaction, does not provide sufficient knowledge on the physicochemical processes occurring under dynamic conditions at the molecular level. Hence, the necessity of improving new in situ characterizing techniques with the potential of being used under real catalytic reaction conditions is highly desirable. In situ Prompt Gamma Activation Analysis (PGAA) is a rapidly developing chemical analytical technique that enables us experimentally to assess the coverage of surface species under catalytic turnover and correlate these with the reactivity. The catalytic HCl oxidation (Deacon reaction) over bulk ceria will serve as our example. Furthermore, the in situ Transmission Electron Microscopy is a powerful technique that can contribute to the study of atmosphere and temperature induced morphological or compositional changes of a catalyst at atomic resolution. The application of such techniques (PGAA and TEM) will pave the way to a greater and deeper understanding of the dynamic nature of active catalysts. Experimental/Methodology: In situ Prompt Gamma Activation Analysis (PGAA) experiments were carried out to determine the Cl uptake and the degree of surface chlorination under reaction conditions by varying p(O2), p(HCl), p(Cl2), and the reaction temperature. The abundance and dynamic evolution of OH groups on working catalyst under various steady-state conditions were studied by means of in situ FTIR with a specially designed homemade transmission cell. For real in situ TEM we use a commercial in situ holder with a home built gas feeding system and gas analytics. Conclusions: Two complimentary in situ techniques, namely in situ PGAA and in situ FTIR were utilities to investigate the surface coverage of the two most abundant species (Cl and OH). The OH density and Cl uptake were followed under multiple steady-state conditions as a function of p(O2), p(HCl), p(Cl2), and temperature. These experiments have shown that, the OH density positively correlates with the reactivity whereas Cl negatively. The p(HCl) experiments give rise to increased activity accompanied by Cl-coverage increase (opposite trend to p(O2) and T). Cl2 strongly inhibits the reaction, but no measurable increase of the Cl uptake was found. After considering all previous observations we conclude that only a minority of the available adsorption sites contribute to the reactivity. In addition, the mechanism of the catalysed reaction was proposed. The chlorine-oxygen competition for the available active sites renders re-oxidation as the rate-determining step of the catalysed reaction. Further investigations using in situ TEM are planned and will be conducted in the near future. Such experiments allow us to monitor active catalysts at the atomic scale under the most realistic conditions of temperature and pressure. The talk will shed a light on the potential and limitations of in situ PGAA and in situ TEM in the study of catalyst dynamics.

Keywords: CeO2, deacon process, in situ PGAA, in situ TEM, in situ FTIR

Procedia PDF Downloads 269
2357 Calculation of A Sustainable Quota Harvesting of Long-tailed Macaque (Macaca fascicularis Raffles) in Their Natural Habitats

Authors: Yanto Santosa, Dede Aulia Rahman, Cory Wulan, Abdul Haris Mustari

Abstract:

The global demand for long-tailed macaques for medical experimentation has continued to increase. Fulfillment of Indonesian export demands has been mostly from natural habitats, based on a harvesting quota. This quota has been determined according to the total catch for a given year, and not based on consideration of any demographic parameters or physical environmental factors with regard to the animal; hence threatening the sustainability of the various populations. It is therefore necessary to formulate a method for calculating a sustainable harvesting quota, based on population parameters in natural habitats. Considering the possibility of variations in habitat characteristics and population parameters, a time series observation of demographic and physical/biotic parameters, in various habitats, was performed on 13 groups of long-tailed macaques, distributed throughout the West Java, Lampung and Yogyakarta areas of Indonesia. These provinces were selected for comparison of the influence of human/tourism activities. Data on population parameters that was collected included data on life expectancy according to age class, numbers of individuals by sex and age class, and ‘ratio of infants to reproductive females’. The estimation of population growth was based on a population dynamic growth model: the Leslie matrix. The harvesting quota was calculated as being the difference between the actual population size and the MVP (minimum viable population) for each sex and age class. Observation indicated that there were variations within group size (24 – 106 individuals), gender (sex) ratio (1:1 to 1:1.3), life expectancy value (0.30 to 0.93), and ‘ratio of infants to reproductive females’ (0.23 to 1.56). Results of subsequent calculations showed that sustainable harvesting quotas for each studied group of long-tailed macaques, ranged from 29 to 110 individuals. An estimation model of the MVP for each age class was formulated as Log Y = 0.315 + 0.884 Log Ni (number of individual on ith age class). This study also found that life expectancy for the juvenile age class was affected by the humidity under tree stands, and dietary plants’ density at sapling, pole and tree stages (equation: Y= 2.296 – 1.535 RH + 0.002 Kpcg – 0.002 Ktg – 0.001 Kphn, R2 = 89.6% with a significance value of 0.001). By contrast, for the sub-adult-adult age class, life expectancy was significantly affected by slope (equation: Y=0.377 = 0.012 Kml, R2 = 50.4%, with significance level of 0.007). The infant to reproductive female ratio was affected by humidity under tree stands, and dietary plant density at sapling and pole stages (equation: Y = -1.432 + 2.172 RH – 0.004 Kpcg + 0.003 Ktg, R2 = 82.0% with significance level of 0.001). This research confirmed the importance of population parameters in determining the minimum viable population, and that MVP varied according to habitat characteristics (especially food availability). It would be difficult therefore, to formulate a general mathematical equation model for determining a harvesting quota for the species as a whole.

Keywords: harvesting, long-tailed macaque, population, quota

Procedia PDF Downloads 407
2356 Anisotropic Behavior of Sand Stabilized with Colloidal Silica

Authors: Eleni Maria Pavlopoulou, Vasiliki N. Georgiannou, Filippos C. Chortis

Abstract:

The response of M31 sand stabilized with colloidal silica (CS) aqueous gel is investigated in the laboratory. CS is introduced in the water regime, forming a hydrosol. The low viscosity hydrosol thickens in a controllable manner to form a stable, non-toxic gel; the gel fills the pore space, retains the pore water, and supports the grain structure. The role of colloidal silica on subsequent sand behavior is examined with the aid of direct shear, triaxial, and normal compression tests. Under the examined loading modes, while the strength of the treated sand is enhanced, its stiffness may reduce, and its compressibility increase. However, in most geotechnical problems, the loading conditions are complex, involving changes in both stress magnitude and direction. Rotation of principal stresses (σ1, σ2, σ3) in varying amounts expressed as angle α, (from α=0° to 90°) in concurrence with increasing shear stress loading is commonly encountered in soil structures such as foundations, embankments, underwater slopes. To assess the influence of anisotropy on the response of sands before and after their stabilization, hollow cylinder tests were performed. The behavior of stabilized sand is compared with the characteristic sand behavior, i.e., a reduction in peak stress ratio associated with a softer stress-strain response with the increasing angle a. The influence of the magnitude of the intermediate principal stress (σ2) on the mechanical response of treated and untreated sand is also examined.

Keywords: anisotropy, colloidal silica, laboratory tests, sands, soil stabilization

Procedia PDF Downloads 121
2355 Experimental Study of Sahara Climat Effect in Photovoltaic Solar Module

Authors: A. Benatiallah, A. Hadjadj, D. Benatiallah, F. Abaidi, A. Harrouz

Abstract:

Photovoltaic system is established as a reliable and economical source of electricity in rural and Sahara areas, especially in developing countries where the population is dispersed, has low consumption of energy and the grid power is not extended to these areas due to viability and financial problems. The production of energy by the photovoltaic system is very fluctuates and depend of meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows; in the present work we have studies the behavior of multi-crystal solar module according to the density of dust, and the principals electric feature of the solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions.

Keywords: photovoltaic, multi-crystal module, experimental, effect of dust, performances

Procedia PDF Downloads 285
2354 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste

Authors: Maciej Szeląg

Abstract:

The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters

Procedia PDF Downloads 232
2353 An Assessment of Wind Energy in Sanar Village in North of Iran Using Weibull Function

Authors: Ehsanolah Assareh, Mojtaba Biglari, Mojtaba Nedaei

Abstract:

Sanar village in north of Iran is a remote region with difficult access to electricity, grid and water supply. Thus the aim of this research is to evaluate the potential of wind as a power source either for electricity generation or for water pumping. In this study the statistical analysis has been performed by Weibull distribution function. The results show that the Weibull distribution has fitted the wind data very well. Also it has been demonstrated that wind speed at 40 m height is ranged from 1.75 m/s in Dec to 3.28 m/s in Aug with average value of 2.69 m/s. In this research, different wind speed characteristics such as turbulence intensity, wind direction, monthly air temperature, humidity wind power density and other related parameters have been investigated. Finally it was concluded that the wind energy in the Sanar village may be explored by employing modern wind turbines that require very lower start-up speeds.

Keywords: wind energy, wind turbine, weibull, Sanar village, Iran

Procedia PDF Downloads 505
2352 Design and Development of Compact 1KW Floating Battery Discharge Regulator

Authors: A. Sreedevi, G. Anantaramu

Abstract:

The present space research organizations are striving towards the development of lighter, smaller, more efficient, low cost, and highly reliable power supply. Switch mode power supplies (SMPS) overcome the demerits of linear power supplies such as low efficiency, difficulties in thermal management, and in boosting the output voltage. Space applications require a constant DC voltage to supply its load. As the load varies, the battery terminal voltage tends to vary accordingly. To avoid this variation in the load terminal voltage, a DC-DC regulator is required. The conventional regulator for space applications is isolated boost topology. The proposed topology uses an interleaved push-pull converter with a current doubler secondary to reduce the EMI issues and increase efficiency. The proposed topology uses a floating technique where the converter derives power from the battery and generates only the voltage that is required to fill the gap between the bus and the battery voltage. The direct voltage sense and current loop provide tight regulation of output and better stability. Converter is designed with 50 kHz switching frequency using UC 1825 PWM controller employing both voltage and peak current mode control. Experimental tests have been carried out on the converter under different input and load conditions to validate the design. The experimental results showed that the efficiency was greater than 91%. Stability analysis is done using venable stability analyzer.

Keywords: push pull converter, current doubler, converter, PWM control

Procedia PDF Downloads 84
2351 Effect of Class V Cavity Configuration and Loading Situation on the Stress Concentration

Authors: Jia-Yu Wu, Chih-Han Chang, Shu-Fen Chuang, Rong-Yang Lai

Abstract:

Objective: This study was to examine the stress distribution of tooth with different class V restorations under different loading situations and geometry by 3D finite element (FE) analysis. `Methods: A series of FE models of mandibular premolars containing class V cavities were constructed using micro-CT. The class V cavities were assigned as the combinations of different cavity depths x occlusal -gingival heights: 1x2, 1x4, 2x2, and 2x4 mm. Three alveolar bone loss conditions were examined: 0, 1, and 2 mm. 200 N force was exerted on the buccal cusp tip under various directions (vertical, V; obliquely 30° angled, O; oblique and parallel the individual occlusal cavity wall, P). A 3-D FE analysis was performed and the von-Mises stress was used to summarize the data of stress distribution and maximum stress. Results: The maximal stress did not vary in different alveolar bone heights. For each geometry, the maximal stress was found at bilateral corners of the cavity. The peak stress of restorations was significantly higher under load P compared to those under loads V and O while the latter two were similar. 2x2mm cavity exhibited significantly increased (2.88 fold) stress under load P compared to that under load V, followed by 1x2mm (2.11 fold), 2x4mm (1.98 fold) and 1x4mm (1.1fold). Conclusion: Load direction causes the greatest impact on the results of stress, while the effect of alveolar bone loss is minor. Load direction parallel to the cavity wall may enhance the stress concentration especially in deep and narrow class cavities.

Keywords: class v restoration, finite element analysis, loading situation, stress

Procedia PDF Downloads 229
2350 Effect of T6 and Re-Aging Heat Treatment on Mechanical Properties of 7055 Aluminum Alloy

Authors: M. Esmailian, M. Shakouri, A. Mottahedi, S. G. Shabestari

Abstract:

Heat treatable aluminium alloys such as 7075 and 7055, because of high strength and low density, are used widely in aircraft industry. For best mechanical properties, T6 heat treatment has recommended for this regards, but this temper treatment is sensitive to corrosion induced and Stress Corrosion Cracking (SCC) damage. For improving this property, the over-aging treatment (T7) applies to this alloy, but it decreases the mechanical properties up to 30 percent. Hence, to increase the mechanical properties, without any remarkable decrease in SCC resistant, Retrogression and Re-Aging (RRA) heat treatment is used. This treatment performs in a relatively short time. In this paper, the RRA heat treatment was applied to 7055 aluminum alloy and then effect of RRA time on the mechanical properties of 7055 has been investigated. The results show that the 40 minute time is suitable time for retrogression of 7055 aluminum alloy and ultimate strength increases up to 625MPa.

Keywords: 7055 Aluminum alloy, mechanical properties, SCC resistance, heat Treatment

Procedia PDF Downloads 412
2349 Effects of Aging on Ultra: Triathlon Performance

Authors: Richard S. Jatau, Kankanala Venkateswarlu, Bulus Kpame

Abstract:

The purpose of this critical review is to find out what is known and what is unknown about the effects of aging on endurance performance, especially on ultra- triathlon performance. It has been shown that among master’s athlete’s peak levels of performance decreased by 50% by age 50 it has also been clearly revealed that age associated atrophy, weakness and fatigability cannot be halted, although year round athletic training can slow down this age associated decline. Studies have further revealed that 30% to 50% decrease in skeletal muscle mass between ages 40 and 80 years, which is accompanied by an equal or even greater decline in strength and power and an increase in muscle weakness and fatigability. Studies on ultra- triathlon athletes revealed that 30 to 39 year old showed fastest time, with athletes in younger and older age groups were slower. It appears that the length of the endurance performance appears to influence age related endurance performance decline in short distance triathlons. A significant decline seems to start at the age of 40 to 50 years, whereas in long distance triathlons this decline seems to start after the age of 65 years. However, it is not clear whether this decline is related in any way to the training methods used, the duration of training, or the frequency of training. It’s also not clear whether the triathlon athletes experience more injuries due to long hours of training. It’s also not clear whether these athletes used performance enhancing drugs to enhance their performance. It’s not also clear whiles there has been tremendous increase in the number of athletes specializing in triathlon. On the basis of our experience and available research evidence we have provided answers to some of these questions. We concluded that aging associated decline in ultra–endurance performance is inevitable although it can be slowed down.

Keywords: aging, triathlon, atrophy, endurance

Procedia PDF Downloads 357
2348 A Distributed Mobile Agent Based on Intrusion Detection System for MANET

Authors: Maad Kamal Al-Anni

Abstract:

This study is about an algorithmic dependence of Artificial Neural Network on Multilayer Perceptron (MPL) pertaining to the classification and clustering presentations for Mobile Adhoc Network vulnerabilities. Moreover, mobile ad hoc network (MANET) is ubiquitous intelligent internetworking devices in which it has the ability to detect their environment using an autonomous system of mobile nodes that are connected via wireless links. Security affairs are the most important subject in MANET due to the easy penetrative scenarios occurred in such an auto configuration network. One of the powerful techniques used for inspecting the network packets is Intrusion Detection System (IDS); in this article, we are going to show the effectiveness of artificial neural networks used as a machine learning along with stochastic approach (information gain) to classify the malicious behaviors in simulated network with respect to different IDS techniques. The monitoring agent is responsible for detection inference engine, the audit data is collected from collecting agent by simulating the node attack and contrasted outputs with normal behaviors of the framework, whenever. In the event that there is any deviation from the ordinary behaviors then the monitoring agent is considered this event as an attack , in this article we are going to demonstrate the  signature-based IDS approach in a MANET by implementing the back propagation algorithm over ensemble-based Traffic Table (TT), thus the signature of malicious behaviors or undesirable activities are often significantly prognosticated and efficiently figured out, by increasing the parametric set-up of Back propagation algorithm during the experimental results which empirically shown its effectiveness  for the ratio of detection index up to 98.6 percentage. Consequently it is proved in empirical results in this article, the performance matrices are also being included in this article with Xgraph screen show by different through puts like Packet Delivery Ratio (PDR), Through Put(TP), and Average Delay(AD).

Keywords: Intrusion Detection System (IDS), Mobile Adhoc Networks (MANET), Back Propagation Algorithm (BPA), Neural Networks (NN)

Procedia PDF Downloads 171
2347 Depyritization of US Coal Using Iron-Oxidizing Bacteria: Batch Stirred Reactor Study

Authors: Ashish Pathak, Dong-Jin Kim, Haragobinda Srichandan, Byoung-Gon Kim

Abstract:

Microbial depyritization of coal using chemoautotrophic bacteria is gaining acceptance as an efficient and eco-friendly technique. The process uses the metabolic activity of chemoautotrophic bacteria in removing sulfur and pyrite from the coal. The aim of the present study was to investigate the potential of Acidithiobacillus ferrooxidans in removing the pyritic sulfur and iron from high iron and sulfur containing US coal. The experiment was undertaken in 8 L bench scale stirred tank reactor having 1% (w/v) pulp density of coal. The reactor was operated at 35ºC and aerobic conditions were maintained by sparging the air into the reactor. It was found that at the end of bio-depyritization process, about 90% of pyrite and 67% of pyritic sulfur was removed from the coal. The results indicate that the bio-depyritization process is an efficient process in treating the high pyrite and sulfur containing coal.

Keywords: At.ferrooxidans, batch reactor, coal desulfurization, pyrite

Procedia PDF Downloads 254
2346 Evaluation of a Potential Metabolism-Mediated Drug-Drug Interaction between Carvedilol and Fluvoxamine in Rats

Authors: Ana-Maria Gheldiu, Bianca M. Abrudan, Maria A. Neag, Laurian Vlase, Dana M. Muntean

Abstract:

Background information: The objective of this study was to investigate the effect of multiple-dose fluvoxamine on the pharmacokinetic profile of single-dose carvedilol in rats, in order to evaluate this possible drug-drug pharmacokinetic interaction. Methods: A preclinical study, in 28 white male Wistar rats, was conducted. Each rat was cannulated on the femoral vein, prior to being connected to BASi Culex ABC®. Carvedilol was orally administrated in rats (3.57 mg/kg body mass (b.m.)) in the absence of fluvoxamine or after a pre-treatment with multiple oral doses of fluvoxamine (14.28 mg/kg b.m.). The plasma concentrations of carvedilol were estimated by high performance liquid chromatography-tandem mass spectrometry. The pharmacokinetic parameters of carvedilol were analyzed by non-compartmental method. Results: After carvediol co-administration with fluvoxamine, an approximately 2-fold increase in the exposure of carvedilol was observed, considering the significantly elevated value of the total area under the concentration versus time curve (AUC₀₋∞). Moreover, an increase by approximately 145% of the peak plasma concentration was found, as well as an augmentation by approximately 230% of the half life time of carvedilol was observed. Conclusion: Fluvoxamine co-administration led to a significant alteration of carvedilol’s pharmacokinetic profile in rats, these effects could be explained by the existence of a drug-drug interaction mediated by CYP2D6 inhibition. Acknowledgement: This work was supported by CNCS Romania – project PNII-RU-TE-2014-4-0242.

Keywords: carvedilol, fluvoxamine, drug-drug pharmacokinetic interaction, rats

Procedia PDF Downloads 257
2345 Lexical Semantic Analysis to Support Ontology Modeling of Maintenance Activities– Case Study of Offshore Riser Integrity

Authors: Vahid Ebrahimipour

Abstract:

Word representation and context meaning of text-based documents play an essential role in knowledge modeling. Business procedures written in natural language are meant to store technical and engineering information, management decision and operation experience during the production system life cycle. Context meaning representation is highly dependent upon word sense, lexical relativity, and sematic features of the argument. This paper proposes a method for lexical semantic analysis and context meaning representation of maintenance activity in a mass production system. Our approach constructs a straightforward lexical semantic approach to analyze facilitates semantic and syntactic features of context structure of maintenance report to facilitate translation, interpretation, and conversion of human-readable interpretation into computer-readable representation and understandable with less heterogeneity and ambiguity. The methodology will enable users to obtain a representation format that maximizes shareability and accessibility for multi-purpose usage. It provides a contextualized structure to obtain a generic context model that can be utilized during the system life cycle. At first, it employs a co-occurrence-based clustering framework to recognize a group of highly frequent contextual features that correspond to a maintenance report text. Then the keywords are identified for syntactic and semantic extraction analysis. The analysis exercises causality-driven logic of keywords’ senses to divulge the structural and meaning dependency relationships between the words in a context. The output is a word contextualized representation of maintenance activity accommodating computer-based representation and inference using OWL/RDF.

Keywords: lexical semantic analysis, metadata modeling, contextual meaning extraction, ontology modeling, knowledge representation

Procedia PDF Downloads 92
2344 Development of Adhesive from Prosopis african Seed Endosperm (OKPEYI)

Authors: Florence Chinyere Nwangwu, Rosemary Ene

Abstract:

An experimental study was carried out to develop an adhesive from Prosopis africana seed endosperm. The Prosopis seeds for this work were obtained from Enugu State in the South East part of Nigeria. The Prosopis seeds were prepared by separating the Prosopis endosperm from the seed coat and cotyledon. The dry adhesive gotten from the endosperm was later dissolved to get the adhesive solution. Confirmatory tests like viscosity, density, pH, and binding strength were carried out. The effect of time, temperature, concentration on the yield and properties of the adhesive were investigated. The results obtained showed that increase in concentration, time, temperature decreases the viscosity of the Prosopis adhesive and yield of Prosopis endosperm. It was also deduced that increase in viscosity increases the binding strength of the Prosopis adhesive. The percentage of the adhesive yield from Prosopis endosperm showed that the commercialization of the seed in Nigeria will be possible and profitable.

Keywords: adhesive, Prosopis, viscosity, endosperm

Procedia PDF Downloads 290
2343 Mineral Thermal Insulation Materials Based on Sodium Liquid Glass

Authors: Zin Min Htet, Tikhomirova Irina Nikolaevna, Karpenko Marina A.

Abstract:

In this paper, thermal insulation materials based on sodium liquid glass with light fillers as foam glass granules with different sizes and wollastonite - M325 (U.S.A production) were studied. Effective mineral thermal insulation materials are in demand in many industries because of their incombustibility and durability. A method for the preparation of such materials based on mechanically foamed sodium liquid glass and light mineral fillers is proposed. The thermal insulation properties depend on the type, amount of filler and on the foaming factor, which is determined by the concentration of the foaming agent. The water resistance of the material is provided by using an additive to neutralize the glass and transfer it to the silica gel.

Keywords: thermal insulation material, sodium liquid glass, foam glass granules, foaming agent, hardener, thermal conductivity, apparent density, compressive strength

Procedia PDF Downloads 171
2342 Automatic Identification and Classification of Contaminated Biodegradable Plastics using Machine Learning Algorithms and Hyperspectral Imaging Technology

Authors: Nutcha Taneepanichskul, Helen C. Hailes, Mark Miodownik

Abstract:

Plastic waste has emerged as a critical global environmental challenge, primarily driven by the prevalent use of conventional plastics derived from petrochemical refining and manufacturing processes in modern packaging. While these plastics serve vital functions, their persistence in the environment post-disposal poses significant threats to ecosystems. Addressing this issue necessitates approaches, one of which involves the development of biodegradable plastics designed to degrade under controlled conditions, such as industrial composting facilities. It is imperative to note that compostable plastics are engineered for degradation within specific environments and are not suited for uncontrolled settings, including natural landscapes and aquatic ecosystems. The full benefits of compostable packaging are realized when subjected to industrial composting, preventing environmental contamination and waste stream pollution. Therefore, effective sorting technologies are essential to enhance composting rates for these materials and diminish the risk of contaminating recycling streams. In this study, it leverage hyperspectral imaging technology (HSI) coupled with advanced machine learning algorithms to accurately identify various types of plastics, encompassing conventional variants like Polyethylene terephthalate (PET), Polypropylene (PP), Low density polyethylene (LDPE), High density polyethylene (HDPE) and biodegradable alternatives such as Polybutylene adipate terephthalate (PBAT), Polylactic acid (PLA), and Polyhydroxyalkanoates (PHA). The dataset is partitioned into three subsets: a training dataset comprising uncontaminated conventional and biodegradable plastics, a validation dataset encompassing contaminated plastics of both types, and a testing dataset featuring real-world packaging items in both pristine and contaminated states. Five distinct machine learning algorithms, namely Partial Least Squares Discriminant Analysis (PLS-DA), Support Vector Machine (SVM), Convolutional Neural Network (CNN), Logistic Regression, and Decision Tree Algorithm, were developed and evaluated for their classification performance. Remarkably, the Logistic Regression and CNN model exhibited the most promising outcomes, achieving a perfect accuracy rate of 100% for the training and validation datasets. Notably, the testing dataset yielded an accuracy exceeding 80%. The successful implementation of this sorting technology within recycling and composting facilities holds the potential to significantly elevate recycling and composting rates. As a result, the envisioned circular economy for plastics can be established, thereby offering a viable solution to mitigate plastic pollution.

Keywords: biodegradable plastics, sorting technology, hyperspectral imaging technology, machine learning algorithms

Procedia PDF Downloads 55
2341 Utilizing Computational Fluid Dynamics in the Analysis of Natural Ventilation in Buildings

Authors: A. W. J. Wong, I. H. Ibrahim

Abstract:

Increasing urbanisation has driven building designers to incorporate natural ventilation in the designs of sustainable buildings. This project utilises Computational Fluid Dynamics (CFD) to investigate the natural ventilation of an academic building, SIT@SP, using an assessment criterion based on daily mean temperature and mean velocity. The areas of interest are the pedestrian level of first and fourth levels of the building. A reference case recommended by the Architectural Institute of Japan was used to validate the simulation model. The validated simulation model was then used for coupled simulations on SIT@SP and neighbouring geometries, under two wind speeds. Both steady and transient simulations were used to identify differences in results. Steady and transient results are agreeable with the transient simulation identifying peak velocities during flow development. Under a lower wind speed, the first level was sufficiently ventilated while the fourth level was not. The first level has excessive wind velocities in the higher wind speed and the fourth level was adequately ventilated. Fourth level flow velocity was consistently lower than those of the first level. This is attributed to either simulation model error or poor building design. SIT@SP is concluded to have a sufficiently ventilated first level and insufficiently ventilated fourth level. Future works for this project extend to modifying the urban geometry, simulation model improvements, evaluation using other assessment metrics and extending the area of interest to the entire building.

Keywords: buildings, CFD Simulations, natural ventilation, urban airflow

Procedia PDF Downloads 204
2340 A Combinatorial Representation for the Invariant Measure of Diffusion Processes on Metric Graphs

Authors: Michele Aleandri, Matteo Colangeli, Davide Gabrielli

Abstract:

We study a generalization to a continuous setting of the classical Markov chain tree theorem. In particular, we consider an irreducible diffusion process on a metric graph. The unique invariant measure has an atomic component on the vertices and an absolutely continuous part on the edges. We show that the corresponding density at x can be represented by a normalized superposition of the weights associated to metric arborescences oriented toward the point x. A metric arborescence is a metric tree oriented towards its root. The weight of each oriented metric arborescence is obtained by the product of the exponential of integrals of the form ∫a/b², where b is the drift and σ² is the diffusion coefficient, along the oriented edges, for a weight for each node determined by the local orientation of the arborescence around the node and for the inverse of the diffusion coefficient at x. The metric arborescences are obtained by cutting the original metric graph along some edges.

Keywords: diffusion processes, metric graphs, invariant measure, reversibility

Procedia PDF Downloads 147
2339 Identification of Blood Biomarkers Unveiling Early Alzheimer's Disease Diagnosis Through Single-Cell RNA Sequencing Data and Autoencoders

Authors: Hediyeh Talebi, Shokoofeh Ghiam, Changiz Eslahchi

Abstract:

Traditionally, Alzheimer’s disease research has focused on genes with significant fold changes, potentially neglecting subtle but biologically important alterations. Our study introduces an integrative approach that highlights genes crucial to underlying biological processes, regardless of their fold change magnitude. Alzheimer's Single-cell RNA-seq data related to the peripheral blood mononuclear cells (PBMC) was extracted from the Gene Expression Omnibus (GEO). After quality control, normalization, scaling, batch effect correction, and clustering, differentially expressed genes (DEGs) were identified with adjusted p-values less than 0.05. These DEGs were categorized based on cell-type, resulting in four datasets, each corresponding to a distinct cell type. To distinguish between cells from healthy individuals and those with Alzheimer's, an adversarial autoencoder with a classifier was employed. This allowed for the separation of healthy and diseased samples. To identify the most influential genes in this classification, the weight matrices in the network, which includes the encoder and classifier components, were multiplied, and focused on the top 20 genes. The analysis revealed that while some of these genes exhibit a high fold change, others do not. These genes, which may be overlooked by previous methods due to their low fold change, were shown to be significant in our study. The findings highlight the critical role of genes with subtle alterations in diagnosing Alzheimer's disease, a facet frequently overlooked by conventional methods. These genes demonstrate remarkable discriminatory power, underscoring the need to integrate biological relevance with statistical measures in gene prioritization. This integrative approach enhances our understanding of the molecular mechanisms in Alzheimer’s disease and provides a promising direction for identifying potential therapeutic targets.

Keywords: alzheimer's disease, single-cell RNA-seq, neural networks, blood biomarkers

Procedia PDF Downloads 42
2338 Non-Singular Gravitational Collapse of a Dust Cloud in Einstein-Cartan Theory

Authors: Amir Hadi Ziaie, Mostafa Hashemi, Shahram Jalalzadeh

Abstract:

It is now known that the end state of the collapse process of a dense star under its own gravity is the formation of a spacetime singularity. This is the spacetime event where the energy density and spacetime curvature diverge, and the classical general relativity breaks down. As we know, a realistic star is composed of fermions so that their spin effects could alter the final fate of the collapse scenario. The underlying theory within which the inclusion of spin effects can be worked out is the Einstein-Cartan theory. In this theory, the spacetime torsion which is defined as a geometrical quantity, is related to an intrinsic angular momentum of fermions (spin). In this work, we study the collapse process of a homogeneous spin fluid in such a framework and show that taking into account the spin effects of the collapsing cloud could prevent the formation of spacetime singularity.

Keywords: gravitational collapse, einstein-cartan theory, spacetime singularity, black hole physics

Procedia PDF Downloads 380
2337 Improving Efficiencies of Planting Configurations on Draft Environment of Town Square: The Case Study of Taichung City Hall in Taichung, Taiwan

Authors: Yu-Wen Huang, Yi-Cheng Chiang

Abstract:

With urban development, lots of buildings are built around the city. The buildings always affect the urban wind environment. The accelerative situation of wind caused of buildings often makes pedestrians uncomfortable, even causes the accidents and dangers. Factors influencing pedestrian level wind including atmospheric boundary layer, wind direction, wind velocity, planting, building volume, geometric shape of the buildings and adjacent interference effects, etc. Planting has many functions including scraping and slowing urban heat island effect, creating a good visual landscape, increasing urban green area and improve pedestrian level wind. On the other hand, urban square is an important space element supporting the entrance to buildings, city landmarks, and activity collections, etc. The appropriateness of urban square environment usually dominates its success. This research focuses on the effect of tree-planting on the wind environment of urban square. This research studied the square belt of Taichung City Hall. Taichung City Hall is a cuboid building with a large mass opening. The square belt connects the front square, the central opening and the back square. There is often wind draft on the square belt. This phenomenon decreases the activities on the squares. This research applies tree-planting to improve the wind environment and evaluate the effects of two types of planting configuration. The Computational Fluid Dynamics (CFD) simulation analysis and extensive field measurements are applied to explore the improve efficiency of planting configuration on wind environment. This research compares efficiencies of different kinds of planting configuration, including the clustering array configuration and the dispersion, and evaluates the efficiencies by the SET*.

Keywords: micro-climate, wind environment, planting configuration, comfortableness, computational fluid dynamics (CFD)

Procedia PDF Downloads 281
2336 Modelling of Lunar Lander’s Thruster’s Exhaust Plume Impingement in Vacuum

Authors: Mrigank Sahai, R. Sri Raghu

Abstract:

This paper presents the modelling of rocket exhaust plume flow field and exhaust plume impingement in vacuum for the liquid apogee engine and attitude control thrusters of the lunar lander. Analytic formulations for rarefied gas kinetics has been taken as reference for modelling the plume flow field. The plume has been modelled as high speed, collision-less, axi-symmetric gas jet, expanding into vacuum and impinging at a normally set diffusive circular plate. Specular reflections have not been considered for the present study. Different parameters such as number density, temperature, pressure, flow velocity, heat flux etc., have been calculated and have been plotted against and compared to Direct Simulation Monte Carlo results. These analyses have provided important information for the placement of critical optical instruments and design of optimal thermal insulation for the hardware that may come in contact with the thruster exhaust.

Keywords: collision-less gas, lunar lander, plume impingement, rarefied exhaust plume

Procedia PDF Downloads 251
2335 Hot Deformation Behavior and Recrystallization of Inconel 718 Superalloy under Double Cone Compression

Authors: Wang Jianguo, Ding Xiao, Liu Dong, Wang Haiping, Yang Yanhui, Hu Yang

Abstract:

The hot deformation behavior of Inconel 718 alloy was studied by uniaxial compression tests under the deformation temperature of 940~1040℃ and strain rate of 0.001-10s⁻¹. The double cone compression (DCC) tests develop strains range from 30% to the 79% strain including all intermediate values of stains at different temperature (960~1040℃). DCC tests were simulated by finite element software which shown the strain and strain rates distribution. The result shows that the peak stress level of the alloy decreased with increasing deformation temperature and decreasing strain rate, which could be characterized by a Zener-Hollomon parameter in the hyperbolic-sine equation. The characterization method of hot processing window containing recrystallization volume fraction and average grain size was proposed for double cone compression test of uniform coarse grain, mixed crystal and uniform fine grain double conical specimen in hydraulic press and screw press. The results show that uniform microstructures can be obtained by low temperature with high deformation followed by high temperature with small deformation on the hydraulic press and low temperature, medium deformation, multi-pass on the screw press. The two methods were applied in industrial forgings process, and the forgings with uniform microstructure were obtained successfully.

Keywords: inconel 718 superalloy, hot processing windows, double cone compression, uniform microstructure

Procedia PDF Downloads 200
2334 A Statistical Model for the Dynamics of Single Cathode Spot in Vacuum Cylindrical Cathode

Authors: Po-Wen Chen, Jin-Yu Wu, Md. Manirul Ali, Yang Peng, Chen-Te Chang, Der-Jun Jan

Abstract:

Dynamics of cathode spot has become a major part of vacuum arc discharge with its high academic interest and wide application potential. In this article, using a three-dimensional statistical model, we simulate the distribution of the ignition probability of a new cathode spot occurring in different magnetic pressure on old cathode spot surface and at different arcing time. This model for the ignition probability of a new cathode spot was proposed in two typical situations, one by the pure isotropic random walk in the absence of an external magnetic field, other by the retrograde motion in external magnetic field, in parallel with the cathode surface. We mainly focus on developed relationship between the ignition probability density distribution of a new cathode spot and the external magnetic field.

Keywords: cathode spot, vacuum arc discharge, transverse magnetic field, random walk

Procedia PDF Downloads 414
2333 Tall Building Transit-Oriented Development (TB-TOD) and Energy Efficiency in Suburbia: Case Studies, Sydney, Toronto, and Washington D.C.

Authors: Narjes Abbasabadi

Abstract:

As the world continues to urbanize and suburbanize, where suburbanization associated with mass sprawl has been the dominant form of this expansion, sustainable development challenges will be more concerned. Sprawling, characterized by low density and automobile dependency, presents significant environmental issues regarding energy consumption and Co2 emissions. This paper examines the vertical expansion of suburbs integrated into mass transit nodes as a planning strategy for boosting density, intensification of land use, conversion of single family homes to multifamily dwellings or mixed use buildings and development of viable alternative transportation choices. It analyzes the spatial patterns of tall building transit-oriented development (TB-TOD) of suburban regions in Sydney (Australia), Toronto (Canada), and Washington D.C. (United States). The main objectives of this research seek to understand the effect of the new morphology of suburban tall, the physical dimensions of individual buildings and their arrangement at a larger scale with energy efficiency. This study aims to answer these questions: 1) why and how can the potential phenomenon of vertical expansion or high-rise development be integrated into suburb settings? 2) How can this phenomenon contribute to an overall denser development of suburbs? 3) Which spatial pattern or typologies/ sub-typologies of the TB-TOD model do have the greatest energy efficiency? It addresses these questions by focusing on 1) energy, heat energy demand (excluding cooling and lighting) related to design issues at two levels: macro, urban scale and micro, individual buildings—physical dimension, height, morphology, spatial pattern of tall buildings and their relationship with each other and transport infrastructure; 2) Examining TB-TOD to provide more evidence of how the model works regarding ridership. The findings of the research show that the TB-TOD model can be identified as the most appropriate spatial patterns of tall buildings in suburban settings. And among the TB-TOD typologies/ sub-typologies, compact tall building blocks can be the most energy efficient one. This model is associated with much lower energy demands in buildings at the neighborhood level as well as lower transport needs in an urban scale while detached suburban high rise or low rise suburban housing will have the lowest energy efficiency. The research methodology is based on quantitative study through applying the available literature and static data as well as mapping and visual documentations of urban regions such as Google Earth, Microsoft Bing Bird View and Streetview. It will examine each suburb within each city through the satellite imagery and explore the typologies/ sub-typologies which are morphologically distinct. The study quantifies heat energy efficiency of different spatial patterns through simulation via GIS software.

Keywords: energy efficiency, spatial pattern, suburb, tall building transit-oriented development (TB-TOD)

Procedia PDF Downloads 240
2332 Numerical Study of Pressure Losses of Turbulence Drilling Fluid Flow in the Oil Wellbore

Authors: Alireza Mehdizadeh, Ghanbarali Sheikhzadeh

Abstract:

In this paper the pressure loss of drilling fluid flow in the annulus is investigated. On this purpose the domains between two concentric and two eccentric cylinders are considered as computational domains. In this research foam is used as drilling fluid. Firstly simulation results for laminar flow and non Newtonian fluid and different density like 100, 200, 300 kg/m3 and different inner cylinder rotational velocity like 100, 200, 300 RPM is presented. These results are compared and matched with references results. The power law and Herschel Bulkly methods are used for non Newtonian fluid modeling. After that computations are repeated with turbulence flow considering. K- Model is used for turbulence modeling. Results show that in laminar flow Herschel bulkly model has best result in comparison with power law model. And pressure loss in turbulence flow is higher than laminar flow.

Keywords: simulation, concentric cylinders, drilling, non Newtonian

Procedia PDF Downloads 540
2331 Seismic Performance of Benchmark Building Installed with Semi-Active Dampers

Authors: B. R. Raut

Abstract:

The seismic performance of 20-storey benchmark building with semi-active dampers is investigated under various earthquake ground motions. The Semi-Active Variable Friction Dampers (SAVFD) and Magnetorheological Dampers (MR) are used in this study. A recently proposed predictive control algorithm is employed for SAVFD and a simple mechanical model based on a Bouc–Wen element with clipped optimal control algorithm is employed for MR damper. A parametric study is carried out to ascertain the optimum parameters of the semi-active controllers, which yields the minimum performance indices of controlled benchmark building. The effectiveness of dampers is studied in terms of the reduction in structural responses and performance criteria. To minimize the cost of the dampers, the optimal location of the damper, rather than providing the dampers at all floors, is also investigated. The semi-active dampers installed in benchmark building effectively reduces the earthquake-induced responses. Lesser number of dampers at appropriate locations also provides comparable response of benchmark building, thereby reducing cost of dampers significantly. The effectiveness of two semi-active devices in mitigating seismic responses is cross compared. Among two semi-active devices majority of the performance criteria of MR dampers are lower than SAVFD installed with benchmark building. Thus the performance of the MR dampers is far better than SAVFD in reducing displacement, drift, acceleration and base shear of mid to high-rise building against seismic forces.

Keywords: benchmark building, control strategy, input excitation, MR dampers, peak response, semi-active variable friction dampers

Procedia PDF Downloads 266