Search results for: the creative learning process
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21211

Search results for: the creative learning process

18421 Assessment on Communication Students’ Internship Performances from the Employers’ Perspective

Authors: Yesuselvi Manickam, Tan Soon Chin

Abstract:

Internship is a supervised and structured learning experience related to one’s field of study or career goal. Internship allows students to obtain work experience and the opportunity to apply skills learned during university. Internship is a valuable learning experience for students; however, literature on employer assessment is scarce on Malaysian student’s internship experience. This study focuses on employer’s perspective on student’s performances during their three months of internship. The results are based on the descriptive analysis of 45 sets of question gathered from the on-site supervisors of the interns. The survey of 45 on-site supervisor’s feedback was collected through postal mail. It was found that, interns have not met their on-site supervisor’s expectations in many areas. The significance of this study is employer’s assessment on the internship shall be used as feedback to improve on ways how to prepare students for their internship and employments in future.

Keywords: employers perspective, internship, structured learning, student’s performances

Procedia PDF Downloads 298
18420 Using Podcasts as an Educational Medium to Deliver Education to Pre-Registered Mental Health Nursing Students

Authors: Jane Killough

Abstract:

A podcast series was developed to support learning amongst first-year undergraduate mental health nursing students. Many first-year students do not have any clinical experience and find it difficult to engage with theory, which can present as cumbersome. Further, it can be challenging to relate abstract concepts to everyday mental health practice. Mental health professionals and service users from practice were interviewed on a range of core topics that are key to year one learning. The podcasts were made available, and students could access these recordings at their convenience to fit in with busy daily routines. The aim was to enable meaningful learning by providing access to those who have lived experience and who can, in effect, bring to life the theory being taught in university and essentially bridge the theory and practice gap while fostering working relationships between practice and academics. The student experience will be evaluated using a logic model.

Keywords: education, mental health nursing students, podcast, practice, undergraduate

Procedia PDF Downloads 156
18419 Communication Anxiety in Nigerian Students Studying English as a Foreign Language: Evidence from Colleges of Education Sector

Authors: Yasàlu Haruna

Abstract:

In every transaction, the use of language is central regardless of form or complexity if any meaning is expected to be harvested therefrom. Students constituting a population group in the learning landscape of Nigeria occupy a central position with a propensity to excel or otherwise in the context of communication, especially in the learning process and social interaction. The nature or quantum of anxiety or confidence in speaking a second language is not only peculiar to societies where the second language is not an official language but to a degree, the linguistic gap created by adoption and adaptation syndrome manifests in created anxiety or lack of confidence especially where mastery of a spoken language becomes a major challenge. This paper explores the manner in which linguistic complexity and cultural barriers combine to widen the adaptation and adoption gap. In much the same way, typical issues of pronouncement, intonation and accent difficulties are vital variables that explain the root cause of anxiety. Using a combination of primary and secondary sources of data expressed in questionnaires, key informant interviews and other available data, the paper concludes that the non-integration of anxiety possibility into the education delivery framework has left a lot to be needed in cultivating second language speakers among students of Nigerian Colleges of Education. In addition, cultural barriers and the absence of integration interfaces in the course of learning within and outside the classroom contribute to further widening the gap. Again, colleagues/mates/conversation partners' mastery of a second language remains a contributory factor largely due to the quality of the preparatory school system in many parts of the country. The paper recommends that national policies and frameworks must be reviewed to consider integration windows where culture and conversation partner deficiencies can be remedied through educational events such as debates, quizzes and symposia; improvements can be attained while commercial advertisements are tailored towards seeking for adoption of second language in commerce and major cultural activities.

Keywords: cultural barriers, integration, college of education and adaptation, second language

Procedia PDF Downloads 96
18418 A Framework for Teaching Distributed Requirements Engineering in Latin American Universities

Authors: G. Sevilla, S. Zapata, F. Giraldo, E. Torres, C. Collazos

Abstract:

This work describes a framework for teaching of global software engineering (GSE) in university undergraduate programs. This framework proposes a method of teaching that incorporates adequate techniques of software requirements elicitation and validated tools of communication, critical aspects to global software development scenarios. The use of proposed framework allows teachers to simulate small software development companies formed by Latin American students, which build information systems. Students from three Latin American universities played the roles of engineers by applying an iterative development of a requirements specification in a global software project. The proposed framework involves the use of a specific purpose Wiki for asynchronous communication between the participants of the process. It is also a practice to improve the quality of software requirements that are formulated by the students. The additional motivation of students to participate in these practices, in conjunction with peers from other countries, is a significant additional factor that positively contributes to the learning process. The framework promotes skills for communication, negotiation, and other complementary competencies that are useful for working on GSE scenarios.

Keywords: requirements analysis, distributed requirements engineering, practical experiences, collaborative support

Procedia PDF Downloads 207
18417 Teachers’ Continuance Intention Towards Using Madrasati Platform: A Conceptual Framework

Authors: Fiasal Assiri, Joanna Wincenciak, David Morrison-Love

Abstract:

With the rapid spread of the COVID-19 pandemic, the Saudi government suspended students from going to school to combat the outbreak. As e-learning was not applied at all in schools, online teaching and learning have been revived in Saudi Arabia by providing a new platform called ‘Madrasati.’ Several studies have used the Decomposed Theory of Planned Behaviour (DTPB)to examineindividuals’ intention behavior in many fields. However, there is a lack of studies investigating the determinants of teachers’ continued intention touseMadrasati platform. The purpose of this paper is to present a conceptual model in light of DTPB. To enhance the predictability of the model, the study incorporates other variables, including learning content quality and interactivity as sub-factors under the perceived usefulness, students and government influences under the subjective norms, and technical support and prior e-learning experience under the perceived behavioral control. The model will be further validated using a mixed methods approach. Such findings would help administrators and stakeholders to understand teachers’ needs and develop new methods that might encourage teachers to continue using Madrasati effectively in their teaching.

Keywords: madrasati, decomposed theory of planned behaviour, continuance intention, attitude, subjective norms, perceived behavioural control

Procedia PDF Downloads 110
18416 Predicting the Frequencies of Tropical Cyclone-Induced Rainfall Events in the US Using a Machine-Learning Model

Authors: Elham Sharifineyestani, Mohammad Farshchin

Abstract:

Tropical cyclones are one of the most expensive and deadliest natural disasters. They cause heavy rainfall and serious flash flooding that result in billions of dollars of damage and considerable mortality each year in the United States. Prediction of the frequency of tropical cyclone-induced rainfall events can be helpful in emergency planning and flood risk management. In this study, we have developed a machine-learning model to predict the exceedance frequencies of tropical cyclone-induced rainfall events in the United States. Model results show a satisfactory agreement with available observations. To examine the effectiveness of our approach, we also have compared the result of our predictions with the exceedance frequencies predicted using a physics-based rainfall model by Feldmann.

Keywords: flash flooding, tropical cyclones, frequencies, machine learning, risk management

Procedia PDF Downloads 251
18415 The Effects of Transformational Leadership on Process Innovation through Knowledge Sharing

Authors: Sawsan J. Al-Husseini, Talib A. Dosa

Abstract:

Transformational leadership has been identified as the most important factor affecting innovation and knowledge sharing; it leads to increased goal-directed behavior exhibited by followers and thus to enhanced performance and innovation for the organization. However, there is a lack of models linking transformational leadership, knowledge sharing, and process innovation within higher education (HE) institutions in general within developing countries, particularly in Iraq. This research aims to examine the mediating role of knowledge sharing in the transformational leadership and process innovation relationship. A quantitative approach was taken and 254 usable questionnaires were collected from public HE institutions in Iraq. Structural equation modelling with AMOS 22 was used to analyze the causal relationships among factors. The research found that knowledge sharing plays a pivotal role in the relationship between transformational leadership and process innovation, and that transformational leadership would be ideal in an educational context, promoting knowledge sharing activities and influencing process innovation in the public HE in Iraq. The research has developed some guidelines for researchers as well as leaders and provided evidence to support the use of TL to increase process innovation within HE environment in developing countries, particularly in Iraq.

Keywords: transformational leadership, knowledge sharing, process innovation, structural equation modelling, developing countries

Procedia PDF Downloads 341
18414 Using a Card Game as a Tool for Developing a Design

Authors: Matthias Haenisch, Katharina Hermann, Marc Godau, Verena Weidner

Abstract:

Over the past two decades, international music education has been characterized by a growing interest in informal learning for formal contexts and a "compositional turn" that has moved from closed to open forms of composing. This change occurs under social and technological conditions that permeate 21st-century musical practices. This forms the background of Musical Communities in the (Post)Digital Age (MusCoDA), a four-year joint research project of the University of Erfurt (UE) and the University of Education Karlsruhe (PHK), funded by the German Federal Ministry of Education and Research (BMBF). Both explore songwriting processes as an example of collective creativity in (post)digital communities, one in formal and the other in informal learning contexts. Collective songwriting will be studied from a network perspective, that will allow us to view boundaries between both online and offline as well as formal and informal or hybrid contexts as permeable and to reconstruct musical learning practices. By comparing these songwriting processes, possibilities for a pedagogical-didactic interweaving of different educational worlds are highlighted. Therefore, the subproject of the University of Erfurt investigates school music lessons with the help of interviews, videography, and network maps by analyzing new digital pedagogical and didactic possibilities. In the first step, the international literature on songwriting in the music classroom was examined for design development. The analysis focused on the question of which methods and practices are circulating in the current literature. Results from this stage of the project form the basis for the first instructional design that will help teachers in planning regular music classes and subsequently reconstruct musical learning practices under these conditions. In analyzing the literature, we noticed certain structural methods and concepts that recur, such as the Building Blocks method and the pre-structuring of the songwriting process. From these findings, we developed a deck of cards that both captures the current state of research and serves as a method for design development. With this deck of cards, both teachers and students themselves can plan their individual songwriting lessons by independently selecting and arranging topic, structure, and action cards. In terms of science communication, music educators' interactions with the card game provide us with essential insights for developing the first design. The overall goal of MusCoDA is to develop an empirical model of collective musical creativity and learning and an instructional design for teaching music in the postdigital age.

Keywords: card game, collective songwriting, community of practice, network, postdigital

Procedia PDF Downloads 67
18413 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method

Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang

Abstract:

Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.

Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series

Procedia PDF Downloads 279
18412 Enhancing Students’ Achievement, Interest and Retention in Chemistry through an Integrated Teaching/Learning Approach

Authors: K. V. F. Fatokun, P. A. Eniayeju

Abstract:

This study concerns the effects of concept mapping-guided discovery integrated teaching approach on the learning style and achievement of chemistry students. The sample comprised 162 senior secondary school (SS 2) students drawn from two science schools in Nasarawa State which have equivalent mean scores of 9.68 and 9.49 in their pre-test. Five instruments were developed and validated while the sixth was purely adopted by the investigator for the study, Four null hypotheses were tested at α = 0.05 level of significance. Chi square analysis showed that there is a significant shift in students’ learning style from accommodating and diverging to converging and assimilating when exposed to concept mapping- guided discovery approach. Also t-test and ANOVA that those in experimental group achieve and retain content learnt better. Results of the Scheffe’s test for multiple comparisons showed that boys in the experimental group performed better than girls. It is therefore concluded that the concept mapping-guided discovery integrated approach should be used in secondary schools to successfully teach electrochemistry. It is strongly recommended that chemistry teachers should be encouraged to adopt this method for teaching difficult concepts.

Keywords: integrated teaching approach, concept mapping-guided discovery, achievement, retention, learning styles and interest

Procedia PDF Downloads 331
18411 Understanding English Language in Career Development of Academics in Non-English Speaking HEIs: A Systematic Literature Review

Authors: Ricardo Pinto Mario Covele, Patricio V. Langa, Patrick Swanzy

Abstract:

The English language has been recognized as a universal medium of instruction in academia, especially in Higher Education Institutions (HEIs) hence exerting enormous influence within the context of research and publication. By extension, the English Language has been embraced by scholars from non-English speaking countries. The purpose of this review was to synthesize the discussions using four databases. Discussion in the English language in the career development of academics, particularly in non-English speaking universities, is largely less visible. This paper seeks to fill this gap and to improve the visibility of the English language in the career development of academics focusing on non-English language speaking universities by undertaking a systematic literature review. More specifically, the paper addresses the language policy, English language learning model as a second language, sociolinguistic field and career development, methods, as well as its main findings. This review analyzed 75 relevant resources sourced from Western Cape’s Library, Scopus, Google scholar, and web of science databases from November 2020 to July 2021 using the PQRS framework as an analytical lens. The paper’s findings demonstrate that, while higher education continues to be under-challenges of English language usage, literature targeting non-English speaking universities remains less discussed than it is often described. The findings also demonstrate the dominance of English language policy, both for knowledge production and dissemination of literature challenging emerging scholars from non-English speaking HEIs. Hence, the paper argues for the need to reconsider the context of non-English language speakers in the English language in the career development of academics’ research, both as empirical fields and as emerging knowledge producers. More importantly, the study reveals two bodies of literature: (1) the instrumentalist approach to English Language learning and (2) Intercultural approach to the English Language for career opportunities, classified as the appropriate to explain the English language learning process and how is it perceived towards scholars’ academic careers in HEIs.

Keywords: English language, public and private universities, language policy, career development, non-English speaking countries

Procedia PDF Downloads 161
18410 Metal Ship and Robotic Car: A Hands-On Activity to Develop Scientific and Engineering Skills for High School Students

Authors: Jutharat Sunprasert, Ekapong Hirunsirisawat, Narongrit Waraporn, Somporn Peansukmanee

Abstract:

Metal Ship and Robotic Car is one of the hands-on activities in the course, the Fundamental of Engineering that can be divided into three parts. The first part, the metal ships, was made by using engineering drawings, physics and mathematics knowledge. The second part is where the students learned how to construct a robotic car and control it using computer programming. In the last part, the students had to combine the workings of these two objects in the final testing. This aim of study was to investigate the effectiveness of hands-on activity by integrating Science, Technology, Engineering and Mathematics (STEM) concepts to develop scientific and engineering skills. The results showed that the majority of students felt this hands-on activity lead to an increased confidence level in the integration of STEM. Moreover, 48% of all students engaged well with the STEM concepts. Students could obtain the knowledge of STEM through hands-on activities with the topics science and mathematics, engineering drawing, engineering workshop and computer programming; most students agree and strongly agree with this learning process. This indicated that the hands-on activity: “Metal Ship and Robotic Car” is a useful tool to integrate each aspect of STEM. Furthermore, hands-on activities positively influence a student’s interest which leads to increased learning achievement and also in developing scientific and engineering skills.

Keywords: hands-on activity, STEM education, computer programming, metal work

Procedia PDF Downloads 469
18409 The Role of Artificial Intelligence Algorithms in Psychiatry: Advancing Diagnosis and Treatment

Authors: Netanel Stern

Abstract:

Artificial intelligence (AI) algorithms have emerged as powerful tools in the field of psychiatry, offering new possibilities for enhancing diagnosis and treatment outcomes. This article explores the utilization of AI algorithms in psychiatry, highlighting their potential to revolutionize patient care. Various AI algorithms, including machine learning, natural language processing (NLP), reinforcement learning, clustering, and Bayesian networks, are discussed in detail. Moreover, ethical considerations and future directions for research and implementation are addressed.

Keywords: AI, software engineering, psychiatry, neuroimaging

Procedia PDF Downloads 120
18408 Detection of Keypoint in Press-Fit Curve Based on Convolutional Neural Network

Authors: Shoujia Fang, Guoqing Ding, Xin Chen

Abstract:

The quality of press-fit assembly is closely related to reliability and safety of product. The paper proposed a keypoint detection method based on convolutional neural network to improve the accuracy of keypoint detection in press-fit curve. It would provide an auxiliary basis for judging quality of press-fit assembly. The press-fit curve is a curve of press-fit force and displacement. Both force data and distance data are time-series data. Therefore, one-dimensional convolutional neural network is used to process the press-fit curve. After the obtained press-fit data is filtered, the multi-layer one-dimensional convolutional neural network is used to perform the automatic learning of press-fit curve features, and then sent to the multi-layer perceptron to finally output keypoint of the curve. We used the data of press-fit assembly equipment in the actual production process to train CNN model, and we used different data from the same equipment to evaluate the performance of detection. Compared with the existing research result, the performance of detection was significantly improved. This method can provide a reliable basis for the judgment of press-fit quality.

Keywords: keypoint detection, curve feature, convolutional neural network, press-fit assembly

Procedia PDF Downloads 236
18407 Using Machine Learning to Classify Human Fetal Health and Analyze Feature Importance

Authors: Yash Bingi, Yiqiao Yin

Abstract:

Reduction of child mortality is an ongoing struggle and a commonly used factor in determining progress in the medical field. The under-5 mortality number is around 5 million around the world, with many of the deaths being preventable. In light of this issue, Cardiotocograms (CTGs) have emerged as a leading tool to determine fetal health. By using ultrasound pulses and reading the responses, CTGs help healthcare professionals assess the overall health of the fetus to determine the risk of child mortality. However, interpreting the results of the CTGs is time-consuming and inefficient, especially in underdeveloped areas where an expert obstetrician is hard to come by. Using a support vector machine (SVM) and oversampling, this paper proposed a model that classifies fetal health with an accuracy of 99.59%. To further explain the CTG measurements, an algorithm based on Randomized Input Sampling for Explanation ((RISE) of Black-box Models was created, called Feature Alteration for explanation of Black Box Models (FAB), and compared the findings to Shapley Additive Explanations (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). This allows doctors and medical professionals to classify fetal health with high accuracy and determine which features were most influential in the process.

Keywords: machine learning, fetal health, gradient boosting, support vector machine, Shapley values, local interpretable model agnostic explanations

Procedia PDF Downloads 146
18406 Investigating Ways in Which Incorporating Green Areas in Designing Classrooms and Play Areas Fosters Children Cognitive Development, Learning, and Creativity

Authors: Seyedomid Fatemi

Abstract:

The indoor and outdoor climate of an architectural or closed space determines opportunities that children have for different types of learning. Bringing green areas into the classroom might give freedom to teachers to incorporate learning activities that activate different senses such as sight or touch. Green spaces and design in the classroom can help children practice different concepts they learn in subjects such as science. The practical aspect of having green areas or designs in the classroom can also facilitate high-level and long-lasting learning. Green spaces, particularly in the play areas or around schools, improve creativity and give experimental opportunities for children and enjoyment the beautiful and green nature, which impacts cognitive development in the in long-term. Furthermore, previous studies indicated that green settings generally may help attention concentration and self-discipline. Bringing green areas into classrooms or outdoors for children can look different depending on resources. It could look like green spaces, indoor or outdoor, or have representation or samples of green space. From the design perspective, bringing green areas into school might mean incorporating these spaces when designing different areas in school or attending to colors and shapes to reflect green spaces.

Keywords: green areas, cognitive development, children cognitive, class design

Procedia PDF Downloads 19
18405 Information Technology Outsourcing and Knowledge Transfer: Achieving Strategic Alignment through Organizational Learning

Authors: M. Kolotylo, H. Zheng, R. Parente, R. Dahiya

Abstract:

Large number of organizations, frequently motivated by budget and cost cuts, outsource their Information Technology (IT) positions every year. Although the objective of reduction in financial obligations is often not accomplished, many buyer companies still manage to benefit from outsourcing projects. Knowledge Transfer (KT), being one of the major processes that take place during IT outsourcing partnership, may exert a strong impact on the performance of the parties involved, particularly that of the buyer. Research, however, lacks strong conceptual basis for the possible benefits that KT from supplier may bring to the buyer; and for the mechanisms that may be adopted by the buyer to maximize such benefit. This paper aims to fill this gap by proposing a conceptual framework of organizational learning and development of dynamic capabilities enabled by KT from the supplier to the buyer. The study examines buyer-supplier relationships in the context of IT outsourcing transactions, and theorizes how KT from the supplier to the buyer helps the performance of the buyer. It warrants that more research is carried out in order to explicate and provide evidence regarding the role that KT plays in strategic improvements for the buyer. The paper proposes to take up a two-fold approach to the research: conceptual development that utilizes logical argumentation and interpretive historical research, as well as a qualitative case study which aims to capture and understand the complex processes involved. Thus, the study provides a comprehensive visualization of the dynamics of the conditions under which participation in IT outsourcing partnership might be of benefit to the buyer company. The framework demonstrates the mechanisms involved in buyer’s achievement of strategic alignment through organizational learning enabled by KT from the supplier. It highlights that organizational learning involves a balance between exploitation of assets and exploration of new possibilities, and further notes that the dynamic capabilities mediate the effect of organizational learning on firm performance. The paper explicates in what ways managers can leverage outsourcing projects to execute strategy, which would enable their organization achieve better performance. The study concludes that organizational learning enables the firm to develop IT capabilities of strategic planning, IT integration, and IT relationships in the outsourcing context, and that IT capabilities developed through the organizational learning would help the firm in achieving strategic alignment.

Keywords: dynamic capabilities, it outsourcing, knowledge transfer, organizational learning, strategic alignment

Procedia PDF Downloads 445
18404 K-12 Students’ Digital Life: Activities and Attitudes

Authors: Meital Amzalag, Sharon Hardof-Jaffe

Abstract:

In the last few decades, children and youth have been immersed in digital technologies. Indeed, recent studies explored the implication of technology use in their leisure and learning activities. Educators face an essential need to utilize technology and implement them into the curriculum. To do that, educators need to understand how young people use digital technology. This study aims to explore K12 students' digital lives from their point of view, to reveal their digital activities, age and gender differences with respect to digital activities, and to present the students' attitudes towards technologies in learning. The study approach is quantitative and includes354 students ages 6-16 from three schools in Israel. The online questionnaire was based on self-reports and consists of four parts: Digital activities: leisure time activities (such as social networks, gaming types), search activities (information types and platforms), and digital application use (e.g., calendar, notes); Digital skills (requisite digital platform skills such as evaluation and creativity); Social and emotional aspects of digital use (conducting digital activities alone and with friends, feelings, and emotions during digital use such as happiness, bullying); Digital attitudes towards digital integration in learning. An academic ethics board approved the study. The main findings reveal the most popular K12digital activities: Navigating social network sites, watching TV, playing mobile games, seeking information on the internet, and playing computer games. In addition, the findings reveal age differences in digital activities, such as significant differences in the use of social network sites. Moreover, the finding raises gender differences as girls use more social network sites and boys use more digital games, which are characterized by high complexity and challenges. Additionally, we found positive attitudes towards technology integration in school. Students perceive technology as enhancing creativity, promoting active learning, encouraging self-learning, and helping students with learning difficulties. The presentation will provide an up-to-date, accurate picture of the use of various digital technologies by k12 students. In addition, it will discuss the learning potentials of such use and how to implement digital technologies in the curriculum. Acknowledgments: This study is a part of a broader study about K-12 digital life in Israel and is supported by Mofet-the Israel Institute for Teachers'Development.

Keywords: technology and learning, K-12, digital life, gender differences

Procedia PDF Downloads 139
18403 A Clustering Algorithm for Massive Texts

Authors: Ming Liu, Chong Wu, Bingquan Liu, Lei Chen

Abstract:

Internet users have to face the massive amount of textual data every day. Organizing texts into categories can help users dig the useful information from large-scale text collection. Clustering, in fact, is one of the most promising tools for categorizing texts due to its unsupervised characteristic. Unfortunately, most of traditional clustering algorithms lose their high qualities on large-scale text collection. This situation mainly attributes to the high- dimensional vectors generated from texts. To effectively and efficiently cluster large-scale text collection, this paper proposes a vector reconstruction based clustering algorithm. Only the features that can represent the cluster are preserved in cluster’s representative vector. This algorithm alternately repeats two sub-processes until it converges. One process is partial tuning sub-process, where feature’s weight is fine-tuned by iterative process. To accelerate clustering velocity, an intersection based similarity measurement and its corresponding neuron adjustment function are proposed and implemented in this sub-process. The other process is overall tuning sub-process, where the features are reallocated among different clusters. In this sub-process, the features useless to represent the cluster are removed from cluster’s representative vector. Experimental results on the three text collections (including two small-scale and one large-scale text collections) demonstrate that our algorithm obtains high quality on both small-scale and large-scale text collections.

Keywords: vector reconstruction, large-scale text clustering, partial tuning sub-process, overall tuning sub-process

Procedia PDF Downloads 439
18402 SAP-Reduce: Staleness-Aware P-Reduce with Weight Generator

Authors: Lizhi Ma, Chengcheng Hu, Fuxian Wong

Abstract:

Partial reduce (P-Reduce) has set a state-of-the-art performance on distributed machine learning in the heterogeneous environment over the All-Reduce architecture. The dynamic P-Reduce based on the exponential moving average (EMA) approach predicts all the intermediate model parameters, which raises unreliability. It is noticed that the approximation trick leads the wrong way to obtaining model parameters in all the nodes. In this paper, SAP-Reduce is proposed, which is a variant of the All-Reduce distributed training model with staleness-aware dynamic P-Reduce. SAP-Reduce directly utilizes the EMA-like algorithm to generate the normalized weights. To demonstrate the effectiveness of the algorithm, the experiments are set based on a number of deep learning models, comparing the single-step training acceleration ratio and convergence time. It is found that SAP-Reduce simplifying dynamic P-Reduce outperforms the intermediate approximation one. The empirical results show SAP-Reduce is 1.3× −2.1× faster than existing baselines.

Keywords: collective communication, decentralized distributed training, machine learning, P-Reduce

Procedia PDF Downloads 36
18401 Strategies for Enhancing Academic Honesty as an Ethical Concern in Electronic Learning (E-learning) among University Students: A Philosophical Perspective

Authors: Ekeh Greg

Abstract:

Learning has been part of human existence from time immemorial. The aim of every learning is to know the truth. In education, it is desirable that true knowledge is imparted and imbibed. For this to be achieved, there is need for honesty, in this context, academic honesty among students, especially in e-learning. This is an ethical issue since honesty bothers on human conduct. However, research findings have shown that academic honesty has remained a big challenge to online learners, especially among the university students. This is worrisome since the university education is the final education system and a gateway to life in the wider society after schooling. If they are practicing honesty in their academic life, it is likely that they will practice honesty in the in the society, thereby bringing positive contributions to the society wherever they find themselves. With this in mind, the significance of this study becomes obvious. On grounds of this significance, this paper focuses on strategies that are adjudged certain to enhance the practice of honesty in e-learning so as to enable learners to be well equipped to contribute to the society through honest ways. The aim of the paper is to contribute to the efforts of instilling the consciousness and practice of honesty in the minds and hearts of learners. This will, in turn, promote effective teaching and learning, academic high standard, competence and self-confidence in university education. Philosophical methods of conceptual analysis, clarification, description and prescription are adopted for the study. Philosophical perspective is chosen so as to ground the paper on the basis of rationality rather than emotional sentiments and biases emanating from cultural, religious and ethnic differences and orientations. Such sentiments and biases can becloud objective reasoning and sound judgment. A review of related literature is also carried out. The findings show that academic honesty in e-learning is a cherished value, but it is bedeviled by some challenges, such as care-free attitude on the part of students and absence of monitoring. The findings also show that despite the challenges facing academic honesty, strategies such as self-discipline, determination, hard work, imbibing ethical and philosophical principles, among others, can certainly enhance the practice of honesty in e-learning among university students. The paper, therefore, concludes that these constitute strategies for enhancing academic honesty among students. Consequently, it is suggested that instructors, school counsellors and other stakeholders should endeavour to see that students are helped to imbibe these strategies and put them into practice. Students themselves are enjoined to cherish honesty in their academic pursuit and avoid short-cuts. Short-cuts can only lead to mediocrity and incompetence on the part of the learners, which may have long adverse consequences, both on themselves and others.

Keywords: academic, ethical, philosophical, strategies

Procedia PDF Downloads 84
18400 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling

Procedia PDF Downloads 24
18399 Promoting Students' Worldview Through Integrative Education in the Process of Teaching Biology in Grades 11 and 12 of High School

Authors: Saule Shazhanbayeva, Denise van der Merwe

Abstract:

Study hypothesis: Nazarbayev Intellectual School of Kyzylorda’s Biology teachers can use STEM-integrated learning to improve students' problem-solving ability and responsibility as global citizens. The significance of this study is to indicate how the use of STEM integrative learning during Biology lessons could contribute to forming globally-minded students who are responsible community members. For the purposes of this study, worldview is defined as a view that is broader than the country of Kazakhstan, allowing students to see the significance of their scientific contributions to the world as global citizens. The context of worldview specifically indicates that most students have never traveled outside of their city or region within Kazakhstan. In order to broaden student understanding, it is imperative that students are exposed to different world views and contrasting ideas within the educational setting of Biology as the science being used for the research. This exposure promulgates students understanding of the significance they have as global citizens alongside the obligations which would rest on them as scientifically minded global citizens. Integrative learning should be Biological Science - with Technology and engineering in the form of problem-solving, and Mathematics to allow improved problem-solving skills to develop within the students of Nazarbayev Intellectual School (NIS) of Kyzylorda. The school's vision is to allow students to realise their role as global citizens and become responsible community members. STEM allows integrations by combining four subject skills to solve topical problems designed by educators. The methods used are based on qualitative analysis: for students’ performance during a problem-solution scenario; and Biology teacher interviews to ascertain their understanding of STEM implementation and willingness to integrate it into current lessons. The research indicated that NIS is ready for a shift into STEM lessons to promote globally responsible students. The only additional need is for proper STEM integrative lesson method training for teachers.

Keywords: global citizen, STEM, Biology, high-school

Procedia PDF Downloads 74
18398 Integration of Big Data to Predict Transportation for Smart Cities

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

The Intelligent transportation system is essential to build smarter cities. Machine learning based transportation prediction could be highly promising approach by delivering invisible aspect visible. In this context, this research aims to make a prototype model that predicts transportation network by using big data and machine learning technology. In detail, among urban transportation systems this research chooses bus system.  The research problem that existing headway model cannot response dynamic transportation conditions. Thus, bus delay problem is often occurred. To overcome this problem, a prediction model is presented to fine patterns of bus delay by using a machine learning implementing the following data sets; traffics, weathers, and bus statues. This research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data are gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is designed by the machine learning tool (RapidMiner Studio) and conducted tests for bus delays prediction. This research presents experiments to increase prediction accuracy for bus headway by analyzing the urban big data. The big data analysis is important to predict the future and to find correlations by processing huge amount of data. Therefore, based on the analysis method, this research represents an effective use of the machine learning and urban big data to understand urban dynamics.

Keywords: big data, machine learning, smart city, social cost, transportation network

Procedia PDF Downloads 264
18397 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water

Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta

Abstract:

The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.

Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute

Procedia PDF Downloads 121
18396 Innovative Techniques of Teaching Henrik Ibsen’s a Doll’s House

Authors: Shilpagauri Prasad Ganpule

Abstract:

The teaching of drama is considered as the most significant and noteworthy area in an ESL classroom. Diverse innovative techniques can be used to make the teaching of drama worthwhile and interesting. The paper presents the different innovative techniques that can be used while teaching Henrik Ibsen’s A Doll’s House [2007]. The innovative techniques facilitate students’ understanding and comprehension of the text. The use of the innovative techniques makes them explore the dramatic text and uncover a multihued arena of meanings hidden in it. They arouse the students’ interest and assist them overcome the difficulties created by the second language. The diverse innovative techniques appeal to the imagination of the students and increase their participation in the classroom. They help the students in the appreciation of the dramatic text and make the teaching learning situation a fruitful experience for both the teacher and students. The students successfully overcome the problem of L2 comprehension and grasp the theme, story line and plot-structure of the play effectively. The innovative techniques encourage a strong sense of participation on the part of the students and persuade them to learn through active participation. In brief, the innovative techniques promote the students to perform various tasks and expedite their learning process. Thus the present paper makes an attempt to present varied innovative techniques that can be used while teaching drama. It strives to demonstrate how the use of innovative techniques improve and enhance the students’ understanding and appreciation of Ibsen’s A Doll’s House [2007].

Keywords: ESL classroom, innovative techniques, students’ participation, teaching of drama

Procedia PDF Downloads 629
18395 The Lethal Autonomy and Military Targeting Process

Authors: Serdal Akyüz, Halit Turan, Mehmet Öztürk

Abstract:

The future security environment will have new battlefield and enemies. The boundaries of battlefield and the identity of enemies cannot be noticed easily. The politicians may not want to lose their soldiers in very risky operations. This approach will pave the way for smart machines like war robots and new drones. These machines will have the decision-making ability and act simultaneously. This ability can change the military targeting process. Military targeting process (MTP) benefits from a wide scope of lethal and non-lethal weapons to reach an intended end-state. This process is now managed by people but in the future smart machines can do it by themselves. At first sight, this development seems useful for humanity owing to decrease the casualties in war. Using robots -which can decide, detect, deliver and asses without human support- for homeland security and against terrorist has very crucial risks and threats. Besides, it can decrease the havoc but also increase the collateral damages. This paper examines the current use of smart war machines, military targeting process and presents a new approach to MTP from lethal autonomy concept's point of view.

Keywords: the autonomous weapon systems, the lethal autonomy, military targeting process (MTP)

Procedia PDF Downloads 431
18394 Learners’ Perceptions of Tertiary Level Teachers’ Code Switching: A Vietnamese Perspective

Authors: Hoa Pham

Abstract:

The literature on language teaching and second language acquisition has been largely driven by monolingual ideology with a common assumption that a second language (L2) is best taught and learned in the L2 only. The current study challenges this assumption by reporting learners' positive perceptions of tertiary level teachers' code switching practices in Vietnam. The findings of this study contribute to our understanding of code switching practices in language classrooms from a learners' perspective. Data were collected from student participants who were working towards a Bachelor degree in English within the English for Business Communication stream through the use of focus group interviews. The literature has documented that this method of interviewing has a number of distinct advantages over individual student interviews. For instance, group interactions generated by focus groups create a more natural environment than that of an individual interview because they include a range of communicative processes in which each individual may influence or be influenced by others - as they are in their real life. The process of interaction provides the opportunity to obtain the meanings and answers to a problem that are "socially constructed rather than individually created" leading to the capture of real-life data. The distinct feature of group interaction offered by this technique makes it a powerful means of obtaining deeper and richer data than those from individual interviews. The data generated through this study were analysed using a constant comparative approach. Overall, the students expressed positive views of this practice indicating that it is a useful teaching strategy. Teacher code switching was seen as a learning resource and a source supporting language output. This practice was perceived to promote student comprehension and to aid the learning of content and target language knowledge. This practice was also believed to scaffold the students' language production in different contexts. However, the students indicated their preference for teacher code switching to be constrained, as extensive use was believed to negatively impact on their L2 learning and trigger cognitive reliance on the L1 for L2 learning. The students also perceived that when the L1 was used to a great extent, their ability to develop as autonomous learners was negatively impacted. This study found that teacher code switching was supported in certain contexts by learners, thus suggesting that there is a need for the widespread assumption about the monolingual teaching approach to be re-considered.

Keywords: codeswitching, L1 use, L2 teaching, learners’ perception

Procedia PDF Downloads 330
18393 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 138
18392 Assessing the Self-Directed Learning Skills of the Undergraduate Nursing Students in a Medical University in Bahrain: A Quantitative Study

Authors: Catherine Mary Abou-Zaid

Abstract:

This quantitative study discusses the concerns with the self-directed learning (SDL) skills of the undergraduate nursing students in a medical university in Bahrain. The nursing undergraduate student SDL study was conducted taking all 4 years and compiling data collected from the students themselves by survey questionnaire. The aim of the study is to understand and change the attitudes of self-directed learning among the undergraduate students. The SDL of the undergraduate student nurses has been noticed to be lacking and motivation to actually perform without supervision while out-with classrooms are very low. Their use of the resources available on the virtual learning environment and also within the university is not as good as it should be for a university student at this level. They do not use them to their own advantage. They are not prepared for the transition from high school to an academic environment such as a university or college. For some students it is the first time in their academic lives that they have faced sharing a classroom with the opposite sex. For some this is a major issue and we as academics need to be aware of all issues that they come to higher education with. Design Methodology: The design methodology that was chosen was a quantitative design using convenience sampling of the students who would be asked to complete survey questionnaire. This sampling method was chosen because of the time constraint. This was completed by the undergraduate students themselves while in class. The questionnaire was analyzed by the statistical package for social sciences (SPSS), the results interpreted by the researcher and the findings published in the paper. The analyzed data will also be reported on and from this information we as educators will be able to see the student’s weaknesses regarding self-directed learning. The aims and objectives of the research will be used as recommendations for the improvement of resources for the students to improve their SDL skills. Conclusion: The results will be able to give the educators an insight to how we can change the self-directed learning techniques of the students and enable them to embrace the skills and to focus more on being self-directed in their studies rather than having to be put on to a SDL pathway from the educators themselves. This evidence will come from the analysis of the statistical data. It may even change the way in which the students are selected for the nursing programme. These recommendations will be reported to the head of school and also to the nursing faculty.

Keywords: self-directed learning, undergraduate students, transition, statistical package for social sciences (SPSS), higher education

Procedia PDF Downloads 320