Search results for: temperature response
9006 Characterization of Transcription Factors Involved in Early Defense Response during Interaction of Oil Palm Elaeis guineensis Jacq. with Ganoderma boninense
Authors: Sakeh N. Mohd, Bahari M. N. Abdul, Abdullah S. N. Akmar
Abstract:
Oil palm production generates high export earnings to many countries especially in Southeast Asian region. Infection by necrotrophic fungus, Ganoderma boninense on oil palm results in basal stem rot which compromises oil palm production leading to significant economic loss. There are no reliable disease treatments nor promising resistant oil palm variety has been cultivated to eradicate the disease up to date. Thus, understanding molecular mechanisms underlying early interactions of oil palm with Ganoderma boninense may be vital to promote preventive or control measure of the disease. In the present study, four months old oil palm seedlings were infected via artificial inoculation of Ganoderma boninense on rubber wood blocks. Roots of six biological replicates of treated and untreated oil palm seedlings were harvested at 0, 3, 7 and 11 days post inoculation. Next-generation sequencing was performed to generate high-throughput RNA-Seq data and identify differentially expressed genes (DEGs) during early oil palm-Ganoderma boninense interaction. Based on de novo transcriptome assembly, a total of 427,122,605 paired-end clean reads were assembled into 30,654 unigenes. DEGs analysis revealed upregulation of 173 transcription factors on Ganoderma boninense-treated oil palm seedlings. Sixty-one transcription factors were categorized as DEGs according to stringent cut-off values of genes with log2 ratio [Number of treated oil palm seedlings/ Number of untreated oil palm seedlings] ≥ |1.0| (corresponding to 2-fold or more upregulation) and P-value ≤ 0.01. Transcription factors in response to biotic stress will be screened out from abiotic stress using reverse transcriptase polymerase chain reaction. Transcription factors unique to biotic stress will be verified using real-time polymerase chain reaction. The findings will help researchers to pinpoint defense response mechanism specific against Ganoderma boninense.Keywords: Ganoderma boninense, necrotrophic, next-generation sequencing, transcription factors
Procedia PDF Downloads 2659005 Effect of Fuel Lean Reburning Process on NOx Reduction and CO Emission
Authors: Changyeop Lee, Sewon Kim
Abstract:
Reburning is a useful technology in reducing nitric oxide through injection of a secondary hydrocarbon fuel. In this paper, an experimental study has been conducted to evaluate the effect of fuel lean reburning on NOx/CO reduction in LNG flame. Experiments were performed in flames stabilized by a co-flow swirl burner, which was mounted at the bottom of the furnace. Tests were conducted using LNG gas as the reburn fuel as well as the main fuel. The effects of reburn fuel fraction and injection manner of the reburn fuel were studied when the fuel lean reburning system was applied. The paper reports data on flue gas emissions and temperature distribution in the furnace for a wide range of experimental conditions. At steady state, temperature distribution and emission formation in the furnace have been measured and compared. This paper makes clear that in order to decrease both NOx and CO concentrations in the exhaust when the pulsated fuel lean reburning system was adapted, it is important that the control of some factors such as frequency and duty ratio. Also it shows the fuel lean reburning is also effective method to reduce NOx as much as reburning.Keywords: fuel lean reburn, NOx, CO, LNG flame
Procedia PDF Downloads 4239004 Phenology and Size in the Social Sweat Bee, Halictus ligatus, in an Urban Environment
Authors: Rachel A. Brant, Grace E. Kenny, Paige A. Muñiz, Gerardo R. Camilo
Abstract:
The social sweat bee, Halictus ligatus, has been documented to alter its phenology as a response to changes in temporal dynamics of resources. Furthermore, H. ligatus exhibits polyethism in natural environments as a consequence of the variation in resources. Yet, we do not know if or how H. ligatus responds to these variations in urban environments. As urban environments become much more widespread, and human population is expected to reach nine billion by 2050, it is crucial to distinguish how resources are allocated by bees in cities. We hypothesize that in urban regions, where floral availability varies with human activity, H. ligatus will exhibit polyethism in order to match the extremely localized spatial variability of resources. We predict that in an urban setting, where resources vary both spatially and temporally, the phenology of H. ligatus will alter in response to these fluctuations. This study was conducted in Saint Louis, Missouri, at fifteen sites each varying in size and management type (community garden, urban farm, prairie restoration). Bees were collected by hand netting from 2013-2016. Results suggest that the largest individuals, mostly gynes, occurred in lower income neighborhood community gardens in May and August. We used a model averaging procedure, based on information theoretical methods, to determine a best model for predicting bee size. Our results suggest that month and locality within the city are the best predictors of bee size. Halictus ligatus was observed to comply with the predictions of polyethism from 2013 to 2015. However, in 2016 there was an almost complete absence of the smallest worker castes. This is a significant deviation from what is expected under polyethism. This could be attributed to shifts in planting decisions, shifts in plant-pollinator matches, or local climatic conditions. Further research is needed to determine if this divergence from polyethism is a new strategy for the social sweat bee as climate continues to alter or a response to human dominated landscapes.Keywords: polyethism, urban environment, phenology, social sweat bee
Procedia PDF Downloads 2189003 Residual Stresses and Crystallographic Texture of Magnesium AZ31-C Alloy Welded by Friction Stir Welding (FSW)
Authors: A. Kouadri-Henni, L. Barrallier
Abstract:
The objective of the study was to characterize the properties of a magnesium alloy welded by friction stir welding (FSW). The results led to a better understanding of the relationship between this process, the microstructure and anisotropic properties of alloy materials. Welding principally leads to a large reduction in grain size in welded zones due to the phenomenon of dynamic recrystallization. The most remarkable observation was that crystallographic textures changed from a base metal with one texture in two zones: the thermo-mechanically affected and stir welded zones. The latter zone has the peculiarity of possessing a marked texture with two components on the basal plane and the pyramidal plane. These characteristics disappeared in the TMAZ, which had only one component following the basal plane. These modifications have been explained by the nature of the plastic deformation in these zones, which occurs at a moderate temperature in the TMAZ and high temperature in the SWZ. In the same time, we compared this evolution with the nature and the level of the residual stresses obtained by X-ray diffraction.Keywords: texture christallography, residual stresses, FSW process
Procedia PDF Downloads 3659002 The Investigation of Precipitation Conditions of Chevreul’s Salt
Authors: Turan Çalban, Fatih Sevim, Oral Laçin
Abstract:
In this study, the precipitation conditions of Chevreul’s salt were evaluated. The structure of Chevreul’s salt was examined by considering the previous studies. Thermodynamically, the most important precipitation parameters were pH, temperature, and sulphite-copper(II) ratio. The amount of Chevreul’s salt increased with increasing the temperature and sulphite-copper(II) ratio at the certain range, while it increased with decreasing the pH value at the chosen range. The best solution medium for recovery of Chevreul’s salt is sulphur dioxide gas-water system. Moreover, the soluble sulphite salts are used as efficient precipitating reagents. Chevreul’s salt is generally used to produce the highly pure copper powders from synthetic copper sulphate solutions and impure leach solutions. When the pH of the initial ammoniacal solution is greater than 8.5, ammonia in the medium is not free, and Chevreul’s salt from solution does not precipitate. In contrast, copper ammonium sulphide is precipitated. The pH of the initial solution containing ammonia for precipitating of Chevreul’s salt must be less than 8.5.Keywords: Chevreul's salt, production, copper sulfites, copper compound
Procedia PDF Downloads 2479001 Steady State Natural Convection in Vertical Heated Rectangular Channel between Two Vertical Parallel MTR-Type Fuel Plates
Authors: Djalal Hamed
Abstract:
The aim of this paper is to perform an analytic solution of steady state natural convection in a narrow rectangular channel between two vertical parallel MTR-type fuel plates, imposed under a cosine shape heat flux to determine the margin of the nuclear core power at which the natural convection cooling mode can ensure a safe core cooling, where the cladding temperature should not be reach the specific safety limits (90 °C). For this purpose, a simple computer program is developed to determine the principal parameter related to the nuclear core safety such as the temperature distribution in the fuel plate and in the coolant (light water) as a function of the reactor power. Our results are validated throughout a comparison against the results of another published work, which is considered like a reference of this study.Keywords: buoyancy force, friction force, natural convection, thermal hydraulic analysis, vertical heated rectangular channel
Procedia PDF Downloads 3139000 Conductometric Methanol Microsensor Based on Electrospun PVC-Nickel Phthalocyanine Composite Nanofiber Technology
Authors: Ibrahim Musa, Guy Raffin, Marie Hangouet, Nadia Zine, Nicole Jaffrezic-Renault, Abdelhamid Errachid
Abstract:
Due to its application in different domains, such as fuel cell configuration and adulteration of alcoholic beverages, a miniaturized sensor for methanol detection is urgently required. A conductometric microsensor for measuring volatile organic compounds (VOC) was conceived, based on electrospun composite nanofibers of polyvinyl chloride (PVC) doped with nickel phthalocyanine(NiPc) deposited on interdigitated electrodes (IDEs) used transducers. The nanofiber's shape, structure, percent atomic content and thermal properties were studied using analytical techniques, including scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), respectively. The methanol sensor showed good sensitivity (505µS/cm(v/v) ⁻¹), low LOD (15 ppm), short response time (13 s), and short recovery time (15 s). The sensor was 4 times more sensitive to methanol than to ethanol and 19 times more sensitive to methanol than to acetone. Furthermore, the sensor response was unaffected by the interfering water vapor, making it more suitable for VOC sensing in the presence of humidity. The sensor was applied for conductometric detection of methanol in rubbing alcohol.Keywords: composite, methanol, conductometric sensor, electrospun, nanofiber, nickel phthalocyanine, PVC
Procedia PDF Downloads 208999 Waveguiding in an InAs Quantum Dots Nanomaterial for Scintillation Applications
Authors: Katherine Dropiewski, Michael Yakimov, Vadim Tokranov, Allan Minns, Pavel Murat, Serge Oktyabrsky
Abstract:
InAs Quantum Dots (QDs) in a GaAs matrix is a well-documented luminescent material with high light yield, as well as thermal and ionizing radiation tolerance due to quantum confinement. These benefits can be leveraged for high-efficiency, room temperature scintillation detectors. The proposed scintillator is composed of InAs QDs acting as luminescence centers in a GaAs stopping medium, which also acts as a waveguide. This system has appealing potential properties, including high light yield (~240,000 photons/MeV) and fast capture of photoelectrons (2-5ps), orders of magnitude better than currently used inorganic scintillators, such as LYSO or BaF2. The high refractive index of the GaAs matrix (n=3.4) ensures light emitted by the QDs is waveguided, which can be collected by an integrated photodiode (PD). Scintillation structures were grown using Molecular Beam Epitaxy (MBE) and consist of thick GaAs waveguiding layers with embedded sheets of modulation p-type doped InAs QDs. An AlAs sacrificial layer is grown between the waveguide and the GaAs substrate for epitaxial lift-off to separate the scintillator film and transfer it to a low-index substrate for waveguiding measurements. One consideration when using a low-density material like GaAs (~5.32 g/cm³) as a stopping medium is the matrix thickness in the dimension of radiation collection. Therefore, luminescence properties of very thick (4-20 microns) waveguides with up to 100 QD layers were studied. The optimization of the medium included QD shape, density, doping, and AlGaAs barriers at the waveguide surfaces to prevent non-radiative recombination. To characterize the efficiency of QD luminescence, low temperature photoluminescence (PL) (77-450 K) was measured and fitted using a kinetic model. The PL intensity degrades by only 40% at RT, with an activation energy for electron escape from QDs to the barrier of ~60 meV. Attenuation within the waveguide (WG) is a limiting factor for the lateral size of a scintillation detector, so PL spectroscopy in the waveguiding configuration was studied. Spectra were measured while the laser (630 nm) excitation point was scanned away from the collecting fiber coupled to the edge of the WG. The QD ground state PL peak at 1.04 eV (1190 nm) was inhomogeneously broadened with FWHM of 28 meV (33 nm) and showed a distinct red-shift due to self-absorption in the QDs. Attenuation stabilized after traveling over 1 mm through the WG, at about 3 cm⁻¹. Finally, a scintillator sample was used to test detection and evaluate timing characteristics using 5.5 MeV alpha particles. With a 2D waveguide and a small area of integrated PD, the collected charge averaged 8.4 x10⁴ electrons, corresponding to a collection efficiency of about 7%. The scintillation response had 80 ps noise-limited time resolution and a QD decay time of 0.6 ns. The data confirms unique properties of this scintillation detector which can be potentially much faster than any currently used inorganic scintillator.Keywords: GaAs, InAs, molecular beam epitaxy, quantum dots, III-V semiconductor
Procedia PDF Downloads 2538998 Bond-Slip Response of Reinforcing Bars Embedded in High Performance Fiber Reinforced Cement Composites
Authors: Lee Siong Wee, Tan Kang Hai, Yang En-Hua
Abstract:
This paper presents the results of an experimental study undertaken to evaluate the local bond stress-slip response of short embedment of reinforcing bars in normal concrete (NC) and high performance fiber reinforced cement composites (HPFRCC) blocks. Long embedment was investigated as well to gain insights on the distribution of strain, slip, bar stress and bond stress along the bar especially in post-yield range. A total of 12 specimens were tested, by means of pull-out of the reinforcing bars from concrete blocks. It was found that the enhancement of local bond strength can be reached up to 50% and ductility of the bond behavior was improved significantly if HPFRCC is used. Also, under a constant strain at loaded end, HPFRCC has delayed yielding of bars at other location from the loaded end. Hence, the reduction of bond stress was slower for HPFRCC in comparison with NC. Due to the same reason, the total slips at loaded end for HPFRCC was smaller than NC as expected. Test results indicated that HPFRCC has better bond slip behavior which makes it a suitable material to be employed in anchorage zone such as beam-column joints.Keywords: bond stress, high performance fiber reinforced cement composites, slip, strain
Procedia PDF Downloads 4938997 Solar-Thermal-Electric Stirling Engine-Powered System for Residential Units
Authors: Florian Misoc, Cyril Okhio, Joshua Tolbert, Nick Carlin, Thomas Ramey
Abstract:
This project is focused on designing a Stirling engine system for a solar-thermal-electrical system that can supply electric power to a single residential unit. Since Stirling engines are heat engines operating any available heat source, is notable for its ability to generate clean and reliable energy without emissions. Due to the need of finding alternative energy sources, the Stirling engines are making a comeback with the recent technologies, which include thermal energy conservation during the heat transfer process. Recent reviews show mounting evidence and positive test results that Stirling engines are able to produce constant energy supply that ranges from 5kW to 20kW. Solar Power source is one of the many uses for Stirling engines. Using solar energy to operate Stirling engines is an idea considered by many researchers, due to the ease of adaptability of the Stirling engine. In this project, the Stirling engine developed was designed and tested to operate from biomass source of energy, i.e., wood pellets stove, during low solar radiation, with good results. A 20% efficiency of the engine was estimated, and 18% efficiency was measured, making it suitable and appropriate for residential applications. The effort reported was aimed at exploring parameters necessary to design, build and test a ‘Solar Powered Stirling Engine (SPSE)’ using Water (H₂O) as the Heat Transfer medium, with Nitrogen as the working gas that can reach or exceed an efficiency of 20%. The main objectives of this work consisted in: converting a V-twin cylinder air compressor into an alpha-type Stirling engine, construct a Solar Water Heater, by using an automotive radiator as the high-temperature reservoir for the Stirling engine, and an array of fixed mirrors that concentrate the solar radiation on the automotive radiator/high-temperature reservoir. The low-temperature reservoir is the surrounding air at ambient temperature. This work has determined that a low-cost system is sufficiently efficient and reliable. Off-the-shelf components have been used and estimates of the ability of the Engine final design to meet the electricity needs of small residence have been determined.Keywords: stirling engine, solar-thermal, power inverter, alternator
Procedia PDF Downloads 2778996 Developing a Deep Understanding of the Immune Response in Hepatitis B Virus Infected Patients Using a Knowledge Driven Approach
Authors: Hanan Begali, Shahi Dost, Annett Ziegler, Markus Cornberg, Maria-Esther Vidal, Anke R. M. Kraft
Abstract:
Chronic hepatitis B virus (HBV) infection can be treated with nucleot(s)ide analog (NA), for example, which inhibits HBV replication. However, they have hardly any influence on the functional cure of HBV, which is defined by hepatitis B surface antigen (HBsAg) loss. NA needs to be taken life-long, which is not available for all patients worldwide. Additionally, NA-treated patients are still at risk of developing cirrhosis, liver failure, or hepatocellular carcinoma (HCC). Although each patient has the same components of the immune system, immune responses vary between patients. Therefore, a deeper understanding of the immune response against HBV in different patients is necessary to understand the parameters leading to HBV cure and to use this knowledge to optimize HBV therapies. This requires seamless integration of an enormous amount of diverse and fine-grained data from viral markers, e.g., hepatitis B core-related antigen (HBcrAg) and hepatitis B surface antigen (HBsAg). The data integration system relies on the assumption that profiling human immune systems requires the analysis of various variables (e.g., demographic data, treatments, pre-existing conditions, immune cell response, or HLA-typing) rather than only one. However, the values of these variables are collected independently. They are presented in a myriad of formats, e.g., excel files, textual descriptions, lab book notes, and images of flow cytometry dot plots. Additionally, patients can be identified differently in these analyses. This heterogeneity complicates the integration of variables, as data management techniques are needed to create a unified view in which individual formats and identifiers are transparent when profiling the human immune systems. The proposed study (HBsRE) aims at integrating heterogeneous data sets of 87 chronically HBV-infected patients, e.g., clinical data, immune cell response, and HLA-typing, with knowledge encoded in biomedical ontologies and open-source databases into a knowledge-driven framework. This new technique enables us to harmonize and standardize heterogeneous datasets in the defined modeling of the data integration system, which will be evaluated in the knowledge graph (KG). KGs are data structures that represent the knowledge and data as factual statements using a graph data model. Finally, the analytic data model will be applied on top of KG in order to develop a deeper understanding of the immune profiles among various patients and to evaluate factors playing a role in a holistic profile of patients with HBsAg level loss. Additionally, our objective is to utilize this unified approach to stratify patients for new effective treatments. This study is developed in the context of the project “Transforming big data into knowledge: for deep immune profiling in vaccination, infectious diseases, and transplantation (ImProVIT)”, which is a multidisciplinary team composed of computer scientists, infection biologists, and immunologists.Keywords: chronic hepatitis B infection, immune response, knowledge graphs, ontology
Procedia PDF Downloads 1068995 Detection of Extrusion Blow Molding Defects by Airflow Analysis
Authors: Eva Savy, Anthony Ruiz
Abstract:
In extrusion blow molding, there is great variability in product quality due to the sensitivity of the machine settings. These variations lead to unnecessary rejects and loss of time. Yet production control is a major challenge for companies in this sector to remain competitive within their market. Current quality control methods only apply to finished products (vision control, leak test...). It has been shown that material melt temperature, blowing pressure, and ambient temperature have a significant impact on the variability of product quality. Since blowing is a key step in the process, we have studied this parameter in this paper. The objective is to determine if airflow analysis allows the identification of quality problems before the full completion of the manufacturing process. We conducted tests to determine if it was possible to identify a leakage defect and an obstructed defect, two common defects on products. The results showed that it was possible to identify a leakage defect by airflow analysis.Keywords: extrusion blow molding, signal, sensor, defects, detection
Procedia PDF Downloads 1498994 Cooling-Rate Induced Fiber Birefringence Variation in Regenerated High Birefringent Fiber
Authors: Man-Hong Lai, Dinusha S. Gunawardena, Kok-Sing Lim, Harith Ahmad
Abstract:
In this paper, we have reported birefringence manipulation in regenerated high-birefringent fiber Bragg grating (RPMG) by using CO2 laser annealing method. The results indicate that the birefringence of RPMG remains unchanged after CO2 laser annealing followed by a slow cooling process, but reduced after the fast cooling process (~5.6×10-5). After a series of annealing procedures with different cooling rates, the obtained results show that slower the cooling rate, higher the birefringence of RPMG. The volume, thermal expansion coefficient (TEC) and glass transition temperature (Tg) change of stress applying part in RPMG during the cooling process are responsible for the birefringence change. Therefore, these findings are important to the RPMG sensor in high and dynamic temperature environment. The measuring accuracy, range and sensitivity of RPMG sensor are greatly affected by its birefringence value. This work also opens up a new application of CO2 laser for fiber annealing and birefringence modification.Keywords: birefringence, CO2 laser annealing, regenerated gratings, thermal stress
Procedia PDF Downloads 4588993 Intensive Crosstalk between Autophagy and Intracellular Signaling Regulates Osteosarcoma Cell Survival Response under Cisplatin Stress
Authors: Jyothi Nagraj, Sudeshna Mukherjee, Rajdeep Chowdhury
Abstract:
Autophagy has recently been linked with cancer cell survival post drug insult contributing to acquisition of resistance. However, the molecular signaling governing autophagic survival response is poorly explored. In our study, in osteosarcoma (OS) cells cisplatin shock was found to activate both MAPK and autophagy signaling. An activation of JNK and autophagy acted as pro-survival strategy, while ERK1/2 triggered apoptotic signals upon cisplatin stress. An increased sensitivity of the cells to cisplatin was obtained with simultaneous inhibition of both autophagy and JNK pathway. Furthermore, we observed that the autophagic stimulation upon drug stress regulates other developmentally active signaling pathways like the Hippo pathway in OS cells. Cisplatin resistant cells were thereafter developed by repetitive drug exposure followed by clonal selection. Basal levels of autophagy were found to be high in resistant cells to. However, the signaling mechanism leading to autophagic up-regulation and its regulatory effect differed in OS cells upon attaining drug resistance. Our results provide valuable clues to regulatory dynamics of autophagy that can be considered for development of improved therapeutic strategy against resistant type cancers.Keywords: JNK, autophagy, drug resistance, cancer
Procedia PDF Downloads 2888992 Statistical Tools for SFRA Diagnosis in Power Transformers
Authors: Rahul Srivastava, Priti Pundir, Y. R. Sood, Rajnish Shrivastava
Abstract:
For the interpretation of the signatures of sweep frequency response analysis(SFRA) of transformer different types of statistical techniques serves as an effective tool for doing either phase to phase comparison or sister unit comparison. In this paper with the discussion on SFRA several statistics techniques like cross correlation coefficient (CCF), root square error (RSQ), comparative standard deviation (CSD), Absolute difference, mean square error(MSE),Min-Max ratio(MM) are presented through several case studies. These methods require sample data size and spot frequencies of SFRA signatures that are being compared. The techniques used are based on power signal processing tools that can simplify result and limits can be created for the severity of the fault occurring in the transformer due to several short circuit forces or due to ageing. The advantages of using statistics techniques for analyzing of SFRA result are being indicated through several case studies and hence the results are obtained which determines the state of the transformer.Keywords: absolute difference (DABS), cross correlation coefficient (CCF), mean square error (MSE), min-max ratio (MM-ratio), root square error (RSQ), standard deviation (CSD), sweep frequency response analysis (SFRA)
Procedia PDF Downloads 6948991 Competing Interactions, and Magnetization Dynamics in Doped Rare-Earth Manganites Nanostructural System
Authors: Wiqar Hussain Shah
Abstract:
The Structural, magnetic and transport behavior of La1-xCaxMnO3+ (x=0.48, 0.50, 0.52 and 0.55 and =0.015) compositions close to charge ordering, was studied through XRD, resistivity, DC magnetization and AC susceptibility measurements. With time and thermal cycling (T<300 K) there is an irreversible transformation of the low-temperature phase from a partially ferromagnetic and metallic to one that is less ferromagnetic and highly resistive. For instance, an increase of resistivity can be observed by thermal cycling, where no effect is obtained for lower Ca concentration. The time changes in the magnetization are logarithmic in general and activation energies are consistent with those expected for electron transfer between Mn ions. The data suggest that oxygen non-stoichiometry results in mechanical strains in this two-phase system, leading to the development of irreversible metastable states, which relax towards the more stable charge-ordered and antiferromagnetic microdomains at the nano-meter size. This behavior is interpreted in terms of strains induced charge localization at the interface between FM/AFM domains in the antiferromagnetic matrix. Charge, orbital ordering and phase separation play a prominent role in the appearance of such properties, since they can be modified in a spectacular manner by external factor, making the different physical properties metastable. Here we describe two factors that deeply modify those properties, viz. the doping concentration and the thermal cycling. The metastable state is recovered by the high temperature annealing. We also measure the magnetic relaxation in the metastable state and also the revival of the metastable state (in a relaxed sample) due to high temperature (800 ) thermal treatment.Keywords: Rare-earth maganites, nano-structural materials, doping effects on electrical, magnetic properties, competing interactions
Procedia PDF Downloads 1248990 Effect of Electric Stimulation on Characteristic Changes in Hot-Boned Beef Brisket of Different Potential Tenderness
Authors: Orose Rugchati, Kanita Thanacharoenchanaphas, Sarawut Wattanawongpitak
Abstract:
In this study, the effect of electric stimulation on the quality of hot-boned beef brisket muscles was evaluated, including the tenderness, pH, temperature change, and colorant. Muscles were obtained from steers in the local slaughter house. (3 steers for each muscle), removed from the carcasses 4-hour postmortem and variable time to treated with direct current electric 1 and 5 minutes, respectively. Six different electric intensities (direct current voltage of 50, 70 and 90 Volt, pulse with 10, 20 and 40 ms) plus a control were applied to each muscle to determine the optimum treatment conditions. Hot-boned beef brisket was found to get tender with increasing treatment direct current voltage and reduction in the shear force with pulsed with electric treatment. But in a long time to treated with electric current get fading in red color and temperature increase whereas pH quite different compared to non-treated control samples.Keywords: electric stimulation, characteristic changes, hot-boned beef brisket, potential tenderness
Procedia PDF Downloads 3408989 Development of a Paediatric Head Model for the Computational Analysis of Head Impact Interactions
Authors: G. A. Khalid, M. D. Jones, R. Prabhu, A. Mason-Jones, W. Whittington, H. Bakhtiarydavijani, P. S. Theobald
Abstract:
Head injury in childhood is a common cause of death or permanent disability from injury. However, despite its frequency and significance, there is little understanding of how a child’s head responds during injurious loading. Whilst Infant Post Mortem Human Subject (PMHS) experimentation is a logical approach to understand injury biomechanics, it is the authors’ opinion that a lack of subject availability is hindering potential progress. Computer modelling adds great value when considering adult populations; however, its potential remains largely untapped for infant surrogates. The complexities of child growth and development, which result in age dependent changes in anatomy, geometry and physical response characteristics, present new challenges for computational simulation. Further geometric challenges are presented by the intricate infant cranial bones, which are separated by sutures and fontanelles and demonstrate a visible fibre orientation. This study presents an FE model of a newborn infant’s head, developed from high-resolution computer tomography scans, informed by published tissue material properties. To mimic the fibre orientation of immature cranial bone, anisotropic properties were applied to the FE cranial bone model, with elastic moduli representing the bone response both parallel and perpendicular to the fibre orientation. Biofiedility of the computational model was confirmed by global validation against published PMHS data, by replicating experimental impact tests with a series of computational simulations, in terms of head kinematic responses. Numerical results confirm that the FE head model’s mechanical response is in favourable agreement with the PMHS drop test results.Keywords: finite element analysis, impact simulation, infant head trauma, material properties, post mortem human subjects
Procedia PDF Downloads 3258988 Heat Transfer Augmentation in a Channel with Delta Winglet Type Vortex Generators at Different Blade Angles
Authors: Nirmal Kant Singh, Anshuman Pratap Singh
Abstract:
In this study the augmentation of heat transfer in a channel with delta winglet type vortex generators is evaluated. Three-dimensional numerical simulations are performed in a rectangular channel with longitudinal triangular vortex generators (LVGs). The span wise averaged Nusselt number and mean temperature are compared with and without vortex generators in the channel. The effect of variation of blade angle (15°, 30°, 45°, and 60°) is studied at a Reynolds number of 10000. The numerical results indicate that the application of LVGs effectively enhances heat transfer in the channel. The Nusselt number and mean outlet temperature were found to be greater using LVGs than in the channel without LVGs. It is observed that heat transfer increases with increase in blade angle at the same Reynolds number.Keywords: heat transfer, rectangular channel, longitudinal vortex generators, effect of blade angle
Procedia PDF Downloads 6428987 Nonlinear Response of Tall Reinforced Concrete Shear Wall Buildings under Wind Loads
Authors: Mahtab Abdollahi Sarvi, Siamak Epackachi, Ali Imanpour
Abstract:
Reinforced concrete shear walls are commonly used as the lateral load-resisting system of mid- to high-rise office or residential buildings around the world. Design of such systems is often governed by wind rather than seismic effects, in particular in low-to-moderate seismic regions. The current design philosophy as per the majority of building codes under wind loads require elastic response of lateral load-resisting systems including reinforced concrete shear walls when subjected to the rare design wind load, resulting in significantly large wall sections needed to meet strength requirements and drift limits. The latter can highly influence the design in upper stories due to stringent drift limits specified by building codes, leading to substantial added costs to the construction of the wall. However, such walls may offer limited to moderate over-strength and ductility due to their large reserve capacity provided that they are designed and detailed to appropriately develop such over-strength and ductility under extreme wind loads. This would significantly contribute to reducing construction time and costs, while maintaining structural integrity under gravity and frequently-occurring and less frequent wind events. This paper aims to investigate the over-strength and ductility capacity of several imaginary office buildings located in Edmonton, Canada with a glance at earthquake design philosophy. Selected models are 10- to 25-story buildings with three types of reinforced concrete shear wall configurations including rectangular, barbell, and flanged. The buildings are designed according to National Building Code of Canada. Then fiber-based numerical models of the walls are developed in Perform 3D and by conducting nonlinear static (pushover) analysis, lateral nonlinear behavior of the walls are evaluated. Ductility and over-strength of the structures are obtained based on the results of the pushover analyses. The results confirmed moderate nonlinear capacity of reinforced concrete shear walls under extreme wind loads. This is while lateral displacements of the walls pass the serviceability limit states defined in Pre standard for Performance-Based Wind Design (ASCE). The results indicate that we can benefit the limited nonlinear response observed in the reinforced concrete shear walls to economize the design of such systems under wind loads.Keywords: concrete shear wall, high-rise buildings, nonlinear static analysis, response modification factor, wind load
Procedia PDF Downloads 1058986 Development of Al-5%Cu/Si₃N₄, B₄C or BN Composites for Piston Applications
Authors: Ahmed Lotfy, Andrey V. Pozdniakov, Vadim C. Zolotorevskiy
Abstract:
The purpose of this research is to provide a competitive alternative to aluminum silicon alloys used in automotive applications. This alternative was created by developing three types of composites Al-5%Cu- (B₄C, BN or Si₃N₄) particulates with a low coefficient of thermal expansion. Stir casting was used to synthesis composites containing 2, 5 and 7 wt. % of B₄C, Si₃N₄ and 2, 5 of BN followed by squeeze casting. The squeeze casting process decreased the porosity of the final composites. The composites exhibited a fairly uniform particle distribution throughout the matrix alloy. The microstructure and XRD results of the composites suggested a significant reaction occurred at the interface between the particles and alloy. Increasing the aging temperature from 200 to 250°C decreased the hardness values of the matrix and the composites and decreased the time required to reach the peak. Turner model was used to calculate the expected values of thermal expansion coefficient CTE of matrix and its composites. Deviations between calculated and experimental values of CTE were not exceeded 10%. Al-5%Cu-B₄C composites experimentally showed the lowest values of CTE (17-19)·10-6 °С-1 and (19-20) ·10-6 °С-1 in the temperature range 20-100 °С and 20-200 °С respectively.Keywords: aluminum matrix composites, coefficient of thermal expansion, X-ray diffraction, squeeze casting, electron microscopy,
Procedia PDF Downloads 4078985 Effect of Environmental Factors on Mosquito Larval Abundance in Some Selected Larval Sites in the Kintampo Area of Ghana
Authors: Yussif Tawfiq, Stephen Omari, Kwaku Poku Asante
Abstract:
The abundance of malaria vectors is influenced by micro-ecology, rainfall, and temperature patterns. The main objective of the study was to identify mosquito larval sites for future larval surveys and possible intervention programs. The study was conducted in Kintampo in central Ghana. Twenty larval sites were surveyed. Larval density was determined per cm² of water from each of the various sites. The dipper was used to fetch larvae from the larval sites, and a global positioning system (GPS) was used to identify larvae locations. There was a negative linear relationship between humidity, temperature, pH, and mosquito larval density. GPS of larval sites was taken for easy larval identification. There was the presence of Anopheles mosquito larvae in all polluted waters with Culex larval presence. This shows that Anopheles mosquito larvae are beginning to adapt to survival in polluted waters. The identified breeding sites are going to be useful for future larval surveys and will also help in intervention programs.Keywords: larvae, GPS, dipper, larval density
Procedia PDF Downloads 858984 Seasonal Variability of Picoeukaryotes Community Structure Under Coastal Environmental Disturbances
Authors: Benjamin Glasner, Carlos Henriquez, Fernando Alfaro, Nicole Trefault, Santiago Andrade, Rodrigo De La Iglesia
Abstract:
A central question in ecology refers to the relative importance that local-scale variables have over community composition, when compared with regional-scale variables. In coastal environments, strong seasonal abiotic influence dominates these systems, weakening the impact of other parameters like micronutrients. After the industrial revolution, micronutrients like trace metals have increased in ocean as pollutants, with strong effects upon biotic entities and biological processes in coastal regions. Coastal picoplankton communities had been characterized as a cyanobacterial dominated fraction, but in recent years the eukaryotic component of this size fraction has gained relevance due to their high influence in carbon cycle, although, diversity patterns and responses to disturbances are poorly understood. South Pacific upwelling coastal environments represent an excellent model to study seasonal changes due to a strong influence in the availability of macro- and micronutrients between seasons. In addition, some well constrained coastal bays of this region have been subjected to strong disturbances due to trace metal inputs. In this study, we aim to compare the influence of seasonality and trace metals concentrations, on the community structure of planktonic picoeukaryotes. To describe seasonal patterns in the study area, satellite data in a 6 years time series and in-situ measurements with a traditional oceanographic approach such as CTDO equipment were performed. In addition, trace metal concentrations were analyzed trough ICP-MS analysis, for the same region. For biological data collection, field campaigns were performed in 2011-2012 and the picoplankton community was described by flow cytometry and taxonomical characterization with next-generation sequencing of ribosomal genes. The relation between the abiotic and biotic components was finally determined by multivariate statistical analysis. Our data show strong seasonal fluctuations in abiotic parameters such as photosynthetic active radiation and superficial sea temperature, with a clear differentiation of seasons. However, trace metal analysis allows identifying strong differentiation within the study area, dividing it into two zones based on trace metals concentration. Biological data indicate that there are no major changes in diversity but a significant fluctuation in evenness and community structure. These changes are related mainly with regional parameters, like temperature, but by analyzing the metal influence in picoplankton community structure, we identify a differential response of some plankton taxa to metal pollution. We propose that some picoeukaryotic plankton groups respond differentially to metal inputs, by changing their nutritional status and/or requirements under disturbances as a derived outcome of toxic effects and tolerance.Keywords: Picoeukaryotes, plankton communities, trace metals, seasonal patterns
Procedia PDF Downloads 1728983 Surface Modification of Pineapple Leaf Fibre Reinforced Polylactic Acid Composites
Authors: Januar Parlaungan Siregar, Davindra Brabu Mathivanan, Dandi Bachtiar, Mohd Ruzaimi Mat Rejab, Tezara Cionita
Abstract:
Natural fibres play a significant role in mass industries such as automotive, construction and sports. Many researchers have found that the natural fibres are the best replacement for the synthetic fibres in terms of cost, safety, and degradability due to the shortage of landfill and ingestion of non biodegradable plastic by animals. This study mainly revolved around pineapple leaf fibre (PALF) which is available abundantly in tropical countries and with excellent mechanical properties. The composite formed in this study is highly biodegradable as both fibre and matrix are both derived from natural based products. The matrix which is polylactic acid (PLA) is made from corn starch which gives the upper hand as both material are renewable resources are easier to degrade by bacteria or enzyme. The PALF is treated with different alkaline solution to remove excessive moisture in the fibre to provide better interfacial bonding with PLA. Thereafter the PALF is washed with distilled water several times before placing in vacuum oven at 80°C for 48 hours. The dried PALF later were mixed with PLA using extrusion method using fibre in percentage of 30 by weight. The temperature for all zone were maintained at 160°C with the screw speed of 50 rpm for better bonding and afterwards the products of the mixture were pelletized using pelletizer. The pellets were placed in the specimen-sized mould for hot compression under the temperature of 170°C at 5 MPa for 5 min and subsequently were cold pressed under room temperature at 5 MPa for 5 min. The specimen were tested for tensile and flexure strength according to American Society for Testing and Materials (ASTM) D638 and D790 respectively. The effect of surface modification on PALF with different alkali solution will be investigated and compared.Keywords: natural fibre, PALF, PLA, composite
Procedia PDF Downloads 2988982 Towards Long-Range Pixels Connection for Context-Aware Semantic Segmentation
Authors: Muhammad Zubair Khan, Yugyung Lee
Abstract:
Deep learning has recently achieved enormous response in semantic image segmentation. The previously developed U-Net inspired architectures operate with continuous stride and pooling operations, leading to spatial data loss. Also, the methods lack establishing long-term pixels connection to preserve context knowledge and reduce spatial loss in prediction. This article developed encoder-decoder architecture with bi-directional LSTM embedded in long skip-connections and densely connected convolution blocks. The network non-linearly combines the feature maps across encoder-decoder paths for finding dependency and correlation between image pixels. Additionally, the densely connected convolutional blocks are kept in the final encoding layer to reuse features and prevent redundant data sharing. The method applied batch-normalization for reducing internal covariate shift in data distributions. The empirical evidence shows a promising response to our method compared with other semantic segmentation techniques.Keywords: deep learning, semantic segmentation, image analysis, pixels connection, convolution neural network
Procedia PDF Downloads 1018981 Improved Performance of Mn Substituted Ceria Nanospheres for Water Gas Shift Reaction: Influence of Preparation Conditions
Authors: Bhairi Lakshminarayana, Surajit Sarker, Ch. Subrahmanyam
Abstract:
The present study reports the development of noble metal free nano catalysts for low-temperature CO oxidation and water gas shift reaction. Mn-substituted CeO2 solid solution catalysts were synthesized by co-precipitation, combustion and hydrothermal methods. The formation of solid solution was confirmed by XRD with Rietveld refinement and the percentage of carbon and nitrogen doping was ensured by CHNS analyzer. Raman spectroscopic confirmed the oxygen vacancies. The surface area, pore volume and pore size distribution confirmed by N2 physisorption analysis, whereas, UV-visible diffuse reflectance spectroscopy and XPS data confirmed the oxidation state of the Mn ion. The particle size and morphology (spherical shape) of the material was confirmed using FESEM and HRTEM analysis. Ce0.8Mn0.2O2-δ was calcined at 400 °C, 600 °C and 800 °C. Raman spectroscopy confirmed that the catalyst calcined at 400 °C has the best redox properties. The activity of the designed catalysts for CO oxidation (0.2 vol%), carried out with GHSV of 21,000 h-1 and it has been observed that co-precipitation favored the best active catalyst towards CO oxidation and water gas shift reaction, due to the high surface area, improved reducibility, oxygen mobility and highest quantity of surface oxygen species. The activation energy of low temperature CO oxidation on Ce0.8Mn0.2O2- δ (combustion) was 5.5 kcal.K-1.mole-1. The designed catalysts were tested for water gas shift reaction. The present study demonstrates that Mn ion substituted ceria at 400 °C calcination temperature prepared by co-precipitation method promise to revive a green sustainable energy production approach.Keywords: Ce0.8Mn0.2O2-ð, CO oxidation, physicochemical characterization, water gas shift reaction (WGS)
Procedia PDF Downloads 2358980 Performance Evaluation of Different Technologies of PV Modules in Algeria
Authors: Amira Balaska, Ali Tahri, Amine Boudghene Stambouli, Takashi Oozeki
Abstract:
This paper is dealing with the evaluation of photovoltaic modules as part of the Sahara Solar Breeder project (SSB), five different photovoltaic module technologies which are: m-si, CIS, HIT, Back Contact, a-si_μc -si and a weather station recently installed at the University of Saida (Tahar Moulay) in Saida city located at the gate of the great southern Algeria’s Sahara. The objective of the present work is the study of solar photovoltaic capacity and performance parameters of each PV module technology. The goal of the study is to compare the five different PV technologies in order to find which technologies are suitable for the climate conditions of Algeria’s desert. Measurements of various parameters as irradiance, temperature, humidity and so on by the weather station and I-V curves were performed outdoors at the location without shadow. Finally performance parameters as performance ratio, energy yield and temperature losses are given and analyzed.Keywords: photovoltaic modules, performance ratio, energy yield, sahara solar breeder, outdoor conditions
Procedia PDF Downloads 6608979 A Two-Dimensional Problem Micropolar Thermoelastic Medium under the Effect of Laser Irradiation and Distributed Sources
Authors: Devinder Singh, Rajneesh Kumar, Arvind Kumar
Abstract:
The present investigation deals with the deformation of micropolar generalized thermoelastic solid subjected to thermo-mechanical loading due to a thermal laser pulse. Laplace transform and Fourier transform techniques are used to solve the problem. Thermo-mechanical laser interactions are taken as distributed sources to describe the application of the approach. The closed form expressions of normal stress, tangential stress, coupled stress and temperature are obtained in the domain. Numerical inversion technique of Laplace transform and Fourier transform has been implied to obtain the resulting quantities in the physical domain after developing a computer program. The normal stress, tangential stress, coupled stress and temperature are depicted graphically to show the effect of relaxation times. Some particular cases of interest are deduced from the present investigation.Keywords: pulse laser, integral transform, thermoelastic, boundary value problem
Procedia PDF Downloads 6148978 Magnetoresistance Transition from Negative to Positive in Functionalization of Carbon Nanotube and Composite with Polyaniline
Authors: Krishna Prasad Maity, Narendra Tanty, Ananya Patra, V. Prasad
Abstract:
Carbon nanotube (CNT) is a well-known material for very good electrical, thermal conductivity and high tensile strength. Because of that, it’s widely used in many fields like nanotechnology, electronics, optics, etc. In last two decades, polyaniline (PANI) with CNT and functionalized CNT (fCNT) have been promising materials in application of gas sensing, electromagnetic shielding, electrode of capacitor etc. So, the study of electrical conductivity of PANI/CNT and PANI/fCNT is important to understand the charge transport and interaction between PANI and CNT in the composite. It is observed that a transition in magnetoresistance (MR) with lowering temperature, increasing magnetic field and decreasing CNT percentage in CNT/PANI composite. Functionalization of CNT prevent the nanotube aggregation, improves interfacial interaction, dispersion and stabilized in polymer matrix. However, it shortens the length, breaks C-C sp² bonds and enhances the disorder creating defects on the side walls. We have studied electrical resistivity and MR in PANI with CNT and fCNT composites for different weight percentages down to the temperature 4.2K and up to magnetic field 5T. Resistivity increases significantly in composite at low temperature due to functionalization of CNT compared to only CNT. Interestingly a transition from negative to positive magnetoresistance has been observed when the filler is changed from pure CNT to functionalized CNT after a certain percentage (10wt%) as the effect of more disorder in fCNT/PANI composite. The transition of MR has been explained on the basis of polaron-bipolaron model. The long-range Coulomb interaction between two polarons screened by disorder in the composite of fCNT/PANI, increases the effective on-site Coulomb repulsion energy to form bipolaron which leads to change the sign of MR from negative to positive.Keywords: coulomb interaction, magnetoresistance transition, polyaniline composite, polaron-bipolaron
Procedia PDF Downloads 1698977 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid
Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang
Abstract:
Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid
Procedia PDF Downloads 430