Search results for: startup data analytics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25410

Search results for: startup data analytics

22650 Attention-Based ResNet for Breast Cancer Classification

Authors: Abebe Mulugojam Negash, Yongbin Yu, Ekong Favour, Bekalu Nigus Dawit, Molla Woretaw Teshome, Aynalem Birtukan Yirga

Abstract:

Breast cancer remains a significant health concern, necessitating advancements in diagnostic methodologies. Addressing this, our paper confronts the notable challenges in breast cancer classification, particularly the imbalance in datasets and the constraints in the accuracy and interpretability of prevailing deep learning approaches. We proposed an attention-based residual neural network (ResNet), which effectively combines the robust features of ResNet with an advanced attention mechanism. Enhanced through strategic data augmentation and positive weight adjustments, this approach specifically targets the issue of data imbalance. The proposed model is tested on the BreakHis dataset and achieved accuracies of 99.00%, 99.04%, 98.67%, and 98.08% in different magnifications (40X, 100X, 200X, and 400X), respectively. We evaluated the performance by using different evaluation metrics such as precision, recall, and F1-Score and made comparisons with other state-of-the-art methods. Our experiments demonstrate that the proposed model outperforms existing approaches, achieving higher accuracy in breast cancer classification.

Keywords: residual neural network, attention mechanism, positive weight, data augmentation

Procedia PDF Downloads 109
22649 Neuromarketing in the Context of Food Marketing

Authors: Francesco Pinci

Abstract:

This research investigates the significance of product packaging as an effective marketing tool. By using commercially available pasta as an example, the study specifically examines the visual components of packaging, including color, shape, packaging material, and logo. The insights gained from studies like this are particularly valuable to food and beverage companies as they provide marketers with a deeper understanding of the factors influencing consumer purchasing decisions. The research analyzes data collected through surveys conducted via Google Forms and visual data obtained using iMotions eye-tracker software. The results affirm the importance of packaging design elements, such as color and product information, in shaping consumer buying behavior.

Keywords: consumer behaviour, eyetracker, food marketing, neuromarketing

Procedia PDF Downloads 120
22648 Comprehending the Relationship between the Red Blood Cells of a Protein 4.1 -/- Patient and Those of Healthy Controls: A Comprehensive Analysis of Tandem Mass Spectrometry Data

Authors: Ahmed M. Hjazi, Bader M. Hjazi

Abstract:

Protein 4.1 is a crucial component of complex interactions between the cytoskeleton and other junctional complex proteins. When the gene encoding this protein is altered, resulting in reduced expression, or when the protein is absent, the red cell undergoes a significant structural change. This research aims to achieve a deeper comprehension of the biochemical effects of red cell protein deficiency. A Tandem Mass Spectrometry Analysis (TMT-MS/MS) of patient cells lacking protein 4.1 compared to three healthy controls was achieved by the Proteomics Institute of the University of Bristol. The SDS-PAGE and Western blotting were utilized on the original patient sample and controls to partially confirm TMT MS/MS data analysis of the protein-4.1-deficient cells. Compared to healthy controls, protein levels in samples lacking protein 4.1 had a significantly higher concentration of proteins that probably originated from reticulocytes. This could occur if the patient has an elevated reticulocyte count. The increase in chaperone and reticulocyte-associated proteins was most notable in this study. This may result from elevated quantities of reticulocytes in patients with hereditary elliptocytosis.

Keywords: hereditary elliptocytosis, protein 4.1, red cells, tandem mass spectrometry data.

Procedia PDF Downloads 81
22647 Privacy Preserving in Association Rule Mining on Horizontally Partitioned Database

Authors: Manvar Sagar, Nikul Virpariya

Abstract:

The advancement in data mining techniques plays an important role in many applications. In context of privacy and security issues, the problems caused by association rule mining technique are investigated by many research scholars. It is proved that the misuse of this technique may reveal the database owner’s sensitive and private information to others. Many researchers have put their effort to preserve privacy in Association Rule Mining. Amongst the two basic approaches for privacy preserving data mining, viz. Randomization based and Cryptography based, the later provides high level of privacy but incurs higher computational as well as communication overhead. Hence, it is necessary to explore alternative techniques that improve the over-heads. In this work, we propose an efficient, collusion-resistant cryptography based approach for distributed Association Rule mining using Shamir’s secret sharing scheme. As we show from theoretical and practical analysis, our approach is provably secure and require only one time a trusted third party. We use secret sharing for privately sharing the information and code based identification scheme to add support against malicious adversaries.

Keywords: Privacy, Privacy Preservation in Data Mining (PPDM), horizontally partitioned database, EMHS, MFI, shamir secret sharing

Procedia PDF Downloads 411
22646 An Adaptive Neuro-Fuzzy Inference System (ANFIS) Modelling of Bleeding

Authors: Seyed Abbas Tabatabaei, Fereydoon Moghadas Nejad, Mohammad Saed

Abstract:

The bleeding prediction of the asphalt is one of the most complex subjects in the pavement engineering. In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) is used for modeling the effect of important parameters on bleeding is trained and tested with the experimental results. bleeding index based on the asphalt film thickness differential as target parameter,asphalt content, temperature depth of two centemeter, heavy traffic, dust to effective binder, Marshall strength, passing 3/4 sieves, passing 3/8 sieves,passing 3/16 sieves, passing NO8, passing NO50, passing NO100, passing NO200 as input parameters. Then, we randomly divided empirical data into train and test sections in order to accomplish modeling. We instructed ANFIS network by 72 percent of empirical data. 28 percent of primary data which had been considered for testing the approprativity of the modeling were entered into ANFIS model. Results were compared by two statistical criterions (R2, RMSE) with empirical ones. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can also be promoted to more general states.

Keywords: bleeding, asphalt film thickness differential, Anfis Modeling

Procedia PDF Downloads 271
22645 SQL Generator Based on MVC Pattern

Authors: Chanchai Supaartagorn

Abstract:

Structured Query Language (SQL) is the standard de facto language to access and manipulate data in a relational database. Although SQL is a language that is simple and powerful, most novice users will have trouble with SQL syntax. Thus, we are presenting SQL generator tool which is capable of translating actions and displaying SQL commands and data sets simultaneously. The tool was developed based on Model-View-Controller (MVC) pattern. The MVC pattern is a widely used software design pattern that enforces the separation between the input, processing, and output of an application. Developers take full advantage of it to reduce the complexity in architectural design and to increase flexibility and reuse of code. In addition, we use White-Box testing for the code verification in the Model module.

Keywords: MVC, relational database, SQL, White-Box testing

Procedia PDF Downloads 422
22644 Ethiopia as a Tourist Destination, An Exploration of German Tourists' Market Demand

Authors: Dagnew Dessie Mengie

Abstract:

The purpose of this study was to investigate German tourists' demand for Ethiopian tourism destinations. The author has made every effort to identify the differences in the preferences of German visitors’ demand in Ethiopia comparing with Egypt, Kenya, Tanzania, and South African tourism sectors if they are invited to visit at the same time. However, the demand of international tourism for Ethiopia currently lags behind these African countries. Therefore, to offer demand-driven tourism products, the Ethiopian government, Tour & Travel operators need to understand the important factors that affect international tourists’ decision to visit Ethiopian tourist destinations. The aim of this study was intended to analyze German Tourists’ Demand towards Ethiopian destination. The researcher aimed to identify the demand for German tourists’ preference to Ethiopian tourist destinations comparing to the above-mentioned African countries. For collecting and analysing data for this study, both quantitative and qualitative methods of research are being used in this study. The most significant data are collected by using the primary data collection method i.e. survey and interviews which are the most and large number of potential responses and feedback from nine German active tourists,12 Ethiopian tourism officials, four African embassies, and four well functioning private tour companies and secondary data collected from books, journals, previous research and electronic websites. based on the data analysis of the information gathered from interviews and questionnaires, the study disclosed that majority of German tourists have not that much high demand on Ethiopian Tourist destinations due to the following reasons; Many Germans are fascinated by adventures, safari and simply want to lie on the beach and relax. These interests have leaded them to look for other African countries which have these accesses. Uncomfortable infrastructure and transport problems attributed for the decreasing the number of German tourists in the country. Inadequate marketing operation of Ethiopian Tourism Authority and its delegates in advertising and clarifying the above irregularities which are raised by the tourists.

Keywords: environmental benefits of tourism, social benefits of tourism, economical benefits of tourism, political factors in tourism

Procedia PDF Downloads 40
22643 Urban Health and Strategic City Planning: A Case from Greece

Authors: Alexandra P. Alexandropoulou, Andreas Fousteris, Eleni Didaskalou, Dimitrios A. Georgakellos

Abstract:

As urbanization is becoming a major stress factor not only for the urban environment but also for the wellbeing of city dwellers, incorporating the issues of urban health in strategic city planning and policy-making has never been more relevant. The impact of urbanization can vary from low to severe and relates to all non-communicable diseases caused by the different functions of cities. Air pollution, noise pollution, water and soil pollution, availability of open green spaces, and urban heat island are the major factors that can compromise citizens' health. Urban health describes the effects of the social environment, the physical environment, and the availability and accessibility to health and social services. To assess the quality of urban wellbeing, all urban characteristics that might have an effect on citizens' health must be considered, evaluated, and introduced in integrated local planning. A series of indices and indicators can be used to better describe these effects and set the target values in policy making. Local strategic planning is one of the most valuable development tools a local city administration can possess; thus, it has become mandatory under Greek law for all municipalities. It involves a two-stage procedure; the first aims to collect, analyse and evaluate data on the current situation of the city (administrative data, population data, environmental data, social data, swot analysis), while the second aims to introduce a policy vision described and supported by distinct (nevertheless integrated) actions, plans and measures to be implemented with the aim of city development and citizen wellbeing. In this procedure, the element of health is often neglected or under-evaluated. A relative survey was conducted among all Greek local authorities in order to shed light on the current situation. Evidence shows that the rate of incorporation of health in strategic planning is lacking behind. The survey also highlights key hindrances and concerns raised by local officials and suggests a path for the way forward.

Keywords: urban health, strategic planning, local authorities, integrated development

Procedia PDF Downloads 77
22642 Geometallurgy of Niobium Deposits: An Integrated Multi-Disciplined Approach

Authors: Mohamed Nasraoui

Abstract:

Spatial ore distribution, ore heterogeneity and their links with geological processes involved in Niobium concentration are all factors for consideration when bridging field observations to extraction scheme. Indeed, mineralogy changes of Nb-hosting phases, their textural relationships with hydrothermal or secondary minerals, play a key control over mineral processing. This study based both on filed work and ore characterization presents data from several Nb-deposits related to carbonatite complexes. The results obtained by a wide range of analytical techniques, including, XRD, XRF, ICP-MS, SEM, Microprobe, Spectro-CL, FTIR-DTA and Mössbauer spectroscopy, demonstrate how geometallurgical assessment, at all stage of mine development, can greatly assist in the design of a suitable extraction flowsheet and data reconciliation.

Keywords: carbonatites, Nb-geometallurgy, Nb-mineralogy, mineral processing.

Procedia PDF Downloads 169
22641 Discovery of Exoplanets in Kepler Data Using a Graphics Processing Unit Fast Folding Method and a Deep Learning Model

Authors: Kevin Wang, Jian Ge, Yinan Zhao, Kevin Willis

Abstract:

Kepler has discovered over 4000 exoplanets and candidates. However, current transit planet detection techniques based on the wavelet analysis and the Box Least Squares (BLS) algorithm have limited sensitivity in detecting minor planets with a low signal-to-noise ratio (SNR) and long periods with only 3-4 repeated signals over the mission lifetime of 4 years. This paper presents a novel precise-period transit signal detection methodology based on a new Graphics Processing Unit (GPU) Fast Folding algorithm in conjunction with a Convolutional Neural Network (CNN) to detect low SNR and/or long-period transit planet signals. A comparison with BLS is conducted on both simulated light curves and real data, demonstrating that the new method has higher speed, sensitivity, and reliability. For instance, the new system can detect transits with SNR as low as three while the performance of BLS drops off quickly around SNR of 7. Meanwhile, the GPU Fast Folding method folds light curves 25 times faster than BLS, a significant gain that allows exoplanet detection to occur at unprecedented period precision. This new method has been tested with all known transit signals with 100% confirmation. In addition, this new method has been successfully applied to the Kepler of Interest (KOI) data and identified a few new Earth-sized Ultra-short period (USP) exoplanet candidates and habitable planet candidates. The results highlight the promise for GPU Fast Folding as a replacement to the traditional BLS algorithm for finding small and/or long-period habitable and Earth-sized planet candidates in-transit data taken with Kepler and other space transit missions such as TESS(Transiting Exoplanet Survey Satellite) and PLATO(PLAnetary Transits and Oscillations of stars).

Keywords: algorithms, astronomy data analysis, deep learning, exoplanet detection methods, small planets, habitable planets, transit photometry

Procedia PDF Downloads 226
22640 Ontology-Based Systemizing of the Science Information Devoted to Waste Utilizing by Methanogenesis

Authors: Ye. Shapovalov, V. Shapovalov, O. Stryzhak, A. Salyuk

Abstract:

Over the past decades, amount of scientific information has been growing exponentially. It became more complicated to process and systemize this amount of data. The approach to systematization of scientific information on the production of biogas based on the ontological IT platform “T.O.D.O.S.” has been developed. It has been proposed to select semantic characteristics of each work for their further introduction into the IT platform “T.O.D.O.S.”. An ontological graph with a ranking function for previous scientific research and for a system of selection of microorganisms has been worked out. These systems provide high performance of information management of scientific information.

Keywords: ontology-based analysis, analysis of scientific data, methanogenesis, microorganism hierarchy, 'T.O.D.O.S.'

Procedia PDF Downloads 165
22639 Thermodynamic Approach of Lanthanide-Iron Double Oxides Formation

Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze

Abstract:

Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity – temperature functions and by using the semi-empirical method for calculation of ΔH298.15 of formation. Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.

Keywords: calorimetry, entropy, enthalpy, heat capacity, gibbs energy of formation, rare earth iron garnets

Procedia PDF Downloads 385
22638 A Physical Theory of Information vs. a Mathematical Theory of Communication

Authors: Manouchehr Amiri

Abstract:

This article introduces a general notion of physical bit information that is compatible with the basics of quantum mechanics and incorporates the Shannon entropy as a special case. This notion of physical information leads to the Binary data matrix model (BDM), which predicts the basic results of quantum mechanics, general relativity, and black hole thermodynamics. The compatibility of the model with holographic, information conservation, and Landauer’s principles are investigated. After deriving the “Bit Information principle” as a consequence of BDM, the fundamental equations of Planck, De Broglie, Beckenstein, and mass-energy equivalence are derived.

Keywords: physical theory of information, binary data matrix model, Shannon information theory, bit information principle

Procedia PDF Downloads 176
22637 Grapevine Farmers’ Adaptation to Climate Change and its Implication to Human Health: A Case of Dodoma, Tanzania

Authors: Felix Y. Mahenge, Abiud L. Kaswamila, Davis G. Mwamfupe

Abstract:

Grapevine is a drought resistant crop, although in recent years it has been observed to be affect by climate change. This compelled investigation of grapevine farmers’ adaptation strategies to climate change in Dodoma, Tanzania. A mixed research approach was adopted. Likewise, purposive and random sampling techniques were used to select individuals for the study. About 248 grapevine farmers and 64 key informants and members of focus group discussions were involved. Primary data were collected through surveys, discussions, interviews, and observations, while secondary data were collected through documentary reviews. Quantitative data were analysed through descriptive statistics by means of IBM (SPSS) software while the qualitative data were analysed through content analysis. The findings indicate that climate change has adversely affected grapevine production leading to the occurrence of grapevine pests and diseases, drought which increases costs for irrigation and uncertainties which affect grapevine markets. For the purpose of lessening grapevine production constraints due to climate change, farmers have been using several adaptation strategies. Some of the strategies include application of pesticides, use of scarers to threaten birds, irrigation, timed pruning, manure fertilisers and diversification to other farm or non-farm activities. The use of pesticides and industrial fertilizers were regarded as increasing human health risks in the study area. The researchers recommend that the Tanzania government should strengthen the agricultural extension services in the study area so that the farmers undertake adaptation strategies with the consideration of human health safety.

Keywords: grapevine farmers, adaptation, climate change, human health

Procedia PDF Downloads 95
22636 Application of ANN and Fuzzy Logic Algorithms for Runoff and Sediment Yield Modelling of Kal River, India

Authors: Mahesh Kothari, K. D. Gharde

Abstract:

The ANN and fuzzy logic (FL) models were developed to predict the runoff and sediment yield for catchment of Kal river, India using 21 years (1991 to 2011) rainfall and other hydrological data (evaporation, temperature and streamflow lag by one and two day) and 7 years data for sediment yield modelling. The ANN model performance improved with increasing the input vectors. The fuzzy logic model was performing with R value more than 0.95 during developmental stage and validation stage. The comparatively FL model found to be performing well to ANN in prediction of runoff and sediment yield for Kal river.

Keywords: transferred function, sigmoid, backpropagation, membership function, defuzzification

Procedia PDF Downloads 572
22635 Variety and the Distribution of the Java Language Lexicon “Sleeping” in Jombang District East Java: Study of Geographic Dialectology

Authors: Krismonika Khoirunnisa

Abstract:

This research article aims to describe the variation of the Javanese lexicon "Sleep " and its distribution in the Jombang area, East Java. The objectives of this study were (1) to classify the variation of the "Sleep" lexicon in the Jombang area and (2) to design the fish rips for the variation of the "Sleep" lexicon according to their distribution. This type of research is a qualitative descriptive study using the method of leading proficiency, namely conducting interviews with speakers without directly meeting the speakers (interviews via WhatsApp and email as the media). This research article uses techniques record as support and tools for mapping and classifying data, collecting data in this study conducted at four points, namely the Kaliwungu village (Jombang City), Banjardowo village (District of Jombang), Mayangan Village (Subdistrict Jogoroto), and Karobelah village (Subdistrict Mojoagung) as a target investigators to conduct the interview. This study uses the dialectology theory as a basis for analyzing the data obtained. The results of this study found that the Javanese language variation "Sleep" has many different linguals, meanings, and forms even though they are in the same area (Jombang).

Keywords: geographical dialectology, lexicon variations, jombangan dialect, sssavanese language

Procedia PDF Downloads 227
22634 Building and Tree Detection Using Multiscale Matched Filtering

Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan

Abstract:

In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.

Keywords: building detection, local maximum filtering, matched filtering, multiscale

Procedia PDF Downloads 324
22633 LWD Acquisition of Caliper and Drilling Mechanics in a Geothermal Well, A Case Study in Sorik Marapi Field – Indonesia

Authors: Vinda B. Manurung, Laila Warkhaida, David Hutabarat, Sentanu Wisnuwardhana, Christovik Simatupang, Dhani Sanjaya, Ashadi, Redha B. Putra, Kiki Yustendi

Abstract:

The geothermal drilling environment presents many obstacles that have limited the use of directional drilling and logging-while-drilling (LWD) technologies, such as borehole washout, mud losses, severe vibration, and high temperature. The case study presented in this paper demonstrates a practice to enhance data logging in geothermal drilling by deploying advanced telemetry and LWD technologies. This operation is aiming continuous improvement in geothermal drilling operations. The case study covers a 12.25-in. hole section of well XX-05 in Pad XX of the Sorik Marapi Geothermal Field. LWD string consists of electromagnetic (EM) telemetry, pressure while drilling (PWD), vibration (DDSr), and acoustic calliper (ACAL). Through this tool configuration, the operator acquired drilling mechanics and caliper logs in real-time and recorded mode, enabling effective monitoring of wellbore stability. Throughout the real-time acquisition, EM-PPM telemetry had provided a three times faster data rate to the surface unit. With the integration of Caliper data and Drilling mechanics data (vibration and ECD -equivalent circulating density), the borehole conditions were more visible to the directional driller, allowing for better control of drilling parameters to minimize vibration and achieve optimum hole cleaning in washed-out or tight formation sequences. After reaching well TD, the recorded data from the caliper sensor indicated an average of 8.6% washout for the entire 12.25-in. interval. Washout intervals were compared with loss occurrence, showing potential for the caliper to be used as an indirect indicator of fractured intervals and validating fault trend prognosis. This LWD case study has given added value in geothermal borehole characterization for both drilling operation and subsurface. Identified challenges while running LWD in this geothermal environment need to be addressed for future improvements, such as the effect of tool eccentricity and the impact of vibration. A perusal of both real-time and recorded drilling mechanics and caliper data has opened various possibilities for maximizing sensor usage in future wells.

Keywords: geothermal drilling, geothermal formation, geothermal technologies, logging-while-drilling, vibration, caliper, case study

Procedia PDF Downloads 134
22632 A Mixed-Method Exploration of the Interrelationship between Corporate Governance and Firm Performance

Authors: Chen Xiatong

Abstract:

The study aims to explore the interrelationship between corporate governance factors and firm performance in Mainland China using a mixed-method approach. To clarify the current effectiveness of corporate governance, uncover the complex interrelationships between governance factors and firm performance, and enhance understanding of corporate governance strategies in Mainland China. The research involves quantitative methods like statistical analysis of governance factors and firm performance data, as well as qualitative approaches including policy research, case studies, and interviews with staff members. The study aims to reveal the current effectiveness of corporate governance in Mainland China, identify complex interrelationships between governance factors and firm performance, and provide suggestions for companies to enhance their governance practices. The research contributes to enriching the literature on corporate governance by providing insights into the effectiveness of governance practices in Mainland China and offering suggestions for improvement. Quantitative data will be gathered through surveys and sampling methods, focusing on governance factors and firm performance indicators. Qualitative data will be collected through policy research, case studies, and interviews with staff members. Quantitative data will be analyzed using statistical, mathematical, and computational techniques. Qualitative data will be analyzed through thematic analysis and interpretation of policy documents, case study findings, and interview responses. The study addresses the effectiveness of corporate governance in Mainland China, the interrelationship between governance factors and firm performance, and staff members' perceptions of corporate governance strategies. The research aims to enhance understanding of corporate governance effectiveness, enrich the literature on governance practices, and contribute to the field of business management and human resources management in Mainland China.

Keywords: corporate governance, business management, human resources management, board of directors

Procedia PDF Downloads 57
22631 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 96
22630 Standard Gibbs Energy of Formation and Entropy of Lanthanide-Iron Oxides of Garnet Crystal Structure

Authors: Vera Varazashvili, Murman Tsarakhov, Tamar Mirianashvili, Teimuraz Pavlenishvili, Tengiz Machaladze, Mzia Khundadze

Abstract:

Standard Gibbs energy of formation ΔGfor(298.15) of lanthanide-iron double oxides of garnet-type crystal structure R3Fe5O12 - RIG (R – are rare earth ions) from initial oxides are evaluated. The calculation is based on the data of standard entropies S298.15 and standard enthalpies ΔH298.15 of formation of compounds which are involved in the process of garnets synthesis. Gibbs energy of formation is presented as temperature function ΔGfor(T) for the range 300-1600K. The necessary starting thermodynamic data were obtained from calorimetric study of heat capacity and by using the semi-empirical method for calculation of ΔH298.15 (formation). Thermodynamic functions for standard temperature – enthalpy, entropy and Gibbs energy - are recommended as reference data for technological evaluations. Through the isostructural series of rare earth-iron garnets the correlation between thermodynamic properties and characteristics of lanthanide ions are elucidated.

Keywords: calorimetry, entropy, heat capacity, Gibbs energy of formation, rare earth iron garnets

Procedia PDF Downloads 357
22629 Methyltrioctylammonium Chloride as a Separation Solvent for Binary Mixtures: Evaluation Based on Experimental Activity Coefficients

Authors: B. Kabane, G. G. Redhi

Abstract:

An ammonium based ionic liquid (methyltrioctylammonium chloride) [N8 8 8 1] [Cl] was investigated as an extraction potential solvent for volatile organic solvents (in this regard, solutes), which includes alkenes, alkanes, ketones, alkynes, aromatic hydrocarbons, tetrahydrofuran (THF), alcohols, thiophene, water and acetonitrile based on the experimental activity coefficients at infinite THF measurements were conducted by the use of gas-liquid chromatography at four different temperatures (313.15 to 343.15) K. Experimental data of activity coefficients obtained across the examined temperatures were used in order to calculate the physicochemical properties at infinite dilution such as partial molar excess enthalpy, Gibbs free energy and entropy term. Capacity and selectivity data for selected petrochemical extraction problems (heptane/thiophene, heptane/benzene, cyclohaxane/cyclohexene, hexane/toluene, hexane/hexene) were computed from activity coefficients data and compared to the literature values with other ionic liquids. Evaluation of activity coefficients at infinite dilution expands the knowledge and provides a good understanding related to the interactions between the ionic liquid and the investigated compounds.

Keywords: separation, activity coefficients, methyltrioctylammonium chloride, ionic liquid, capacity

Procedia PDF Downloads 144
22628 Determination and Distribution of Formation Thickness Using Seismic and Well Data in Baga/Lake Sub-basin, Chad Basin Nigeria

Authors: Gabriel Efomeh Omolaiye, Olatunji Seminu, Jimoh Ajadi, Yusuf Ayoola Jimoh

Abstract:

The Nigerian part of the Chad Basin till date has been one of the few critically studied basins, with few published scholarly works, compared to other basins such as Niger Delta, Dahomey, etc. This work was undertaken by the integration of 3D seismic interpretations and the well data analysis of eight wells fairly distributed in block A, Baga/Lake sub-basin in Borno basin with the aim of determining the thickness of Chad, Kerri-Kerri, Fika, and Gongila Formations in the sub-basin. Da-1 well (type-well) used in this study was subdivided into stratigraphic units based on the regional stratigraphic subdivision of the Chad basin and was later correlated with other wells using similarity of observed log responses. The combined density and sonic logs were used to generate synthetic seismograms for seismic to well ties. Five horizons were mapped, representing the tops of the formations on the 3D seismic data covering the block; average velocity function with maximum error/residual of 0.48% was adopted in the time to depth conversion of all the generated maps. There is a general thickening of sediments from the west to the east, and the estimated thicknesses of the various formations in the Baga/Lake sub-basin are Chad Formation (400-750 m), Kerri-Kerri Formation (300-1200 m), Fika Formation (300-2200 m) and Gongila Formation (100-1300 m). The thickness of the Bima Formation could not be established because the deepest well (Da-1) terminates within the formation. This is a modification to the previous and widely referenced studies of over forty decades that based the estimation of formation thickness within the study area on the observed outcrops at different locations and the use of few well data.

Keywords: Baga/Lake sub-basin, Chad basin, formation thickness, seismic, velocity

Procedia PDF Downloads 192
22627 Gender Based Variability Time Series Complexity Analysis

Authors: Ramesh K. Sunkaria, Puneeta Marwaha

Abstract:

Nonlinear methods of heart rate variability (HRV) analysis are becoming more popular. It has been observed that complexity measures quantify the regularity and uncertainty of cardiovascular RR-interval time series. In the present work, SampEn has been evaluated in healthy Normal Sinus Rhythm (NSR) male and female subjects for different data lengths and tolerance level r. It is demonstrated that SampEn is small for higher values of tolerance r. Also SampEn value of healthy female group is higher than that of healthy male group for short data length and with increase in data length both groups overlap each other and it is difficult to distinguish them. The SampEn gives inaccurate results by assigning higher value to female group, because male subject have more complex HRV pattern than that of female subjects. Therefore, this traditional algorithm exhibits higher complexity for healthy female subjects than for healthy male subjects, which is misleading observation. This may be due to the fact that SampEn do not account for multiple time scales inherent in the physiologic time series and the hidden spatial and temporal fluctuations remains unexplored.

Keywords: heart rate variability, normal sinus rhythm group, RR interval time series, sample entropy

Procedia PDF Downloads 285
22626 Inference for Compound Truncated Poisson Lognormal Model with Application to Maximum Precipitation Data

Authors: M. Z. Raqab, Debasis Kundu, M. A. Meraou

Abstract:

In this paper, we have analyzed maximum precipitation data during a particular period of time obtained from different stations in the Global Historical Climatological Network of the USA. One important point to mention is that some stations are shut down on certain days for some reason or the other. Hence, the maximum values are recorded by excluding those readings. It is assumed that the number of stations that operate follows zero-truncated Poisson random variables, and the daily precipitation follows a lognormal random variable. We call this model a compound truncated Poisson lognormal model. The proposed model has three unknown parameters, and it can take a variety of shapes. The maximum likelihood estimators can be obtained quite conveniently using Expectation-Maximization (EM) algorithm. Approximate maximum likelihood estimators are also derived. The associated confidence intervals also can be obtained from the observed Fisher information matrix. Simulation results have been performed to check the performance of the EM algorithm, and it is observed that the EM algorithm works quite well in this case. When we analyze the precipitation data set using the proposed model, it is observed that the proposed model provides a better fit than some of the existing models.

Keywords: compound Poisson lognormal distribution, EM algorithm, maximum likelihood estimation, approximate maximum likelihood estimation, Fisher information, skew distribution

Procedia PDF Downloads 111
22625 Clusterization Probability in 14N Nuclei

Authors: N. Burtebayev, Sh. Hamada, Zh. Kerimkulov, D. K. Alimov, A. V. Yushkov, N. Amangeldi, A. N. Bakhtibaev

Abstract:

The main aim of the current work is to examine if 14N is candidate to be clusterized nuclei or not. In order to check this attendance, we have measured the angular distributions for 14N ion beam elastically scattered on 12C target nuclei at different low energies; 17.5, 21, and 24.5MeV which are close to the Coulomb barrier energy for 14N+12C nuclear system. Study of various transfer reactions could provide us with useful information about the attendance of nuclei to be in a composite form (core + valence). The experimental data were analyzed using two approaches; Phenomenological (Optical Potential) and semi-microscopic (Double Folding Potential). The agreement between the experimental data and the theoretical predictions is fairly good in the whole angular range.

Keywords: deuteron transfer, elastic scattering, optical model, double folding, density distribution

Procedia PDF Downloads 329
22624 Approaches to Estimating the Radiation and Socio-Economic Consequences of the Fukushima Daiichi Nuclear Power Plant Accident Using the Data Available in the Public Domain

Authors: Dmitry Aron

Abstract:

Major radiation accidents carry not only the potential risks of negative consequences for public health due to exposure but also because of large-scale emergency measures were taken by authorities to protect the population, which can lead to unreasonable social and economic damage. It is technically difficult, as a rule, to assess the possible costs and damages from decisions on evacuation or resettlement of residents in the shortest possible time, since it requires specially prepared information systems containing relevant information on demographic, economic parameters and incoming data on radiation conditions. Foreign observers also face the difficulties in assessing the consequences of an accident in a foreign territory, since they usually do not have official and detailed statistical data on the territory of foreign state beforehand. Also, they can suppose the application of unofficial data from open Internet sources is an unreliable and overly labor-consuming procedure. This paper describes an approach to prompt creation of relational database that contains detailed actual data on economics, demographics and radiation situation at the Fukushima Prefecture during the Fukushima Daiichi NPP accident, received by the author from open Internet sources. This database was developed and used to assess the number of evacuated population, radiation doses, expected financial losses and other parameters of the affected areas. The costs for the areas with temporarily evacuated and long-term resettled population were investigated, and the radiological and economic effectiveness of the measures taken to protect the population was estimated. Some of the results are presented in the article. The study showed that such a tool for analyzing the consequences of radiation accidents can be prepared in a short space of time for the entire territory of Japan, and it can serve for the modeling of social and economic consequences for hypothetical accidents for any nuclear power plant in its territory.

Keywords: Fukushima, radiation accident, emergency measures, database

Procedia PDF Downloads 193
22623 Investigating the Effects of Empowering the Employees in Managing Crimes by the Police

Authors: Akbar Salimi, Mehdi Moghimi

Abstract:

Goal: The human resource empowerment is a new strategy in achieving a competitive advantage. The aim of the research is to understand crime management by the police by using this strategy. Method: The research is applied in terms of goal and it is a survey type research. The sample intended include all the police officers of a police station for as many as 52 people. The data were collected by a researcher made four choice questionnaire after the validity and reliability were confirmed. Findings: By regarding the Melhem pattern as the framework, four dimensions of empowerment were identified and the triangle of crime was explained and then four hypotheses proportionate to it were formulated. Results: Given the fact that the sample was all counted, all the four hypotheses were supported by using the average data received and by regarding the %50 as the criterion.

Keywords: management, empowerment, employees, police

Procedia PDF Downloads 377
22622 Detection of Abnormal Process Behavior in Copper Solvent Extraction by Principal Component Analysis

Authors: Kirill Filianin, Satu-Pia Reinikainen, Tuomo Sainio

Abstract:

Frequent measurements of product steam quality create a data overload that becomes more and more difficult to handle. In the current study, plant history data with multiple variables was successfully treated by principal component analysis to detect abnormal process behavior, particularly, in copper solvent extraction. The multivariate model is based on the concentration levels of main process metals recorded by the industrial on-stream x-ray fluorescence analyzer. After mean-centering and normalization of concentration data set, two-dimensional multivariate model under principal component analysis algorithm was constructed. Normal operating conditions were defined through control limits that were assigned to squared score values on x-axis and to residual values on y-axis. 80 percent of the data set were taken as the training set and the multivariate model was tested with the remaining 20 percent of data. Model testing showed successful application of control limits to detect abnormal behavior of copper solvent extraction process as early warnings. Compared to the conventional techniques of analyzing one variable at a time, the proposed model allows to detect on-line a process failure using information from all process variables simultaneously. Complex industrial equipment combined with advanced mathematical tools may be used for on-line monitoring both of process streams’ composition and final product quality. Defining normal operating conditions of the process supports reliable decision making in a process control room. Thus, industrial x-ray fluorescence analyzers equipped with integrated data processing toolbox allows more flexibility in copper plant operation. The additional multivariate process control and monitoring procedures are recommended to apply separately for the major components and for the impurities. Principal component analysis may be utilized not only in control of major elements’ content in process streams, but also for continuous monitoring of plant feed. The proposed approach has a potential in on-line instrumentation providing fast, robust and cheap application with automation abilities.

Keywords: abnormal process behavior, failure detection, principal component analysis, solvent extraction

Procedia PDF Downloads 311
22621 A New DIDS Design Based on a Combination Feature Selection Approach

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

Feature selection has been used in many fields such as classification, data mining and object recognition and proven to be effective for removing irrelevant and redundant features from the original data set. In this paper, a new design of distributed intrusion detection system using a combination feature selection model based on bees and decision tree. Bees algorithm is used as the search strategy to find the optimal subset of features, whereas decision tree is used as a judgment for the selected features. Both the produced features and the generated rules are used by Decision Making Mobile Agent to decide whether there is an attack or not in the networks. Decision Making Mobile Agent will migrate through the networks, moving from node to another, if it found that there is an attack on one of the nodes, it then alerts the user through User Interface Agent or takes some action through Action Mobile Agent. The KDD Cup 99 data set is used to test the effectiveness of the proposed system. The results show that even if only four features are used, the proposed system gives a better performance when it is compared with the obtained results using all 41 features.

Keywords: distributed intrusion detection system, mobile agent, feature selection, bees algorithm, decision tree

Procedia PDF Downloads 411