Search results for: non-orthogonal stagnation-point heat transfer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4833

Search results for: non-orthogonal stagnation-point heat transfer

2073 Study The Role Effect of Poly Pyrrole on LiFePO4 as Positive Electrode

Authors: Atef Youssef, Marwa Mostafa Moharam

Abstract:

The effects of poly pyrrole (PP) addition on LiFePO4 have been studied by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and galvanostatic measurements. PP was prepared with LiFePO₄ in different ways, such as chemically dispersion, insinuation polymerization, and electrochemically polymerization. The EIS results showed that the charge transfer resistance (Rct) of LiFePO₄ was decreased by adding 10% PP polymerized in a situation to 153 vs. 1660  for bare LiFePO₄. The CV curves show that 10% PP added LiFePO₄ had higher electrochemical reactivity for lithium insertion and extraction than the un-doped material. The mean redox potential is E1/2 = 3.45 V vs. Li+/Li. The first discharge curve of the 10% poly pyrrole doped LiFePO₄ showed a mainly flat voltage plateau over the 3.45–3.5 V range, indicating the lithium extraction and insertion reactions between LiFePO₄ and FePO₄. A specific discharge capacity of cells prepared from in-situ 10% PP added LiFePO4to was about 210 vs. 65 mAhg-1 for bare LiFePO₄.

Keywords: liFePO₄, poly pyrrole addition, positive electrode, lithium battery

Procedia PDF Downloads 208
2072 Iron Oxide Reduction Using Solar Concentration and Carbon-Free Reducers

Authors: Bastien Sanglard, Simon Cayez, Guillaume Viau, Thomas Blon, Julian Carrey, Sébastien Lachaize

Abstract:

The need to develop clean production processes is a key challenge of any industry. Steel and iron industries are particularly concerned since they emit 6.8% of global anthropogenic greenhouse gas emissions. One key step of the process is the high-temperature reduction of iron ore using coke, leading to large amounts of CO2 emissions. One route to decrease impacts is to get rid of fossil fuels by changing both the heat source and the reducer. The present work aims at investigating experimentally the possibility to use concentrated solar energy and carbon-free reducing agents. Two sets of experimentations were realized. First, in situ X-ray diffraction on pure and industrial powder of hematite was realized to study the phase evolution as a function of temperature during reduction under hydrogen and ammonia. Secondly, experiments were performed on industrial iron ore pellets, which were reduced by NH3 or H2 into a “solar furnace” composed of a controllable 1600W Xenon lamp to simulate and control the solar concentrated irradiation of a glass reactor and of a diaphragm to control light flux. Temperature and pressure were recorded during each experiment via thermocouples and pressure sensors. The percentage of iron oxide converted to iron (called thereafter “reduction ratio”) was found through Rietveld refinement. The power of the light source and the reduction time were varied. Results obtained in the diffractometer reaction chamber show that iron begins to form at 300°C with pure Fe2O3 powder and 400°C with industrial iron ore when maintained at this temperature for 60 minutes and 80 minutes, respectively. Magnetite and wuestite are detected on both powders during the reduction under hydrogen; under ammonia, iron nitride is also detected for temperatures between400°C and 600°C. All the iron oxide was converted to iron for a reaction of 60 min at 500°C, whereas a conversion ratio of 96% was reached with industrial powder for a reaction of 240 min at 600°C under hydrogen. Under ammonia, full conversion was also reached after 240 min of reduction at 600 °C. For experimentations into the solar furnace with iron ore pellets, the lamp power and the shutter opening were varied. An 83.2% conversion ratio was obtained with a light power of 67 W/cm2 without turning over the pellets. Nevertheless, under the same conditions, turning over the pellets in the middle of the experiment permits to reach a conversion ratio of 86.4%. A reduction ratio of 95% was reached with an exposure of 16 min by turning over pellets at half time with a flux of 169W/cm2. Similar or slightly better results were obtained under an ammonia reducing atmosphere. Under the same flux, the highest reduction yield of 97.3% was obtained under ammonia after 28 minutes of exposure. The chemical reaction itself, including the solar heat source, does not produce any greenhouse gases, so solar metallurgy represents a serious way to reduce greenhouse gas emission of metallurgy industry. Nevertheless, the ecological impact of the reducers must be investigated, which will be done in future work.

Keywords: solar concentration, metallurgy, ammonia, hydrogen, sustainability

Procedia PDF Downloads 138
2071 Avoiding Packet Drop for Improved through Put in the Multi-Hop Wireless N/W

Authors: Manish Kumar Rajak, Sanjay Gupta

Abstract:

Mobile ad hoc networks (MANETs) are infrastructure less and intercommunicate using single-hop and multi-hop paths. Network based congestion avoidance which involves managing the queues in the network devices is an integral part of any network. QoS: A set of service requirements that are met by the network while transferring a packet stream from a source to a destination. Especially in MANETs, packet loss results in increased overheads. This paper presents a new algorithm to avoid congestion using one or more queue on nodes and corresponding flow rate decided in advance for each node. When any node attains an initial value of queue then it sends this status to its downstream nodes which in turn uses the pre-decided flow rate of packet transfer to its upstream nodes. The flow rate on each node is adjusted according to the status received from its upstream nodes. This proposed algorithm uses the existing infrastructure to inform to other nodes about its current queue status.

Keywords: mesh networks, MANET, packet count, threshold, throughput

Procedia PDF Downloads 474
2070 Analysis of CO₂ Two-Phase Ejector with Taguchi and ANOVA Optimization and Refrigerant Selection with Enviro Economic Concerns by TOPSIS Analysis

Authors: Karima Megdouli, Bourhan tachtouch

Abstract:

Ejector refrigeration cycles offer an alternative to conventional systems for producing cold from low-temperature heat. In this article, a thermodynamic model is presented. This model has the advantage of simplifying the calculation algorithm and describes the complex double-throttling mechanism that occurs in the ejector. The model assumption and calculation algorithm are presented first. The impact of each efficiency is evaluated. Validation is performed on several data sets. The ejector model is then used to simulate a RES (refrigeration ejector system), to validate its robustness and suitability for use in predicting thermodynamic cycle performance. A Taguchi and ANOVA optimization is carried out on a RES. TOPSIS analysis was applied to decide the optimum refrigerants with cost, safety, environmental and enviro economic concerns along with thermophysical properties.

Keywords: ejector, velocity distribution, shock circle, Taguchi and ANOVA optimization, TOPSIS analysis

Procedia PDF Downloads 89
2069 Development of Composite Material for Thermal and Electrical Insulation

Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale, Rubens Maribondo do Nascimento, José Ubiragi de Lima Mendes

Abstract:

Recycling has been greatly stimulated by the market. There are already several products that are produced with recycled materials and various wastes have been studied in various forms of applications. The vast majority of insulation applications in domestic, commercial and industrial systems in the range of low and medium temperatures (up to 180 ° C), using the aggressive nature materials such as glass wool, rock wool, polyurethane, polystyrene. Such materials, while retaining the effectiveness of the heat flux, are disposed as expensive and take years too absorbed by nature. Thus, trying to adapt to a global policy on the preservation of the environment, a study in order to develop an insulating compound of natural / industrial waste and biodegradable materials conducted. Thus, this research presents the development of a composite material based zest tire and latex for thermal and electrical insulation.

Keywords: composite, latex, scrapes tire, insulation, electrical

Procedia PDF Downloads 535
2068 Two-Channels Thermal Energy Storage Tank: Experiments and Short-Cut Modelling

Authors: M. Capocelli, A. Caputo, M. De Falco, D. Mazzei, V. Piemonte

Abstract:

This paper presents the experimental results and the related modeling of a thermal energy storage (TES) facility, ideated and realized by ENEA and realizing the thermocline with an innovative geometry. Firstly, the thermal energy exchange model of an equivalent shell & tube heat exchanger is described and tested to reproduce the performance of the spiral exchanger installed in the TES. Through the regression of the experimental data, a first-order thermocline model was also validated to provide an analytical function of the thermocline, useful for the performance evaluation and the comparison with other systems and implementation in simulations of integrated systems (e.g. power plants). The experimental data obtained from the plant start-up and the short-cut modeling of the system can be useful for the process analysis, for the scale-up of the thermal storage system and to investigate the feasibility of its implementation in actual case-studies.

Keywords: CSP plants, thermal energy storage, thermocline, mathematical modelling, experimental data

Procedia PDF Downloads 329
2067 Leadership Values in Succession Processes

Authors: Peter Heimerl, Alexander Plaikner, Mike Peters

Abstract:

Background and Significance of the Study: Family-run businesses are a decisive economic factor in the Alpine tourism and leisure industry. Within the next years, it is expected that a large number of family-run small and medium-sized businesses will transfer ownership due to demographic developments. Four stages of succession processes can be identified by several empirical studies: (1) the preparation phase, (2) the succession planning phase, (3) the development of the succession concept, (4) and the implementation of the business transfer. Family business research underlines the importance of individual's and family’s values: Especially leadership values address mainly the first phase, which strongly determines the following stages. Aim of the Study: The study aims at answering the following research question: Which leadership values are dominating during succession processes in family-run businesses in Austrian Alpine tourism industry? Methodology: Twenty-two problem-centred individual interviews with 11 transferors and their 11 transferees were conducted. Data analysis was carried out using the software program MAXQDA following an inductive approach to data coding. Major Findings: Data analysis shows that nine values particularly influence succession processes, especially during the vulnerable preparation phase. Participation is the most-dominant value (162 references). It covers a style of cooperation, communication, and controlling. Discipline (142) is especially prevailing from the transferor's perspective. It addresses entrepreneurial honesty and customer orientation. Development (138) is seen as an important value, but it can be distinguished between transferors and transferees. These are mainly focused on strategic positioning and new technologies. Trust (105) is interpreted as a basic prerequisite to run the family firm smoothly. Interviewees underline the importance to be able to take a break from family-business management; however, this is only possible when openness and honesty constitute trust within the family firm. Loyalty (102): Almost all interviewees perceive that they can influence the loyalty of the employees through their own role models. A good work-life balance (90) is very important to most of the transferors, especially for their employees. Despite the communicated importance of a good work-life-balance, but however, mostly the commitment to the company is prioritised. Considerations of regionality (82) and regional responsibility are also frequently raised. Appreciation (75) is of great importance to both the handover and the takeover generation -as appreciation towards the employees in the company and especially in connection with the family. Familiarity (66) and the blurring of the boundaries between private and professional life are very common, especially in family businesses. Familial contact and open communication with employees which is mentioned in almost all handing over. Conclusions: In the preparation phase of succession, successors and incumbents have to consider and discuss their leadership and family values of family-business management. Quite often, assistance is needed to commonly and openly discuss these values in the early stages of succession processes. A large majority of handovers fail because of these values. Implications can be drawn to support family businesses, e.g., consulting initiatives at chambers of commerce and business consultancies must address this problem.

Keywords: leadership values, family business, succession processes, succession phases

Procedia PDF Downloads 98
2066 Investigating the Influence of Potassium Ion Doping on Lithium-Ion Battery Performance

Authors: Liyew Yizengaw Yitayih

Abstract:

This nanotechnology study focuses on how potassium ions (K+) affect lithium-ion (Li-ion) battery performance. By adding potassium ions (K+) to the lithium tin oxide (LiSnO) anode and employing styrene-butadiene rubber (SBR) as a binder, the doping of K+ was specifically studied. The methods employed in this study include computer modeling and simulation, material fabrication, and electrochemical characterization. The potassium ions (Li+) were successfully doped into the LiSnO lattice during charge/discharge cycles, which increased the lithium-ion diffusivity and electrical conductivity within the anode. However, it was found that internal doping of potassium ions (K+) into the LiSnO lattice occurred at high potassium ion concentrations (>16.6%), which hampered lithium ion transfer because of repulsion and physical blockage. The electrochemical efficiency of lithium-ion batteries was improved by this comprehensive study's presentation of potassium ions' (K+) potential advantages when present in the appropriate concentrations in electrode materials.

Keywords: lithium-ion battery, LiSnO anode, potassium doping, lithium-ion diffusivity, electronic conductivity

Procedia PDF Downloads 65
2065 Fabrication of Titania and Thermally Reduced Graphene Oxide Composite Nanofibers by Electrospinning Process

Authors: R. F. Louh, Cathy Chou, Victor Wang, Howard Yan

Abstract:

The aim of this study is to manufacture titania and reduced graphene oxide (TiO2/rGO) composite nanofibers via electrospinning (ESP) of precursor fluid consisted of titania sol containing polyvinylpyrrolidone (PVP) and titanium isopropoxide (TTIP) and GO solution. The GO nanoparticles were derived from Hummers’ method. A metal grid ring was used to provide the bias voltage to reach higher ESP yield and nonwoven fabric with dense network of TiO2/GO composite nanofibers. The ESP product was heat treated at 500°C for 2 h in nitrogen atmosphere to acquire TiO2/rGO nanofibers by thermal reduction of GO and phase transformation into anatase TiO2. The TiO2/rGO nanofibers made from various volume fractions of GO solution by ESP were analyzed by FE-SEM, TEM, XRD, EDS, BET and FTIR. Such TiO2/rGO fibers having photocatalytic property, high specific surface area and electrical conductivity can be used for photovoltaics and chemical sensing applications.

Keywords: electrospinning process, titanium oxide, thermally reduced graphene oxide, composite nanofibers

Procedia PDF Downloads 448
2064 Test Rig Development for Up-to-Date Experimental Study of Multi-Stage Flash Distillation Process

Authors: Marek Vondra, Petr Bobák

Abstract:

Vacuum evaporation is a reliable and well-proven technology with a wide application range which is frequently used in food, chemical or pharmaceutical industries. Recently, numerous remarkable studies have been carried out to investigate utilization of this technology in the area of wastewater treatment. One of the most successful applications of vacuum evaporation principal is connected with seawater desalination. Since 1950’s, multi-stage flash distillation (MSF) has been the leading technology in this field and it is still irreplaceable in many respects, despite a rapid increase in cheaper reverse-osmosis-based installations in recent decades. MSF plants are conveniently operated in countries with a fluctuating seawater quality and at locations where a sufficient amount of waste heat is available. Nowadays, most of the MSF research is connected with alternative heat sources utilization and with hybridization, i.e. merging of different types of desalination technologies. Some of the studies are concerned with basic principles of the static flash phenomenon, but only few scientists have lately focused on the fundamentals of continuous multi-stage evaporation. Limited measurement possibilities at operating plants and insufficiently equipped experimental facilities may be the reasons. The aim of the presented study was to design, construct and test an up-to-date test rig with an advanced measurement system which will provide real time monitoring options of all the important operational parameters under various conditions. The whole system consists of a conventionally designed MSF unit with 8 evaporation chambers, versatile heating circuit for different kinds of feed water (e.g. seawater, waste water), sophisticated system for acquisition and real-time visualization of all the related quantities (temperature, pressure, flow rate, weight, conductivity, pH, water level, power input), access to a wide spectrum of operational media (salt, fresh and softened water, steam, natural gas, compressed air, electrical energy) and integrated transparent features which enable a direct visual control of selected physical mechanisms (water evaporation in chambers, water level right before brine and distillate pumps). Thanks to the adjustable process parameters, it is possible to operate the test unit at desired operational conditions. This allows researchers to carry out statistical design and analysis of experiments. Valuable results obtained in this manner could be further employed in simulations and process modeling. First experimental tests confirm correctness of the presented approach and promise interesting outputs in the future. The presented experimental apparatus enables flexible and efficient research of the whole MSF process.

Keywords: design of experiment, multi-stage flash distillation, test rig, vacuum evaporation

Procedia PDF Downloads 387
2063 A Variational Reformulation for the Thermomechanically Coupled Behavior of Shape Memory Alloys

Authors: Elisa Boatti, Ulisse Stefanelli, Alessandro Reali, Ferdinando Auricchio

Abstract:

Thanks to their unusual properties, shape memory alloys (SMAs) are good candidates for advanced applications in a wide range of engineering fields, such as automotive, robotics, civil, biomedical, aerospace. In the last decades, the ever-growing interest for such materials has boosted several research studies aimed at modeling their complex nonlinear behavior in an effective and robust way. Since the constitutive response of SMAs is strongly thermomechanically coupled, the investigation of the non-isothermal evolution of the material must be taken into consideration. The present study considers an existing three-dimensional phenomenological model for SMAs, able to reproduce the main SMA properties while maintaining a simple user-friendly structure, and proposes a variational reformulation of the full non-isothermal version of the model. While the considered model has been thoroughly assessed in an isothermal setting, the proposed formulation allows to take into account the full nonisothermal problem. In particular, the reformulation is inspired to the GENERIC (General Equations for Non-Equilibrium Reversible-Irreversible Coupling) formalism, and is based on a generalized gradient flow of the total entropy, related to thermal and mechanical variables. Such phrasing of the model is new and allows for a discussion of the model from both a theoretical and a numerical point of view. Moreover, it directly implies the dissipativity of the flow. A semi-implicit time-discrete scheme is also presented for the fully coupled thermomechanical system, and is proven unconditionally stable and convergent. The correspondent algorithm is then implemented, under a space-homogeneous temperature field assumption, and tested under different conditions. The core of the algorithm is composed of a mechanical subproblem and a thermal subproblem. The iterative scheme is solved by a generalized Newton method. Numerous uniaxial and biaxial tests are reported to assess the performance of the model and algorithm, including variable imposed strain, strain rate, heat exchange properties, and external temperature. In particular, the heat exchange with the environment is the only source of rate-dependency in the model. The reported curves clearly display the interdependence between phase transformation strain and material temperature. The full thermomechanical coupling allows to reproduce the exothermic and endothermic effects during respectively forward and backward phase transformation. The numerical tests have thus demonstrated that the model can appropriately reproduce the coupled SMA behavior in different loading conditions and rates. Moreover, the algorithm has proved effective and robust. Further developments are being considered, such as the extension of the formulation to the finite-strain setting and the study of the boundary value problem.

Keywords: generalized gradient flow, GENERIC formalism, shape memory alloys, thermomechanical coupling

Procedia PDF Downloads 221
2062 Virtualization of Biomass Colonization: Potential of Application in Precision Medicine

Authors: Maria Valeria De Bonis, Gianpaolo Ruocco

Abstract:

Nowadays, computational modeling is paving new design and verification ways in a number of industrial sectors. The technology is ripe to challenge some case in the Bioengineering and Medicine frameworks: for example, looking at the strategical and ethical importance of oncology research, efforts should be made to yield new and powerful resources to tumor knowledge and understanding. With these driving motivations, we approach this gigantic problem by using some standard engineering tools such as the mathematics behind the biomass transfer. We present here some bacterial colonization studies in complex structures. As strong analogies hold with some tumor proliferation, we extend our study to a benchmark case of solid tumor. By means of a commercial software, we model biomass and energy evolution in arbitrary media. The approach will be useful to cast virtualization cases of cancer growth in human organs, while augmented reality tools will be used to yield for a realistic aid to informed decision in treatment and surgery.

Keywords: bacteria, simulation, tumor, precision medicine

Procedia PDF Downloads 335
2061 Secure Intelligent Information Management by Using a Framework of Virtual Phones-On Cloud Computation

Authors: Mohammad Hadi Khorashadi Zadeh

Abstract:

Many new applications and internet services have been emerged since the innovation of mobile networks and devices. However, these applications have problems of security, management, and performance in business environments. Cloud systems provide information transfer, management facilities, and security for virtual environments. Therefore, an innovative internet service and a business model are proposed in the present study for creating a secure and consolidated environment for managing the mobile information of organizations based on cloud virtual phones (CVP) infrastructures. Using this method, users can run Android and web applications in the cloud which enhance performance by connecting to other CVP users and increases privacy. It is possible to combine the CVP with distributed protocols and central control which mimics the behavior of human societies. This mix helps in dealing with sensitive data in mobile devices and facilitates data management with less application overhead.

Keywords: BYOD, mobile cloud computing, mobile security, information management

Procedia PDF Downloads 317
2060 A Theoretical Overview of Thermoluminescence

Authors: Sadhana Agrawal, Tarkeshwari Verma, Shmbhavi Katyayan

Abstract:

The magnificently accentuating phenomenon of luminescence has gathered a lot of attentions from last few decades. Probably defined as the one involving emission of light from certain kinds of substances on absorbing various energies in the form of external stimulus, the phenomenon claims a versatile pertinence. First observed and reported in an extract of Ligrium Nephriticum by Monards, the phenomenon involves turning of crystal clear water into colorful fluid when comes in contact with the special wood. In words of Sir G.G. Stokes, the phenomenon actually involves three different techniques – absorption, excitation and emission. With variance in external stimulus, the corresponding luminescence phenomenon is obtained. Here, this paper gives a concise discussion of thermoluminescence which is one of the types of luminescence obtained when the external stimulus is given in form of heat energy. A deep insight of thermoluminescence put forward a qualitative analysis of various parameters such as glow curves peaks, trap depth, frequency factors and order of kinetics.

Keywords: frequency factor, glow curve peaks, thermoluminescence, trap depth

Procedia PDF Downloads 399
2059 Trait of Sales Professionals

Authors: Yuichi Morita, Yoshiteru Nakamori

Abstract:

In car dealer business of Japan, a sale professional is a key factor of company’s success. We hypothesize that, if a corporation knows what is the sales professionals’ trait of its corporation’s business field, it will be easier for a corporation to secure and nurture sales persons effectively. The lean human resources management will ensure business success and good performance of corporations, especially small and medium ones. The goal of the paper is to determine the traits of sales professionals for small-and medium-size car dealers, using chi-square test and the variable rough set model. As a result, the results illustrate that experience of job change, learning ability and product knowledge are important, and an academic background, building a career with internal transfer, experience of the leader and self-development are not important to be a sale professional. Also, we illustrate sales professionals’ traits are persistence, humility, improvisation and passion at business.

Keywords: traits of sales professionals, variable precision rough sets theory, sales professional, sales professionals

Procedia PDF Downloads 382
2058 Novel Technique for calculating Surface Potential Gradient of Overhead Line Conductors

Authors: Sudip Sudhir Godbole

Abstract:

In transmission line surface potential gradient is a critical design parameter for planning overhead line, as it determines the level of corona loss (CL), radio interference (RI) and audible noise (AN).With increase of transmission line voltage level bulk power transfer is possible, using bundle conductor configuration used, it is more complex to find accurate surface stress in bundle configuration. The majority of existing models for surface gradient calculations are based on analytical methods which restrict their application in simulating complex surface geometry. This paper proposes a novel technique which utilizes both analytical and numerical procedure to predict the surface gradient. One of 400 kV transmission line configurations has been selected as an example to compare the results for different methods. The different strand shapes are a key variable in determining.

Keywords: surface gradient, Maxwell potential coefficient method, market and Mengele’s method, successive images method, charge simulation method, finite element method

Procedia PDF Downloads 538
2057 Load Relaxation Behavior of Ferritic Stainless Steels

Authors: Seok Hong Min, Tae Kwon Ha

Abstract:

High-temperature deformation behavior of ferritic stainless steels such as STS 409L, STS 430J1L, and STS 429EM has been investigated in this study. Specimens with fully annealed microstructure were obtained by heat treatment. A series of load relaxation tests has been conducted on these samples at temperatures ranging from 200 to 900oC to construct flow curves in the strain rate range from 10-6 s-1 to 10-3 s-1. Strain hardening was not observed at high temperatures above 800oC in any stainless steels. Load relaxation behavior at the temperature was closely related with high-temperature mechanical properties such as the thermal fatigue and tensile behaviors. Load drop ratio of 436L stainless steel was much higher than that of the other steels. With increasing temperature, strength and load drop ratio of ferritic stainless steels showed entirely different trends.

Keywords: ferritic stainless steel, high temperature deformation, load relaxation, microstructure, strain rate sensitivity

Procedia PDF Downloads 335
2056 Smart Monitoring and Control of Tap Changer Using Intelligent Electronic Device

Authors: K. N. Dinesh Babu, M. V. Gopalan, G. R. Manjunatha, R. Ramaprabha, V. Rajini

Abstract:

In this paper, monitoring and control of tap changer mechanism of a transformer implementation in an intelligent electronic device (IED) is discussed. Its been a custom for decades to provide a separate panel for on load tap changer control for monitoring the tap position. However this facility cannot either record or transfer the information to remote control centers. As there is a technology shift towards the smart grid protection and control standards, the need for implementing remote control and monitoring has necessitated the implementation of this feature in numerical relays. This paper deals with the programming, settings and logic implementation which is applicable to both IEC 61850 compatible and non-compatible IEDs thereby eliminating the need for separate tap changer control equipment. The monitoring mechanism has been implemented in a 28MVA, 110 /6.9kV transformer with 16 tap position with GE make T60 IED at Ultratech cement limited Gulbarga, Karnataka and is in successful service.

Keywords: transformer protection, tap changer control, tap position monitoring, on load tap changer, intelligent electronic device (IED)

Procedia PDF Downloads 594
2055 Interplay of Material and Cycle Design in a Vacuum-Temperature Swing Adsorption Process for Biogas Upgrading

Authors: Federico Capra, Emanuele Martelli, Matteo Gazzani, Marco Mazzotti, Maurizio Notaro

Abstract:

Natural gas is a major energy source in the current global economy, contributing to roughly 21% of the total primary energy consumption. Production of natural gas starting from renewable energy sources is key to limit the related CO2 emissions, especially for those sectors that heavily rely on natural gas use. In this context, biomethane produced via biogas upgrading represents a good candidate for partial substitution of fossil natural gas. The upgrading process of biogas to biomethane consists in (i) the removal of pollutants and impurities (e.g. H2S, siloxanes, ammonia, water), and (ii) the separation of carbon dioxide from methane. Focusing on the CO2 removal process, several technologies can be considered: chemical or physical absorption with solvents (e.g. water, amines), membranes, adsorption-based systems (PSA). However, none emerged as the leading technology, because of (i) the heterogeneity in plant size, ii) the heterogeneity in biogas composition, which is strongly related to the feedstock type (animal manure, sewage treatment, landfill products), (iii) the case-sensitive optimal tradeoff between purity and recovery of biomethane, and iv) the destination of the produced biomethane (grid injection, CHP applications, transportation sector). With this contribution, we explore the use of a technology for biogas upgrading and we compare the resulting performance with benchmark technologies. The proposed technology makes use of a chemical sorbent, which is engineered by RSE and consists of Di-Ethanol-Amine deposited on a solid support made of γ-Alumina, to chemically adsorb the CO2 contained in the gas. The material is packed into fixed beds that cyclically undergo adsorption and regeneration steps. CO2 is adsorbed at low temperature and ambient pressure (or slightly above) while the regeneration is carried out by pulling vacuum and increasing the temperature of the bed (vacuum-temperature swing adsorption - VTSA). Dynamic adsorption tests were performed by RSE and were used to tune the mathematical model of the process, including material and transport parameters (i.e. Langmuir isotherms data and heat and mass transport). Based on this set of data, an optimal VTSA cycle was designed. The results enabled a better understanding of the interplay between material and cycle tuning. As exemplary application, the upgrading of biogas for grid injection, produced by an anaerobic digester (60-70% CO2, 30-40% CH4), for an equivalent size of 1 MWel was selected. A plant configuration is proposed to maximize heat recovery and minimize the energy consumption of the process. The resulting performances are very promising compared to benchmark solutions, which make the VTSA configuration a valuable alternative for biomethane production starting from biogas.

Keywords: biogas upgrading, biogas upgrading energetic cost, CO2 adsorption, VTSA process modelling

Procedia PDF Downloads 277
2054 Study the Effect of Sensitization on the Microstructure and Mechanical Properties of Gas Tungsten Arc Welded AISI 304 Stainless Steel Joints

Authors: Viranshu Kumar, Hitesh Arora, Pradeep Joshi

Abstract:

SS 304 is Austenitic stainless steel with Chromium and Nickel as basic constituents. It has excellent corrosion resistance properties and very good weldability. Austenitic stainless steels have superior mechanical properties at high temperatures and are used extensively in a range of applications. SS 304L has wide applications in various industries viz. Nuclear, Pharmaceutical, marine, chemical etc. due to its excellent applications and ease of joining this material has become very popular for fabrication as well as weld surfacing. Austenitic stainless steels have a tendency to form chromium depleted zones at the grain boundaries during welding and heat treatment, where chromium combines with available carbon in the vicinity of the grain boundaries, to produce an area depleted in chromium, and thus becomes susceptible to intergranular corrosion. This phenomenon is known as sensitization.

Keywords: sensitization, SS 304, GTAW, mechanical properties, carbideprecipitationHAZ, microstructure, micro hardness, tensile strength

Procedia PDF Downloads 398
2053 Examining of Tool Wear in Cryogenic Machining of Cobalt-Based Haynes 25 Superalloy

Authors: Murat Sarıkaya, Abdulkadir Güllü

Abstract:

Haynes 25 alloy (also known as L-605 alloy) is cobalt based super alloy which has widely applications such as aerospace industry, turbine and furnace parts, power generators and heat exchangers and petroleum refining components due to its excellent characteristics. However, the workability of this alloy is more difficult compared to normal steels or even stainless. In present work, an experimental investigation was performed under cryogenic cooling to determine cutting tool wear patterns and obtain optimal cutting parameters in turning of cobalt based superalloy Haynes 25. In experiments, uncoated carbide tool was used and cutting speed (V) and feed rate (f) were considered as test parameters. Tool wear (VBmax) were measured for process performance indicators. Analysis of variance (ANOVA) was performed to determine the importance of machining parameters.

Keywords: cryogenic machining, difficult-to-cut alloy, tool wear, turning

Procedia PDF Downloads 592
2052 Effect of Transition Metal Addition on Aging Behavior of Invar Alloy

Authors: Young Sik Kim, Tae Kwon Ha

Abstract:

High strength Fe-36Ni-base Invar alloys containing Al contents up to 0.3 weight per cent were cast into ingots and thermodynamic equilibrium during solidification has been investigated in this study. From the thermodynamic simulation using Thermo-Calc®, it has been revealed that equilibrium phases which can be formed are two kinds of MC-type precipitates, MoC, and M2C carbides. The mu phase was also expected to form by addition of aluminum. Microstructure observation revealed the coarse precipitates in the as-cast ingots, which was non-equilibrium phase and could be resolved by the successive heat treatment. With increasing Al contents up to 0.3 wt.%, tensile strength of Invar alloy increased as 1400MPa after cold rolling and thermal expansion coefficient increased significantly. Cold rolling appeared to dramatically decrease thermal expansion coefficient.

Keywords: Invar alloy, transition metals, phase equilibrium, aging behavior, microstructure, hardness

Procedia PDF Downloads 532
2051 Proecological Antioxidants for Stabilisation of Polymeric Composites

Authors: A. Masek, M. Zaborski

Abstract:

Electrochemical oxidation of dodecyl gallate (lauryl gallate), the main monomer flavanol found in green tea, was investigated on platinum electrodes using cyclic voltammetry (CV) and differential pulse (DPV) methods. The rate constant, electron transfer coefficient and diffusion coefficients were determined for dodecyl gallate electrochemical oxidation. The oxidation mechanism proceeds in sequential steps related to the hydroxyl groups in the aromatic ring of dodecyl gallate. Confirmed antioxidant activity of lauryl gallate verified its use in polymers as an environment-friendly stabiliser to improve the resistance to aging of the elastomeric materials. Based on the energy change of the deformation, cross-linking density and time of the oxygen induction with the TG method, we confirmed the high antioxidant activity of lauryl gallate in polymers. Moreover, the research on biodegradation confirmed the environment-friendly influence of the antioxidant by increasing the susceptibility of the elastomeric materials to disintegration by mildew mushrooms.

Keywords: polymers, flavonoids, stabilization, ageing

Procedia PDF Downloads 380
2050 Short and Long Crack Growth Behavior in Ferrite Bainite Dual Phase Steels

Authors: Ashok Kumar, Shiv Brat Singh, Kalyan Kumar Ray

Abstract:

There is growing awareness to design steels against fatigue damage Ferrite martensite dual-phase steels are known to exhibit favourable mechanical properties like good strength, ductility, toughness, continuous yielding, and high work hardening rate. However, dual-phase steels containing bainite as second phase are potential alternatives for ferrite martensite steels for certain applications where good fatigue property is required. Fatigue properties of dual phase steels are popularly assessed by the nature of variation of crack growth rate (da/dN) with stress intensity factor range (∆K), and the magnitude of fatigue threshold (∆Kth) for long cracks. There exists an increased emphasis to understand not only the long crack fatigue behavior but also short crack growth behavior of ferrite bainite dual phase steels. The major objective of this report is to examine the influence of microstructures on the short and long crack growth behavior of a series of developed dual-phase steels with varying amounts of bainite and. Three low carbon steels containing Nb, Cr and Mo as microalloying elements steels were selected for making ferrite-bainite dual-phase microstructures by suitable heat treatments. The heat treatment consisted of austenitizing the steel at 1100°C for 20 min, cooling at different rates in air prior to soaking these in a salt bath at 500°C for one hour, and finally quenching in water. Tensile tests were carried out on 25 mm gauge length specimens with 5 mm diameter using nominal strain rate 0.6x10⁻³ s⁻¹ at room temperature. Fatigue crack growth studies were made on a recently developed specimen configuration using a rotating bending machine. The crack growth was monitored by interrupting the test and observing the specimens under an optical microscope connected to an Image analyzer. The estimated crack lengths (a) at varying number of cycles (N) in different fatigue experiments were analyzed to obtain log da/dN vs. log °∆K curves for determining ∆Kthsc. The microstructural features of these steels have been characterized and their influence on the near threshold crack growth has been examined. This investigation, in brief, involves (i) the estimation of ∆Kthsc and (ii) the examination of the influence of microstructure on short and long crack fatigue threshold. The maximum fatigue threshold values obtained from short crack growth experiments on various specimens of dual-phase steels containing different amounts of bainite are found to increase with increasing bainite content in all the investigated steels. The variations of fatigue behavior of the selected steel samples have been explained with the consideration of varying amounts of the constituent phases and their interactions with the generated microstructures during cyclic loading. Quantitative estimation of the different types of fatigue crack paths indicates that the propensity of a crack to pass through the interfaces depends on the relative amount of the microstructural constituents. The fatigue crack path is found to be predominantly intra-granular except for the ones containing > 70% bainite in which it is predominantly inter-granular.

Keywords: bainite, dual phase steel, fatigue crack growth rate, long crack fatigue threshold, short crack fatigue threshold

Procedia PDF Downloads 204
2049 SiC Particulate-Reinforced SiC Composites Fabricated by PIP Method Using Highly Concentrated SiC Slurry

Authors: Jian Gu, Sea-Hoon Lee, Jun-Seop Kim

Abstract:

SiC particulate-reinforced SiC ceramic composites (SiCp/SiC) were successfully fabricated using polymer impregnation and pyrolysis (PIP) method. The effects of green density, infiltrated method, pyrolytic temperature, and heating rate on the densification behavior of the composites were investigated. SiCp/SiC particulate reinforced composites with high relative density up to 88.06% were fabricated after 4 PIP cycles using SiC pellets with high green density. The pellets were prepared by drying 62-70 vol.% aqueous SiC slurries, and the maximum relative density of the pellets was 75.5%. The hardness of the as-fabricated SiCp/SiCs was 21.05 GPa after 4 PIP cycles, which value increased to 23.99 GPa after a heat treatment at 2000℃. Excellent mechanical properties, thermal stability, and short processing time render the SiCp/SiC composite as a challenging candidate for the high-temperature application.

Keywords: high green density, mechanical property, polymer impregnation and pyrolysis, structural application

Procedia PDF Downloads 138
2048 Development and Sound Absorption and Insulation Performance Evaluation of Nonwoven Fabric Material including Paper Honeycomb Structure for Insulator Covering Shelf Trim

Authors: In-Sung Lee, Un-Hwan Park, Jun-Hyeok Heo, Dae-Gyu Park

Abstract:

Insulator Covering Shelf Trim is one of the automotive interior parts located in the rear seat of a car, and it is a component that is the most strongly demanded for impact resistance, strength, and heat resistance. Such an Insulator Covering Shelf Trim is composed of a polyethylene terephthalate (PET) nonwoven fabric which is a surface material appearing externally and a substrate layer which exerts shape and mechanical strength. In this paper, we develop a lightweight Insulator Covering Shelf Trim using the nonwoven fabric material with a high strength honeycomb structure and evaluate sound absorption and insulation performance by using acoustic impedance tubes.

Keywords: sound absorption and insulation, insulator covering shelf trim, nonwoven fabric, honeycomb

Procedia PDF Downloads 732
2047 Investigating Trophic Relationships in Moroccan Marine Ecosystems: A Study of the Mediterranean and Atlantic Using Ecopath

Authors: Salma Aboussalam, Karima Khalil, Khalid Elkalay

Abstract:

An Ecopath model was employed to investigate the trophic structure, function, and current state of the Moroccan Mediterranean Sea ecosystem. The model incorporated 31 functional groups, including 21 fish species, 7 invertebrates, 2 primary producers, and a detritus group. The trophic interactions among these groups were analyzed, revealing an average trophic transfer efficiency of 23%. The results indicated that the ecosystem produced more energy than it consumed, with high respiration and consumption rates. Indicators of stability and development were low for the Finn cycle index (13.97), system omnivory index (0.18), and average Finn path length (3.09), indicating a disturbed ecosystem with a linear trophic structure. Keystone species were identified through the use of the keystone index and mixed trophic impact analysis, with demersal invertebrates, zooplankton, and cephalopods found to have a significant impact on other groups.

Keywords: Ecopath, food web, trophic flux, Moroccan Mediterranean Sea

Procedia PDF Downloads 103
2046 Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio

Authors: Taekyun Kim, Jongho Park, Jinwoong Choi, Sun-Kyu Park

Abstract:

Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased.

Keywords: concrete, mixing ratio, textile, TRC

Procedia PDF Downloads 405
2045 Dielectric Behavior of 2D Layered Insulator Hexagonal Boron Nitride

Authors: Nikhil Jain, Yang Xu, Bin Yu

Abstract:

Hexagonal boron nitride (h-BN) has been used as a substrate and gate dielectric for graphene field effect transistors (GFETs). Using a graphene/h-BN/TiN (channel/dielectric/gate) stack, key material properties of h-BN were investigated i.e. dielectric strength and tunneling behavior. Work function difference between graphene and TiN results in spontaneous p-doping of graphene through a multi-layer h-BN flake. However, at high levels of current stress, n-doping of graphene is observed, possibly due to the charge transfer across the thin h-BN multi layer. Neither Direct Tunneling (DT) nor Fowler-Nordheim Tunneling (FNT) was observed in TiN/h-BN/Au hetero structures with h-BN showing two distinct volatile conduction states before breakdown. Hexagonal boron nitride emerges as a material of choice for gate dielectrics in GFETs because of robust dielectric properties and high tunneling barrier.

Keywords: graphene, transistors, conduction, hexagonal boron nitride, dielectric strength, tunneling

Procedia PDF Downloads 365
2044 The Role of Social Media in Activating Youth Participation in the Community

Authors: Raya Hamed Hilal Al Maamari

Abstract:

The Gulf societies have been undergoing radical changes due to the technology transfer. It altered the humanities attitudes, especially, youth habits as they have become an addicted to using social media. This study aimed to find out the ratio of social media in guiding youth to participate with government’s institutions in decision-making and developing their societies. The study considered a descriptive study, social survey method was used on a sample of 100 young from different gulf countries, using an electronic questionnaire, as well as, some interviews with famous leaders of youth groups. Finally, the researcher suggested some effective ways activate youth efforts using social media in an effective manner to plan for the development policy in the community. The findings illustrated that social media plays a vital role in encouraging youth to participate enthusiastically in providing services. Noticeably, social media contains large numbers of youth. Therefore, the influences will be widely and feasible. Moreover, the study indicated the fact that most of the youth teamwork started in social media. Then, it has been growing in the real society.

Keywords: community, participation, social media, youth

Procedia PDF Downloads 375