Search results for: logistics network optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7890

Search results for: logistics network optimization

5130 Under the 'Umbrella' Project: A Volunteer-Mentoring Approach for Socially Disadvantaged University Students

Authors: Evridiki Zachopoulou, Vasilis Grammatikopoulos, Michail Vitoulis, Athanasios Gregoriadis

Abstract:

In the last ten years, the recent economic crisis in Greece has decreased the financial ability and strength of several families when it comes to supporting their children’s studies. As a result, the number of students who are significantly delaying or even dropping out of their university studies is constantly increasing. The students who are at greater risk for academic failure are those who are facing various problems and social disadvantages, like health problems, special needs, family poverty or unemployment, single-parent students, immigrant students, etc. The ‘Umbrella’ project is a volunteer-based initiative to tackle this problem at International Hellenic University. The main purpose of the project is to provide support to disadvantaged students at a socio-emotional, academic, and practical level in order to help them complete their undergraduate studies. More specifically, the ‘Umbrella’ project has the following goals: (a) to develop a consulting-supporting network based on volunteering senior students, called ‘i-mentors’. (b) to train the volunteering i-mentors and create a systematic and consistent support procedure for students at-risk, (c), to develop a service that, parallel to the i-mentor network will be ensuring opportunities for at-risk students to find a job, (d) to support students who are coping with accessibility difficulties, (e) to secure the sustainability of the ‘Umbrella’ project after the completion of the funding of the project. The innovation of the Umbrella project is in its holistic-person-centered approach that will be providing individualized support -via the i-mentors network- to any disadvantaged student that will come ‘under the Umbrella.’

Keywords: peer mentoring, student support, socially disadvantaged students, volunteerism in higher education

Procedia PDF Downloads 234
5129 A Memetic Algorithm for an Energy-Costs-Aware Flexible Job-Shop Scheduling Problem

Authors: Christian Böning, Henrik Prinzhorn, Eric C. Hund, Malte Stonis

Abstract:

In this article, the flexible job-shop scheduling problem is extended by consideration of energy costs which arise owing to the power peak, and further decision variables such as work in process and throughput time are incorporated into the objective function. This enables a production plan to be simultaneously optimized in respect of the real arising energy and logistics costs. The energy-costs-aware flexible job-shop scheduling problem (EFJSP) which arises is described mathematically, and a memetic algorithm (MA) is presented as a solution. In the MA, the evolutionary process is supplemented with a local search. Furthermore, repair procedures are used in order to rectify any infeasible solutions that have arisen in the evolutionary process. The potential for lowering the real arising costs of a production plan through consideration of energy consumption levels is highlighted.

Keywords: energy costs, flexible job-shop scheduling, memetic algorithm, power peak

Procedia PDF Downloads 345
5128 Speech Emotion Recognition with Bi-GRU and Self-Attention based Feature Representation

Authors: Bubai Maji, Monorama Swain

Abstract:

Speech is considered an essential and most natural medium for the interaction between machines and humans. However, extracting effective features for speech emotion recognition (SER) is remains challenging. The present studies show that the temporal information captured but high-level temporal-feature learning is yet to be investigated. In this paper, we present an efficient novel method using the Self-attention (SA) mechanism in a combination of Convolutional Neural Network (CNN) and Bi-directional Gated Recurrent Unit (Bi-GRU) network to learn high-level temporal-feature. In order to further enhance the representation of the high-level temporal-feature, we integrate a Bi-GRU output with learnable weights features by SA, and improve the performance. We evaluate our proposed method on our created SITB-OSED and IEMOCAP databases. We report that the experimental results of our proposed method achieve state-of-the-art performance on both databases.

Keywords: Bi-GRU, 1D-CNNs, self-attention, speech emotion recognition

Procedia PDF Downloads 113
5127 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning

Authors: Xu Jie

Abstract:

As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.

Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling

Procedia PDF Downloads 13
5126 Design and Optimization for a Compliant Gripper with Force Regulation Mechanism

Authors: Nhat Linh Ho, Thanh-Phong Dao, Shyh-Chour Huang, Hieu Giang Le

Abstract:

This paper presents a design and optimization for a compliant gripper. The gripper is constructed based on the concept of compliant mechanism with flexure hinge. A passive force regulation mechanism is presented to control the grasping force a micro-sized object instead of using a sensor force. The force regulation mechanism is designed using the planar springs. The gripper is expected to obtain a large range of displacement to handle various sized objects. First of all, the statics and dynamics of the gripper are investigated by using the finite element analysis in ANSYS software. And then, the design parameters of the gripper are optimized via Taguchi method. An orthogonal array L9 is used to establish an experimental matrix. Subsequently, the signal to noise ratio is analyzed to find the optimal solution. Finally, the response surface methodology is employed to model the relationship between the design parameters and the output displacement of the gripper. The design of experiment method is then used to analyze the sensitivity so as to determine the effect of each parameter on the displacement. The results showed that the compliant gripper can move with a large displacement of 213.51 mm and the force regulation mechanism is expected to be used for high precision positioning systems.

Keywords: flexure hinge, compliant mechanism, compliant gripper, force regulation mechanism, Taguchi method, response surface methodology, design of experiment

Procedia PDF Downloads 331
5125 An ANN-Based Predictive Model for Diagnosis and Forecasting of Hypertension

Authors: Obe Olumide Olayinka, Victor Balanica, Eugen Neagoe

Abstract:

The effects of hypertension are often lethal thus its early detection and prevention is very important for everybody. In this paper, a neural network (NN) model was developed and trained based on a dataset of hypertension causative parameters in order to forecast the likelihood of occurrence of hypertension in patients. Our research goal was to analyze the potential of the presented NN to predict, for a period of time, the risk of hypertension or the risk of developing this disease for patients that are or not currently hypertensive. The results of the analysis for a given patient can support doctors in taking pro-active measures for averting the occurrence of hypertension such as recommendations regarding the patient behavior in order to lower his hypertension risk. Moreover, the paper envisages a set of three example scenarios in order to determine the age when the patient becomes hypertensive, i.e. determine the threshold for hypertensive age, to analyze what happens if the threshold hypertensive age is set to a certain age and the weight of the patient if being varied, and, to set the ideal weight for the patient and analyze what happens with the threshold of hypertensive age.

Keywords: neural network, hypertension, data set, training set, supervised learning

Procedia PDF Downloads 391
5124 Implementation of Inference Fuzzy System as a Valuation Subsidiary is Based Particle Swarm Optimization for Solves the Issue of Decision Making in Middle Size Soccer Robot League

Authors: Zahra Abdolkarimi, Naser Zouri

Abstract:

Nowadays, there is unbelievable growing of Robots created a collection of complex and motivate subject in robotic and intellectual ornate, also it made a mechatronics style base of theoretical and technical way in Robocop. Additionally, robotics system recommended RoboCup factor as a provider of some standardization and testing method in case of computer discussion widely. The actual purpose of RoboCup is creating independent team of robots in 2050 based of FiFa roles to bring the victory in compare of world star team. In addition, decision making of robots depends to environment reaction, self-player and rival player with using inductive Fuzzy system valuation subsidiary to solve issue of robots in land game. The measure of selection in compare with other methods depends to amount of victories percentage in the same team that plays accidently. Consequences, shows method of our discussion is the best way for Particle Swarm Optimization and Fuzzy system compare to other decision of robotics algorithmic.

Keywords: PSO algorithm, inference fuzzy system, chaos theory, soccer robot league

Procedia PDF Downloads 403
5123 Assignment of Airlines Technical Members under Disruption

Authors: Walid Moudani

Abstract:

The Crew Reserve Assignment Problem (CRAP) considers the assignment of the crew members to a set of reserve activities covering all the scheduled flights in order to ensure a continuous plan so that operations costs are minimized while its solution must meet hard constraints resulting from the safety regulations of Civil Aviation as well as from the airlines internal agreements. The problem considered in this study is of highest interest for airlines and may have important consequences on the service quality and on the economic return of the operations. In this communication, a new mathematical formulation for the CRAP is proposed which takes into account the regulations and the internal agreements. While current solutions make use of Artificial Intelligence techniques run on main frame computers, a low cost approach is proposed to provide on-line efficient solutions to face perturbed operating conditions. The proposed solution method uses a dynamic programming approach for the duties scheduling problem and when applied to the case of a medium airline while providing efficient solutions, shows good potential acceptability by the operations staff. This optimization scheme can then be considered as the core of an on-line Decision Support System for crew reserve assignment operations management.

Keywords: airlines operations management, combinatorial optimization, dynamic programming, crew scheduling

Procedia PDF Downloads 354
5122 A Comparative Analysis of Heuristics Applied to Collecting Used Lubricant Oils Generated in the City of Pereira, Colombia

Authors: Diana Fajardo, Sebastián Ortiz, Oscar Herrera, Angélica Santis

Abstract:

Currently, in Colombia is arising a problem related to collecting used lubricant oils which are generated by the increment of the vehicle fleet. This situation does not allow a proper disposal of this type of waste, which in turn results in a negative impact on the environment. Therefore, through the comparative analysis of various heuristics, the best solution to the VRP (Vehicle Routing Problem) was selected by comparing costs and times for the collection of used lubricant oils in the city of Pereira, Colombia; since there is no presence of management companies engaged in the direct administration of the collection of this pollutant. To achieve this aim, six proposals of through methods of solution of two phases were discussed. First, the assignment of the group of generator points of the residue was made (previously identified). Proposals one and four of through methods are based on the closeness of points. The proposals two and five are using the scanning method and the proposals three and six are considering the restriction of the capacity of collection vehicle. Subsequently, the routes were developed - in the first three proposals by the Clarke and Wright's savings algorithm and in the following proposals by the Traveling Salesman optimization mathematical model. After applying techniques, a comparative analysis of the results was performed and it was determined which of the proposals presented the most optimal values in terms of the distance, cost and travel time.

Keywords: Heuristics, optimization Model, savings algorithm, used vehicular oil, V.R.P.

Procedia PDF Downloads 414
5121 An Exploratory Factor and Cluster Analysis of the Willingness to Pay for Last Mile Delivery

Authors: Maximilian Engelhardt, Stephan Seeck

Abstract:

The COVID-19 pandemic is accelerating the already growing field of e-commerce. The resulting urban freight transport volume leads to traffic and negative environmental impact. Furthermore, the service level of parcel logistics service provider is lacking far behind the expectations of consumer. These challenges can be solved by radically reorganize the urban last mile distribution structure: parcels could be consolidated in a micro hub within the inner city and delivered within time windows by cargo bike. This approach leads to a significant improvement of consumer satisfaction with their overall delivery experience. However, this approach also leads to significantly increased costs per parcel. While there is a relevant share of online shoppers that are willing to pay for such a delivery service there are no deeper insights about this target group available in the literature. Being aware of the importance of knowing target groups for businesses, the aim of this paper is to elaborate the most important factors that determine the willingness to pay for sustainable and service-oriented parcel delivery (factor analysis) and to derive customer segments (cluster analysis). In order to answer those questions, a data set is analyzed using quantitative methods of multivariate statistics. The data set was generated via an online survey in September and October 2020 within the five largest cities in Germany (n = 1.071). The data set contains socio-demographic, living-related and value-related variables, e.g. age, income, city, living situation and willingness to pay. In a prior work of the author, the data was analyzed applying descriptive and inference statistical methods that only provided limited insights regarding the above-mentioned research questions. The analysis in an exploratory way using factor and cluster analysis promise deeper insights of relevant influencing factors and segments for user behavior of the mentioned parcel delivery concept. The analysis model is built and implemented with help of the statistical software language R. The data analysis is currently performed and will be completed in December 2021. It is expected that the results will show the most relevant factors that are determining user behavior of sustainable and service-oriented parcel deliveries (e.g. age, current service experience, willingness to pay) and give deeper insights in characteristics that describe the segments that are more or less willing to pay for a better parcel delivery service. Based on the expected results, relevant implications and conclusions can be derived for startups that are about to change the way parcels are delivered: more customer-orientated by time window-delivery and parcel consolidation, more environmental-friendly by cargo bike. The results will give detailed insights regarding their target groups of parcel recipients. Further research can be conducted by exploring alternative revenue models (beyond the parcel recipient) that could compensate the additional costs, e.g. online-shops that increase their service-level or municipalities that reduce traffic on their streets.

Keywords: customer segmentation, e-commerce, last mile delivery, parcel service, urban logistics, willingness-to-pay

Procedia PDF Downloads 108
5120 Optimization the Multiplicity of Infection for Large Produce of Lytic Bacteriophage pAh6-C

Authors: Sang Guen Kim, Sib Sankar Giri, Jin Woo Jun, Saekil Yun, Hyoun Joong Kim, Sang Wha Kim, Jung Woo Kang, Se Jin Han, Se Chang Park

Abstract:

Emerging of the super bacteria, bacteriophages are considered to be as an alternative to antibiotics. As the demand of phage increased, economical and large production of phage is becoming one of the critical points. For the therapeutic use, what is important is to eradicate the pathogenic bacteria as fast as possible, so higher concentration of phages is generally needed for effective therapeutic function. On the contrary, for the maximum production, bacteria work as a phage producing factory. As a microbial cell factory, bacteria is needed to last longer producing the phages without eradication. Consequently, killing the bacteria fast has a negative effect on large production. In this study, Multiplicity of Infection (MOI) was manipulated based on initial bacterial inoculation and used phage pAh-6C which has therapeutic effect against Aeromonas hydrophila. 1, 5 and 10 percent of overnight bacterial culture was inoculated and each bacterial culture was co-cultured with the phage of which MOI of 0.01, 0.0001, and 0.000001 respectively. Simply changing the initial MOI as well as bacterial inoculation concentration has regulated the production quantity of the phage without any other changes to culture conditions. It is anticipated that this result can be used as a foundational data for mass production of lytic bacteriophages which can be used as the therapeutic bio-control agent.

Keywords: bacteriophage, multiplicity of infection, optimization, Aeromonas hydrophila

Procedia PDF Downloads 308
5119 Mitigating Denial of Service Attacks in Information Centric Networking

Authors: Bander Alzahrani

Abstract:

Information-centric networking (ICN) using architectures such as Publish-Subscribe Internet Routing Paradigm (PSIRP) is one of the promising candidates for a future Internet, has recently been under the spotlight by the research community to investigate the possibility of redesigning the current Internet architecture to solve many issues such as routing scalability, security, and quality of services issues.. The Bloom filter-based forwarding is a source-routing approach that is used in the PSIRP architecture. This mechanism is vulnerable to brute force attacks which may lead to denial-of-service (DoS) attacks. In this work, we present a new forwarding approach that keeps the advantages of Bloom filter-based forwarding while mitigates attacks on the forwarding mechanism. In practice, we introduce a special type of forwarding nodes called Edge-FW to be placed at the edge of the network. The role of these node is to add an extra security layer by validating and inspecting packets at the edge of the network against brute-force attacks and check whether the packet contains a legitimate forwarding identifier (FId) or not. We leverage Certificateless Aggregate Signature (CLAS) scheme with a small size of 64-bit which is used to sign the FId. Hence, this signature becomes bound to a specific FId. Therefore, malicious nodes that inject packets with random FIds will be easily detected and dropped at the Edge-FW node when the signature verification fails. Our preliminary security analysis suggests that with the proposed approach, the forwarding plane is able to resist attacks such as DoS with very high probability.

Keywords: bloom filter, certificateless aggregate signature, denial-of-service, information centric network

Procedia PDF Downloads 198
5118 A Simple Fluid Dynamic Model for Slippery Pulse Pattern in Traditional Chinese Pulse Diagnosis

Authors: Yifang Gong

Abstract:

Pulse diagnosis is one of the most important diagnosis methods in traditional Chinese medicine. It is also the trickiest method to learn. It is known as that it can only to be sensed not explained. This becomes a serious threat to the survival of this diagnostic method. However, there are a large amount of experiences accumulated during the several thousand years of practice of Chinese doctors. A pulse pattern called 'Slippery pulse' is one of the indications of pregnancy. A simple fluid dynamic model is proposed to simulate the effects of the existence of a placenta. The placenta is modeled as an extra plenum in an extremely simplified fluid network model. It is found that because of the existence of the extra plenum, indeed the pulse pattern shows a secondary peak in one pulse period. As for the author’s knowledge, this work is the first time to show the link between Pulse diagnoses and basic physical principle. Key parameters which might affect the pattern are also investigated.

Keywords: Chinese medicine, flow network, pregnancy, pulse

Procedia PDF Downloads 383
5117 Analysis of Road Network Vulnerability Due to Merapi Volcano Eruption

Authors: Imam Muthohar, Budi Hartono, Sigit Priyanto, Hardiansyah Hardiansyah

Abstract:

The eruption of Merapi Volcano in Yogyakarta, Indonesia in 2010 caused many casualties due to minimum preparedness in facing disaster. Increasing population capacity and evacuating to safe places become very important to minimize casualties. Regional government through the Regional Disaster Management Agency has divided disaster-prone areas into three parts, namely ring 1 at a distance of 10 km, ring 2 at a distance of 15 km and ring 3 at a distance of 20 km from the center of Mount Merapi. The success of the evacuation is fully supported by road network infrastructure as a way to rescue in an emergency. This research attempts to model evacuation process based on the rise of refugees in ring 1, expanded to ring 2 and finally expanded to ring 3. The model was developed using SATURN (Simulation and Assignment of Traffic to Urban Road Networks) program version 11.3. 12W, involving 140 centroid, 449 buffer nodes, and 851 links across Yogyakarta Special Region, which was aimed at making a preliminary identification of road networks considered vulnerable to disaster. An assumption made to identify vulnerability was the improvement of road network performance in the form of flow and travel times on the coverage of ring 1, ring 2, ring 3, Sleman outside the ring, Yogyakarta City, Bantul, Kulon Progo, and Gunung Kidul. The research results indicated that the performance increase in the road networks existing in the area of ring 2, ring 3, and Sleman outside the ring. The road network in ring 1 started to increase when the evacuation was expanded to ring 2 and ring 3. Meanwhile, the performance of road networks in Yogyakarta City, Bantul, Kulon Progo, and Gunung Kidul during the evacuation period simultaneously decreased in when the evacuation areas were expanded. The results of preliminary identification of the vulnerability have determined that the road networks existing in ring 1, ring 2, ring 3 and Sleman outside the ring were considered vulnerable to the evacuation of Mount Merapi eruption. Therefore, it is necessary to pay a great deal of attention in order to face the disasters that potentially occur at anytime.

Keywords: model, evacuation, SATURN, vulnerability

Procedia PDF Downloads 170
5116 Optimization of Fermentation Parameters for Bioethanol Production from Waste Glycerol by Microwave Induced Mutant Escherichia coli EC-MW (ATCC 11105)

Authors: Refal Hussain, Saifuddin M. Nomanbhay

Abstract:

Glycerol is a valuable raw material for the production of industrially useful metabolites. Among many promising applications for the use of glycerol is its bioconversion to high value-added compounds, such as bioethanol through microbial fermentation. Bioethanol is an important industrial chemical with emerging potential as a biofuel to replace vanishing fossil fuels. The yield of liquid fuel in this process was greatly influenced by various parameters viz, temperature, pH, glycerol concentration, organic concentration, and agitation speed were considered. The present study was undertaken to investigate optimum parameters for bioethanol production from raw glycerol by immobilized mutant Escherichia coli (E.coli) (ATCC11505) strain on chitosan cross linked glutaraldehyde optimized by Taguchi statistical method in shake flasks. The initial parameters were set each at four levels and the orthogonal array layout of L16 (45) conducted. The important controlling parameters for optimized the operational fermentation was temperature 38 °C, medium pH 6.5, initial glycerol concentration (250 g/l), and organic source concentration (5 g/l). Fermentation with optimized parameters was carried out in a custom fabricated shake flask. The predicted value of bioethanol production under optimized conditions was (118.13 g/l). Immobilized cells are mainly used for economic benefits of continuous production or repeated use in continuous as well as in batch mode.

Keywords: bioethanol, Escherichia coli, immobilization, optimization

Procedia PDF Downloads 653
5115 Transmission Network Expansion Planning in Deregulated Power Systems to Facilitate Competition under Uncertainties

Authors: Hooshang Mohammad Alikhani, Javad Nikoukar

Abstract:

Restructuring and deregulation of power industry have changed the objectives of transmission expansion planning and increased the uncertainties. Due to these changes, new approaches and criteria are needed for transmission planning in deregulated power systems. The objective of this research work is to present a new approach for transmission expansion planning with considering new objectives and uncertainties in deregulated power systems. The approach must take into account the desires of all stakeholders in transmission expansion planning. Market based criteria must be defined to achieve the new objectives. Combination of market based criteria, technical criteria and economical criteria must be used for measuring the goodness of expansion plans to achieve market requirements, technical requirements, and economical requirements altogether.

Keywords: deregulated power systems, transmission network, stakeholder, energy systems

Procedia PDF Downloads 654
5114 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning

Procedia PDF Downloads 151
5113 Leadership's Controlling via Complexity Investigation in Crisis Scenarios

Authors: Jiří Barta, Oldřich Svoboda, Jiří F. Urbánek

Abstract:

In this paper will be discussed two coin´s sides of crisis scenarios dynamics. On the one's side is negative role of subsidiary scenario branches in its compactness weakening by means unduly chaotic atomizing, having many interactive feedbacks cases, increasing a value of a complexity here. This negative role reflects the complexity of use cases, weakening leader compliancy, which brings something as a ´readiness for controlling capabilities provision´. Leader´s dissatisfaction has zero compliancy, but factual it is a ´crossbar´ (interface in fact) between planning and executing use cases. On the other side of this coin, an advantage of rich scenarios embranchment is possible to see in a support of response awareness, readiness, preparedness, adaptability, creativity and flexibility. Here rich scenarios embranchment contributes to the steadiness and resistance of scenario mission actors. These all will be presented in live power-points ´Blazons´, modelled via DYVELOP (Dynamic Vector Logistics of Processes) on the Conference.

Keywords: leadership, controlling, complexity, DYVELOP, scenarios

Procedia PDF Downloads 404
5112 Efficiency and Scale Elasticity in Network Data Envelopment Analysis: An Application to International Tourist Hotels in Taiwan

Authors: Li-Hsueh Chen

Abstract:

Efficient operation is more and more important for managers of hotels. Unlike the manufacturing industry, hotels cannot store their products. In addition, many hotels provide room service, and food and beverage service simultaneously. When efficiencies of hotels are evaluated, the internal structure should be considered. Hence, based on the operational characteristics of hotels, this study proposes a DEA model to simultaneously assess the efficiencies among the room production division, food and beverage production division, room service division and food and beverage service division. However, not only the enhancement of efficiency but also the adjustment of scale can improve the performance. In terms of the adjustment of scale, scale elasticity or returns to scale can help to managers to make decisions concerning expansion or contraction. In order to construct a reasonable approach to measure the efficiencies and scale elasticities of hotels, this study builds an alternative variable-returns-to-scale-based two-stage network DEA model with the combination of parallel and series structures to explore the scale elasticities of the whole system, room production division, food and beverage production division, room service division and food and beverage service division based on the data of international tourist hotel industry in Taiwan. The results may provide valuable information on operational performance and scale for managers and decision makers.

Keywords: efficiency, scale elasticity, network data envelopment analysis, international tourist hotel

Procedia PDF Downloads 225
5111 Hybrid Heat Pump for Micro Heat Network

Authors: J. M. Counsell, Y. Khalid, M. J. Stewart

Abstract:

Achieving nearly zero carbon heating continues to be identified by UK government analysis as an important feature of any lowest cost pathway to reducing greenhouse gas emissions. Heat currently accounts for 48% of UK energy consumption and approximately one third of UK’s greenhouse gas emissions. Heat Networks are being promoted by UK investment policies as one means of supporting hybrid heat pump based solutions. To this effect the RISE (Renewable Integrated and Sustainable Electric) heating system project is investigating how an all-electric heating sourceshybrid configuration could play a key role in long-term decarbonisation of heat.  For the purposes of this study, hybrid systems are defined as systems combining the technologies of an electric driven air source heat pump, electric powered thermal storage, a thermal vessel and micro-heat network as an integrated system.  This hybrid strategy allows for the system to store up energy during periods of low electricity demand from the national grid, turning it into a dynamic supply of low cost heat which is utilized only when required. Currently a prototype of such a system is being tested in a modern house integrated with advanced controls and sensors. This paper presents the virtual performance analysis of the system and its design for a micro heat network with multiple dwelling units. The results show that the RISE system is controllable and can reduce carbon emissions whilst being competitive in running costs with a conventional gas boiler heating system.

Keywords: gas boilers, heat pumps, hybrid heating and thermal storage, renewable integrated and sustainable electric

Procedia PDF Downloads 419
5110 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances

Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun

Abstract:

In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.

Keywords: hydropower, high order neural network, Kalman filter, optimal control

Procedia PDF Downloads 298
5109 Modeling and Control Design of a Centralized Adaptive Cruise Control System

Authors: Markus Mazzola, Gunther Schaaf

Abstract:

A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper, we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.

Keywords: adaptive cruise control, centralized server, networked model predictive control, string stability

Procedia PDF Downloads 515
5108 Optimization of Pregelatinized Taro Boloso-I Starch as a Direct Compression Tablet Excipient

Authors: Tamrat Balcha Balla

Abstract:

Background: Tablets are still the most preferred means of drug delivery. The search for new and improved direct compression tablet excipients is an area of research focus. Taro Boloso-I is a variety of Colocasia esculenta (L. Schott) yielding 67% more than the other varieties (Godare) in Ethiopia. This study aimed to enhance the flowability while keeping the compressibility and compactibility of the pregelatinized Taro Boloso-I starch. Methods: Central composite design was used for the optimization of two factors which were the temperature and duration of pregelatinization against 5 responses. The responses were angle of repose, Hausner ratio, Kawakita compressibility index, mean yield pressure and tablet breaking force. Results and Discussions: An increase in both temperature and time resulted in decrease in the angle of repose. The increase in temperature was shown to decrease the Hausner ratio and to decrease the Kawakita compressibility index. The mean yield pressure was observed to increase with increasing levels of both temperature and time. The pregelatinized (optimized) Taro Boloso-I starch could show desired flow property and compressibility. Conclusions: Pregelatinized Taro Boloso - I starch could be regarded as a potential direct compression excipient in terms of flowability, compressibility and compactibility.

Keywords: starch, compression, pregelatinization, Taro Boloso-I

Procedia PDF Downloads 113
5107 Shedding Light on the Black Box: Explaining Deep Neural Network Prediction of Clinical Outcome

Authors: Yijun Shao, Yan Cheng, Rashmee U. Shah, Charlene R. Weir, Bruce E. Bray, Qing Zeng-Treitler

Abstract:

Deep neural network (DNN) models are being explored in the clinical domain, following the recent success in other domains such as image recognition. For clinical adoption, outcome prediction models require explanation, but due to the multiple non-linear inner transformations, DNN models are viewed by many as a black box. In this study, we developed a deep neural network model for predicting 1-year mortality of patients who underwent major cardio vascular procedures (MCVPs), using temporal image representation of past medical history as input. The dataset was obtained from the electronic medical data warehouse administered by Veteran Affairs Information and Computing Infrastructure (VINCI). We identified 21,355 veterans who had their first MCVP in 2014. Features for prediction included demographics, diagnoses, procedures, medication orders, hospitalizations, and frailty measures extracted from clinical notes. Temporal variables were created based on the patient history data in the 2-year window prior to the index MCVP. A temporal image was created based on these variables for each individual patient. To generate the explanation for the DNN model, we defined a new concept called impact score, based on the presence/value of clinical conditions’ impact on the predicted outcome. Like (log) odds ratio reported by the logistic regression (LR) model, impact scores are continuous variables intended to shed light on the black box model. For comparison, a logistic regression model was fitted on the same dataset. In our cohort, about 6.8% of patients died within one year. The prediction of the DNN model achieved an area under the curve (AUC) of 78.5% while the LR model achieved an AUC of 74.6%. A strong but not perfect correlation was found between the aggregated impact scores and the log odds ratios (Spearman’s rho = 0.74), which helped validate our explanation.

Keywords: deep neural network, temporal data, prediction, frailty, logistic regression model

Procedia PDF Downloads 153
5106 Data Augmentation for Early-Stage Lung Nodules Using Deep Image Prior and Pix2pix

Authors: Qasim Munye, Juned Islam, Haseeb Qureshi, Syed Jung

Abstract:

Lung nodules are commonly identified in computed tomography (CT) scans by experienced radiologists at a relatively late stage. Early diagnosis can greatly increase survival. We propose using a pix2pix conditional generative adversarial network to generate realistic images simulating early-stage lung nodule growth. We have applied deep images prior to 2341 slices from 895 computed tomography (CT) scans from the Lung Image Database Consortium (LIDC) dataset to generate pseudo-healthy medical images. From these images, 819 were chosen to train a pix2pix network. We observed that for most of the images, the pix2pix network was able to generate images where the nodule increased in size and intensity across epochs. To evaluate the images, 400 generated images were chosen at random and shown to a medical student beside their corresponding original image. Of these 400 generated images, 384 were defined as satisfactory - meaning they resembled a nodule and were visually similar to the corresponding image. We believe that this generated dataset could be used as training data for neural networks to detect lung nodules at an early stage or to improve the accuracy of such networks. This is particularly significant as datasets containing the growth of early-stage nodules are scarce. This project shows that the combination of deep image prior and generative models could potentially open the door to creating larger datasets than currently possible and has the potential to increase the accuracy of medical classification tasks.

Keywords: medical technology, artificial intelligence, radiology, lung cancer

Procedia PDF Downloads 68
5105 Supply Chain Optimisation through Geographical Network Modeling

Authors: Cyrillus Prabandana

Abstract:

Supply chain optimisation requires multiple factors as consideration or constraints. These factors are including but not limited to demand forecasting, raw material fulfilment, production capacity, inventory level, facilities locations, transportation means, and manpower availability. By knowing all manageable factors involved and assuming the uncertainty with pre-defined percentage factors, an integrated supply chain model could be developed to manage various business scenarios. This paper analyse the utilisation of geographical point of view to develop an integrated supply chain network model to optimise the distribution of finished product appropriately according to forecasted demand and available supply. The supply chain optimisation model shows that small change in one supply chain constraint is possible to largely impact other constraints, and the new information from the model should be able to support the decision making process. The model was focused on three areas, i.e. raw material fulfilment, production capacity and finished products transportation. To validate the model suitability, it was implemented in a project aimed to optimise the concrete supply chain in a mining location. The high level of operations complexity and involvement of multiple stakeholders in the concrete supply chain is believed to be sufficient to give the illustration of the larger scope. The implementation of this geographical supply chain network modeling resulted an optimised concrete supply chain from raw material fulfilment until finished products distribution to each customer, which indicated by lower percentage of missed concrete order fulfilment to customer.

Keywords: decision making, geographical supply chain modeling, supply chain optimisation, supply chain

Procedia PDF Downloads 346
5104 Blockchain Based Hydrogen Market (BBH₂): A Paradigm-Shifting Innovative Solution for Climate-Friendly and Sustainable Structural Change

Authors: Volker Wannack

Abstract:

Regional, national, and international strategies focusing on hydrogen (H₂) and blockchain are driving significant advancements in hydrogen and blockchain technology worldwide. These strategies lay the foundation for the groundbreaking "Blockchain Based Hydrogen Market (BBH₂)" project. The primary goal of this project is to develop a functional Blockchain Minimum Viable Product (B-MVP) for the hydrogen market. The B-MVP will leverage blockchain as an enabling technology with a common database and platform, facilitating secure and automated transactions through smart contracts. This innovation will revolutionize logistics, trading, and transactions within the hydrogen market. The B-MVP has transformative potential across various sectors. It benefits renewable energy producers, surplus energy-based hydrogen producers, hydrogen transport and distribution grid operators, and hydrogen consumers. By implementing standardized, automated, and tamper-proof processes, the B-MVP enhances cost efficiency and enables transparent and traceable transactions. Its key objective is to establish the verifiable integrity of climate-friendly "green" hydrogen by tracing its supply chain from renewable energy producers to end users. This emphasis on transparency and accountability promotes economic, ecological, and social sustainability while fostering a secure and transparent market environment. A notable feature of the B-MVP is its cross-border operability, eliminating the need for country-specific data storage and expanding its global applicability. This flexibility not only broadens its reach but also creates opportunities for long-term job creation through the establishment of a dedicated blockchain operating company. By attracting skilled workers and supporting their training, the B-MVP strengthens the workforce in the growing hydrogen sector. Moreover, it drives the emergence of innovative business models that attract additional company establishments and startups and contributes to long-term job creation. For instance, data evaluation can be utilized to develop customized tariffs and provide demand-oriented network capacities to producers and network operators, benefitting redistributors and end customers with tamper-proof pricing options. The B-MVP not only brings technological and economic advancements but also enhances the visibility of national and international standard-setting efforts. Regions implementing the B-MVP become pioneers in climate-friendly, sustainable, and forward-thinking practices, generating interest beyond their geographic boundaries. Additionally, the B-MVP serves as a catalyst for research and development, facilitating knowledge transfer between universities and companies. This collaborative environment fosters scientific progress, aligns with strategic innovation management, and cultivates an innovation culture within the hydrogen market. Through the integration of blockchain and hydrogen technologies, the B-MVP promotes holistic innovation and contributes to a sustainable future in the hydrogen industry. The implementation process involves evaluating and mapping suitable blockchain technology and architecture, developing and implementing the blockchain, smart contracts, and depositing certificates of origin. It also includes creating interfaces to existing systems such as nomination, portfolio management, trading, and billing systems, testing the scalability of the B-MVP to other markets and user groups, developing data formats for process-relevant data exchange, and conducting field studies to validate the B-MVP. BBH₂ is part of the "Technology Offensive Hydrogen" funding call within the research funding of the Federal Ministry of Economics and Climate Protection in the 7th Energy Research Programme of the Federal Government.

Keywords: hydrogen, blockchain, sustainability, innovation, structural change

Procedia PDF Downloads 168
5103 Students’ Views on Mathematics Learning: A Cross-Sectional Survey of Senior Secondary Schools Students in Katsina State of Nigeria

Authors: Fahad Suleiman

Abstract:

The aim of this paper is to study students’ view on mathematics learning in Katsina State Senior Secondary Schools of Nigeria, such as their conceptions of mathematics, attitudes toward mathematics learning, etc. A questionnaire was administered to a random sample of 1,225 senior secondary two (SS II) students of Katsina State in Nigeria. The data collected showed a clear picture of the hurdles that affect the teaching and learning of mathematics in our schools. Problems such as logistics and operational which include shortage of mathematics teachers, non–availability of a mathematics laboratory, etc. were identified. It also depicted the substantial trends of changing views and attitudes toward mathematics across secondary schools. Students’ responses to the conception of mathematics were consistent and they demonstrated some specific characteristics of their views in learning mathematics. This survey has provided useful information regarding students’ needs and aspirations in mathematics learning for curriculum planners and frontline teachers for future curriculum reform and implementation.

Keywords: attitudes, mathematics, students, teacher

Procedia PDF Downloads 327
5102 Energy Conservation Strategies of Buildings in Hot, Arid Region: Al-Khobar, Saudi Arabia

Authors: M. H. Shwehdi, S. Raja Mohammad

Abstract:

Recently energy savings have become more pronounced as a result of the world financial crises as well the unstable oil prices. Certainly all entities needs to adapt Energy Conservation and Management Strategies due to high monthly consumption of their spread locations and advancements of its telecom systems. These system improvements necessitate the establishment of more exchange centers as well provide energy savings. This paper investigates the impact of HVAC System Characteristics, Operational Strategies, the impact of Envelope Thermal Characteristics, and energy conservation measures. These are classified under three types of measures i.e. Zero-Investment; Low-Investment and High-Investment Energy Conservation Measures. The study shows that the Energy Conservation Measures (ECMs) pertaining to the HVAC system characteristics and operation represent the highest potential for energy reduction, attention should be given to window thermal and solar radiation characteristics when large window areas are used. The type of glazing system needs to be carefully considered in the early design phase of future buildings. Paper will present the thermal optimization of different size centers in the two hot-dry and hot-humid Saudi Arabian city of Al Khobar, East province.

Keywords: energy conservation, optimization, thermal design, intermittent operation, exchange centers, hot-humid climate, Saudi Arabia

Procedia PDF Downloads 451
5101 Maintenance Objective-Based Asset Maintenance Maturity Model

Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Peter Chemweno

Abstract:

The fast-changing business and operational environment are forcing organizations to adopt asset performance management strategies, not only to reduce costs but also maintain operational and production policies while addressing demand. To attain optimal asset performance management, a framework that ensures a continuous and systematic approach to analyzing an organization’s current maturity level and expected improvement regarding asset maintenance processes, strategies, technologies, capabilities, and systems is essential. Moreover, this framework while addressing maintenance-intensive organizations should consider the diverse business, operational and technical context (often dynamic) an organization is in and realistically prescribe or relate to the appropriate tools and systems the organization can potentially employ in the respective level, to improve and attain their maturity goals. This paper proposes an asset maintenance maturity model to assess the current capabilities, strength and weaknesses of maintenance processes an organization is using and analyze gaps for improvement via structuring set levels of achievement. At the epicentre of the proposed framework is the utilization of maintenance objective selected by an organization for various maintenance optimization programs. The framework adapts the Capability Maturity Model of assessing the maintenance process maturity levels in the organization.

Keywords: asset maintenance, maturity models, maintenance objectives, optimization

Procedia PDF Downloads 227