Search results for: electron backscattered diffraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3051

Search results for: electron backscattered diffraction

291 Development of Electrochemical Biosensor Based on Dendrimer-Magnetic Nanoparticles for Detection of Alpha-Fetoprotein

Authors: Priyal Chikhaliwala, Sudeshna Chandra

Abstract:

Liver cancer is one of the most common malignant tumors with poor prognosis. This is because liver cancer does not exhibit any symptoms in early stage of disease. Increased serum level of AFP is clinically considered as a diagnostic marker for liver malignancy. The present diagnostic modalities include various types of immunoassays, radiological studies, and biopsy. However, these tests undergo slow response times, require significant sample volumes, achieve limited sensitivity and ultimately become expensive and burdensome to patients. Considering all these aspects, electrochemical biosensors based on dendrimer-magnetic nanoparticles (MNPs) was designed. Dendrimers are novel nano-sized, three-dimensional molecules with monodispersed structures. Poly-amidoamine (PAMAM) dendrimers with eight –NH₂ groups using ethylenediamine as a core molecule were synthesized using Michael addition reaction. Dendrimers provide added the advantage of not only stabilizing Fe₃O₄ NPs but also displays capability of performing multiple electron redox events and binding multiple biological ligands to its dendritic end-surface. Fe₃O₄ NPs due to its superparamagnetic behavior can be exploited for magneto-separation process. Fe₃O₄ NPs were stabilized with PAMAM dendrimer by in situ co-precipitation method. The surface coating was examined by FT-IR, XRD, VSM, and TGA analysis. Electrochemical behavior and kinetic studies were evaluated using CV which revealed that the dendrimer-Fe₃O₄ NPs can be looked upon as electrochemically active materials. Electrochemical immunosensor was designed by immobilizing anti-AFP onto dendrimer-MNPs by gluteraldehyde conjugation reaction. The bioconjugates were then incubated with AFP antigen. The immunosensor was characterized electrochemically indicating successful immuno-binding events. The binding events were also further studied using magnetic particle imaging (MPI) which is a novel imaging modality in which Fe₃O₄ NPs are used as tracer molecules with positive contrast. Multicolor MPI was able to clearly localize AFP antigen and antibody and its binding successfully. Results demonstrate immense potential in terms of biosensing and enabling MPI of AFP in clinical diagnosis.

Keywords: alpha-fetoprotein, dendrimers, electrochemical biosensors, magnetic nanoparticles

Procedia PDF Downloads 136
290 Investigation of Poly P-Dioxanone as Promising Biodegradable Polymer for Short-Term Medical Application

Authors: Stefanie Ficht, Lukas Schübel, Magdalena Kleybolte, Markus Eblenkamp, Jana Steger, Dirk Wilhelm, Petra Mela

Abstract:

Although 3D printing as transformative technology has become of increasing interest in the medical field and the demand for biodegradable polymers has developed to a considerable extent, there are only a few additively manufactured, biodegradable implants on the market. Additionally, the sterilization of such implants and its side effects on degradation have still not been sufficiently studied. Within this work, thermosensitive poly p-dioxanone (PPDO) samples were printed with fused filament fabrication (FFF) and investigated. Subsequently, H₂O₂ plasma and gamma radiation were used as low-temperature sterilization techniques and compared among each other and the control group (no sterilization). In order to assess the effect of different sterilization on the degradation behavior of PPDO, the samples were immersed in phosphate-buffered solution (PBS) over 28 days, and surface morphology, thermal properties, molecular weight, inherent viscosity, and mechanical properties were examined at regular time intervals. The study demonstrates that PPDO was printed with great success and that thermal properties, molecular weight (Mw), and inherent viscosity (IV) were not significantly affected by the printing process itself. H₂O₂ plasma sterilization did not significantly harm the thermosensitive polymer, while gamma radiation lowered IV and Mw statistically significantly compared to the control group (p < 0.001). During immersion in PBS, a decrease in Mw and mechanical strength occurred for all samples. However, gamma sterilized samples were affected to a much higher extent compared to the two other sample groups both in final values and timeline. This was confirmed by scanning electron microscopy showing no changes of surface morphology of (non-sterilized) control samples, first microcracks appearing on plasma sterilized samples after two weeks while being present on gamma sterilized samples already immediately after radiation to then further deteriorate over immersion duration. To conclude, we demonstrated that FFF and H₂O₂ plasma sterilization are well suited for processing thermosensitive, biodegradable polymers used for the development of innovative short-term medical applications.

Keywords: additive manufacturing, sterilization, biodegradable, thermosensitive, medical application

Procedia PDF Downloads 121
289 Development of Two Phage Therapy-Based Strategies for the Treatment of American Foulbrood Disease Affecting Apis Mellifera capensis

Authors: Ridwaan N. Milase, Leonardo J. Van Zyl, Marla Trindade

Abstract:

American foulbrood (AFB) is the world’s most devastating honeybee disease that has drastically reduced the population of Apis mellifera capensis since 2009. The outbreak has jeopardized the South African bee keeping industry as well as the agricultural sector dependent on honeybees for honey production and pollination, leading to significant economic losses. AFB is caused by Paenibacillus larvae, a spore-forming, Gram positive facultative anaerobic and flagellated bacterium. The use of antibiotics within beehives has selected for resistant strains of P. larvae, while the current practice of burning spore contaminated beehives and equipment contributes to the economic losses in the honeybee-keeping industry. Therefore, phage therapy is proposed as a promising alternative to combat P. larvae strains affecting A. mellifera capensis. The genomes of two P. larvae strains isolated from infected combs in the Western Cape have been sequenced and annotated using bioinformatics tools. Genome analyses has revealed that these P. larvae strains are lysogens to more than 6 different prophages and possess different type of clustered regularly interspaced short palindromic repeat (CRISPRs) regions per strain. Active prophages from one of the two P. larvae strains were detected and identified using PCR. Electron microscopy was used to determine the family of the identified active prophages. Lytic bacteriophages that specifically target the two P. larvae strains were purified from sewage wastewater, beehive materials, and soil samples to investigate their potential development as anti-P. larvae agents. Another alternative treatment being investigated is the development of a prophage endolysin cocktail. Endolysin genes of the prophages have been targeted, cloned and expressed in Escherichia coli. The heterologously expressed endolysins have been purified and are currently being assessed for their lytic activity against P. larvae strains and other commensal microorganisms that compose the honeybee larvae microbiota. The study has shown that phage therapy and endolysins have a great potential as alternative control methods for AFB disease affecting A. mellifera capensis.

Keywords: American foulbrood, bacteriophage, honeybee, Paenibacillus larvae

Procedia PDF Downloads 181
288 Magnetoelastically Induced Perpendicular Magnetic Anisotropy and Perpendicular Exchange Bias of CoO/CoPt Multilayer Films

Authors: Guo Lei, Wang Yue, Nakamura Yoshio, Shi Ji

Abstract:

Recently, perpendicular exchange bias (PEB) is introduced as an active topic attracting continuous efforts. Since its discovery, extrinsic control of PEB has been proposed, due to its scientific significance in spintronic devices and potential application in high density magnetic random access memory with perpendicular magnetic tunneling junction (p-MTJ). To our knowledge, the researches aiming to controlling PEB so far are focused mainly on enhancing the interfacial exchange coupling by adjusting the FM/AFM interface roughness, or optimizing the crystalline structures of FM or AFM layer by employing different seed layers. In present work, the effects of magnetoelastically induced PMA on PEB have been explored in [CoO5nm/CoPt5nm]5 multilayer films. We find the PMA strength of FM layer also plays an important role on PEB at the FM/AFM interface and it is effective to control PEB of [CoO5nm/CoPt5nm]5 multilayer films by changing the magnetoelastically induced PMA of CoPt layer. [CoO5nm/CoPt5nm]5 multilayer films were deposited by magnetron sputtering on fused quartz substrate at room temperature, then annealed at 100°C, 250°C, 300°C and 375°C for 3h, respectively. XRD results reveal that all the samples are well crystallized with preferred fcc CoPt (111) orientation. The continuous multilayer structure with sharp component transition at the CoO5nm/CoPt5nm interface are identified clearly by transmission electron microscopy (TEM), x-ray reflectivity (XRR) and atomic force microscope (AFM). CoPt layer in-plane tensile stress is calculated by sin2φ method, and we find it increases gradually upon annealing from 0.99 GPa (as-deposited) up to 3.02 GPa (300oC-annealed). As to the magnetic property, significant enhancement of PMA is achieved in [CoO5nm/CoPt5nm]5 multilayer films after annealing due to the increase of CoPt layer in-plane tensile stress. With the enhancement of magnetoelastically induced PMA, great improvement of PEB is also achieved in [CoO5nm/CoPt5nm]5 multilayer films, which increases from 130 Oe (as-deposited) up to 1060 Oe (300oC-annealed), showing the same change tendency as PMA and the strong correlation with CoPt layer in-plane tensile stress. We consider it is the increase of CoPt layer in-plane tensile stress that leads to the enhancement of PMA, and thus the enhancement of magnetoelastically induced PMA results in the improvement of PEB in [CoO5nm/CoPt5nm]5 multilayer films.

Keywords: perpendicular exchange bias, magnetoelastically induced perpendicular magnetic anisotropy, CoO5nm/CoPt5nm]5 multilayer film with in-plane stress, perpendicular magnetic tunneling junction

Procedia PDF Downloads 462
287 Feasibility Study and Energy Conversion Evaluation of Agricultural Waste Gasification in the Pomelo Garden, Taiwan

Authors: Yi-Hao Pai, Wen-Feng Chen

Abstract:

The planting area of Pomelo in Hualien, Taiwan amounts to thousands of hectares. Especially in the blooming season of Pomelo, it is an important producing area for Pomelo honey, and it is also a good test field for promoting the "Under-forest Economy". However, in the current Pomelo garden planting and management operations, the large amount of agricultural waste generated by the pruning of the branches causes environmental sanitation concerns, which can lead to the hiding of pests or the infection of the Pomelo tree, and indirectly increase the health risks of bees. Therefore, how to deal with the pruning of the branches and avoid open burning is a topic of social concern in recent years. In this research, afeasibility study evaluating energy conversion efficiency through agricultural waste gasification from the Pomelo garden, Taiwan, is demonstrated. we used a high-temperature gasifier to convert the pruning of the branches into syngas and biochar. In terms of syngas composition and calorific value assessment, we use the biogas monitoring system for analysis. Then, we used Raman spectroscopy and electron microscopy (EM) to diagnose the microstructure and surface morphology of biochar. The results indicate that the 1 ton of pruning of the branches can produce 1797.03m3 of syngas, corresponding to a calorific value of 9.1MJ/m3. The main components of the gas include CH4, H2, CO, and CO2, and the corresponding gas composition ratio is 16.8%, 7.1%, 13.7%, and 24.5%. Through the biomass syngas generator with a conversion efficiency of 30% for power generation, a total of 1,358kWh can be obtained per ton of pruning of the branches. In the research of biochar, its main characteristics in Raman spectroscopy are G bands and D bands. The first-order G and D bands are at 1580 and 1350 cm⁻¹, respectively. The G bands originates from the in-plane tangential stretching of the C−C bonds in the graphitic structure, and theD band corresponds to scattering from local defects or disorders present in carbon. The area ratio of D and G peaks (D/G) increases with the decrease of reaction temperature. The larger the D/G, the higher the defect concentration and the higher the porosity. This result is consistent with the microstructure displayed by SEM. The study is expected to be able to reuse agricultural waste and promote the development of agricultural and green energy circular economy.

Keywords: agricultural waste, gasification, energy conversion, pomelo garden

Procedia PDF Downloads 142
286 Improvement of Oxidative Stability of Edible Oil by Microencapsulation Using Plant Proteins

Authors: L. Le Priol, A. Nesterenko, K. El Kirat, K. Saleh

Abstract:

Introduction and objectives: Polyunsaturated fatty acids (PUFAs) omega-3 and omega-6 are widely recognized as being beneficial to the health and normal growth. Unfortunately, due to their highly unsaturated nature, these molecules are sensitive to oxidation and thermic degradation leading to the production of toxic compounds and unpleasant flavors and smells. Hence, it is necessary to find out a suitable way to protect them. Microencapsulation by spray-drying is a low-cost encapsulation technology and most commonly used in the food industry. Many compounds can be used as wall materials, but there is a growing interest in the use of biopolymers, such as proteins and polysaccharides, over the last years. The objective of this study is to increase the oxidative stability of sunflower oil by microencapsulation in plant protein matrices using spray-drying technique. Material and methods: Sunflower oil was used as a model substance for oxidable food oils. Proteins from brown rice, hemp, pea, soy and sunflower seeds were used as emulsifiers and microencapsulation wall materials. First, the proteins were solubilized in distilled water. Then, the emulsions were pre-homogenized using a high-speed homogenizer (Ultra-Turrax) and stabilized by using a high-pressure homogenizer (HHP). Drying of the emulsion was performed in a Mini Spray Dryer. The oxidative stability of the encapsulated oil was determined by performing accelerated oxidation tests with a Rancimat. The size of the microparticles was measured using a laser diffraction analyzer. The morphology of the spray-dried microparticles was acquired using environmental scanning microscopy. Results: Pure sunflower oil was used as a reference material. Its induction time was 9.5 ± 0.1 h. The microencapsulation of sunflower oil in pea and soy protein matrices significantly improved its oxidative stability with induction times of 21.3 ± 0.4 h and 12.5 ± 0.4 h respectively. The encapsulation with hemp proteins did not significantly change the oxidative stability of the encapsulated oil. Sunflower and brown rice proteins were ineffective materials for this application, with induction times of 7.2 ± 0.2 h and 7.0 ± 0.1 h respectively. The volume mean diameter of the microparticles formulated with soy and pea proteins were 8.9 ± 0.1 µm and 16.3 ± 1.2 µm respectively. The values for hemp, sunflower and brown rice proteins could not be obtained due to the agglomeration of the microparticles. ESEM images showed smooth and round microparticles with soy and pea proteins. The surfaces of the microparticles obtained with sunflower and hemp proteins were porous. The surface was rough when brown rice proteins were used as the encapsulating agent. Conclusion: Soy and pea proteins appeared to be efficient wall materials for the microencapsulation of sunflower oil by spray drying. These results were partly explained by the higher solubility of soy and pea proteins in water compared to hemp, sunflower, and brown rice proteins. Acknowledgment: This work has been performed, in partnership with the SAS PIVERT, within the frame of the French Institute for the Energy Transition (Institut pour la Transition Energétique (ITE)) P.I.V.E.R.T. (www.institut-pivert.com) selected as an Investments for the Future (Investissements d’Avenir). This work was supported, as part of the Investments for the Future, by the French Government under the reference ANR-001-01.

Keywords: biopolymer, edible oil, microencapsulation, oxidative stability, release, spray-drying

Procedia PDF Downloads 137
285 Metallic-Diamond Tools with Increased Abrasive Wear Resistance for Grinding Industrial Floor Systems

Authors: Elżbieta Cygan, Bączek, Piotr Wyżga

Abstract:

This paper presents the results of research on the physical, mechanical, and tribological properties of materials constituting the matrix in sintered metallic-diamond tools. The ground powders based on the Fe-Mn-Cu-Sn-C system were modified with micro-sized particles of the ceramic phase: SiC, Al₂O₃ and consolidated using the SPS (spark plasma sintering) method to a relative density of over 98% at 850-950°C, at a pressure of 35 MPa and time 10 min. After sintering, an analysis of the microstructure was conducted using scanning electron microscopy. The resulting materials were tested for the apparent density determined by Archimedes’ method, Rockwell hardness (scale B), Young’s modulus, as well as for technological properties. The performance results of obtained diamond composites were compared with the base material (Fe–Mn–Cu–Sn–C) and the commercial alloy Co-20% WC. The hardness of composites has achieved the maximum at a temperature of 900°C; therefore, it should be considered that at this temperature it was obtained optimal physical and mechanical properties of the subjects' composites were. Research on tribological properties showed that the composites modified with micro-sized particles of the ceramic phase are characterized by more than twice higher wear resistance in comparison with base materials and the commercial alloy Co-20% WC. Composites containing Al₂O₃ phase particles in the matrix material were composites containing Al₂O₃ phase particles in the matrix material were characterized by the lowest abrasion wear resistance. The manufacturing technology presented in the paper is economically justified and can be successfully used in the production process of the matrix in sintered diamond-impregnated tools used for the machining of an industrial floor system. Acknowledgment: The study was performed under LIDER IX Research Project No. LIDER/22/0085/L-9/17/NCBR/2018 entitled “Innovative metal-diamond tools without the addition of critical raw materials for applications in the process of grinding industrial floor systems” funded by the National Centre for Research and Development of Poland, Warsaw.

Keywords: abrasive wear resistance, metal matrix composites, sintered diamond tools, Spark Plasma Sintering

Procedia PDF Downloads 77
284 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection

Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar

Abstract:

One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.

Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)

Procedia PDF Downloads 435
283 Development of a Myocardial Patch with 3D Hydrogel Electrical Stimulation System

Authors: Yung-Gi Chen, Pei-Leun Kang, Yu-Hsin Lin, Shwu-Jen Chang

Abstract:

Myocardial tissue has limited self-repair ability due to its loss of differentiation characteristic for most mature cardiomyocytes. Therefore, the effective use of stem cell technology in regenerative medicine is an important development to alleviate the current difficulties in cardiac disease treatment. The main purpose of this project was to develop a 3-D hydrogel electrical stimulating system for promoting the differentiation of stem cells into myocardial cells, and the patch will be used to repair damaged myocardial tissue. This project was focused on the preparation of the electrical stimulation system with carbon/CaCl₂ electrodes covered with carbon nanotube-hydrogel. In this study, we utilized screen imprinting techniques and used Poly(lactic-co-glycolic acid)(PLGA) membranes as printing substrates to fabricate a carbon/CaCl₂ interdigitated electrode that covered with alginate/carbon nanotube hydrogels. The single-walled carbon nanotube was added in the hydrogel to enhance the mechanical strength and conductivity of hydrogel. In this study, we used PLGA (85:15) as electrode preparing substrate. The CaCl₂/ EtOH solution (80% w/v) was mixed into carbon paste to prepare various concentration calcium-containing carbon paste (2.5%, 5%, 7.5%, 10% v/v). Different concentrations of alginate (1%, 1.5%, 2% v/v) and SWCNT(Diameter < 2nm, length between 5-15μm) (1, 1.5, 3 mg/ml) are gently immobilized on the electrode by cross-linking with calcium chloride. The three-dimensional hydrogel electrode was tested for its redox efficiency by cyclic voltammetry to determine the optimal parameters for the hydrogel electrode preparation. From the result of the final electrodes, it indicated that the electrode was not easy to maintain the pattern of the interdigitated electrode when the concentration of calcium of chloride was more than 10%. According to the gel rate test and cyclic voltammetry experiment results showed the SWCNT could increase the electron conduction of hydrogel electrodes significantly. So far the 3D electrode system has been completed, 2% alginate mixed with 3mg SWCNT is the optimal condition to construct the most complete structure for the hydrogel preparation.

Keywords: myocardial tissue engineering, screen printing technology, poly (lactic-co-glycolic acid), alginate, single walled carbon nanotube

Procedia PDF Downloads 112
282 Nitriding of Super-Ferritic Stainless Steel by Plasma Immersion Ion Implantation in Radio Frequency and Microwave Plasma System

Authors: H. Bhuyan, S. Mändl, M. Favre, M. Cisternas, A. Henriquez, E. Wyndham, M. Walczak, D. Manova

Abstract:

The 470 Li-24 Cr and 460Li-21 Cr are two alloys belonging to the next generation of super-ferritic nickel free stainless steel grades, containing titanium (Ti), niobium (Nb) and small percentage of carbon (C) and nitrogen (N). The addition of Ti and Nb improves in general the corrosion resistance while the low interstitial content of C and N assures finer precipitates and greater ductility compared to conventional ferritic grades. These grades are considered an economic alternative to AISI 316L and 304 due to comparable or superior corrosion. However, since 316L and 304 can be nitrided to improve the mechanical surface properties like hardness and wear; it is hypothesize that the tribological properties of these super-ferritic stainless steels grades can also be improved by plasma nitriding. Thus two sets of plasma immersion ion implantation experiments have been carried out, one with a high pressure capacitively coupled radio frequency plasma at PUC Chile and the other using a low pressure microwave plasma at IOM Leipzig, in order to explore further improvements in the mechanical properties of 470 Li-24 Cr and 460Li-21 Cr steel. Nitrided and unnitrided substrates have been subsequently investigated using different surface characterization techniques including secondary ion mass spectroscopy, scanning electron microscopy, energy dispersive x-ray analysis, Vickers hardness, wear resistance, as well as corrosion test. In most of the characterizations no major differences have been observed for nitrided 470 Li-24 Cr and 460Li-21 Cr. Due to the ion bombardment, an increase in the surface roughness is observed for higher treatment temperature, independent of the steel types. The formation of chromium nitride compound takes place only at a treatment temperature around 4000C-4500C, or above. However, corrosion properties deteriorate after treatment at higher temperatures. The physical characterization results show up to 25 at.% of nitrogen for a diffusion zone of 4-6 m, and a 4-5 times increase in hardness for different experimental conditions. The samples implanted with temperature higher than 400 °C presented a wear resistance around two orders of magnitude higher than the untreated substrates. The hardness is apparently affected by the different roughness of the samples and their different profile of nitrogen.

Keywords: ion implantation, plasma, RF and microwave plasma, stainless steel

Procedia PDF Downloads 464
281 Cracking Mode and Path in Duplex Stainless Steels Failure

Authors: Faraj A. E. Alhegagi, Bassam F. A. Alhajaji

Abstract:

Ductile and brittle fractures are the two main modes for the failure of engineering components. Fractures are classified with respect to several characteristics, such as strain to fracture, ductile or brittle crystallographic mode, shear or cleavage, and the appearance of fracture, granular or transgranular. Cleavage is a brittle fracture involves transcrystalline fracture along specific crystallographic planes and in certain directions. Fracture of duplex stainless steels takes place transgranularly by cleavage of the ferrite phase. On the other hand, ductile fracture occurs after considerable plastic deformation prior to failure and takes place by void nucleation, growth, and coalescence to provide an easy fracture path. Twinning causes depassivation more readily than slip and appears at stress lower than the theoretical yield stress. Consequently, damage due to twinning can occur well before that due to slip. Stainless steels are clean materials with the low efficiency of second particles phases on the fracture mechanism. The ferrite cleavage and austenite tear off are the main mode by which duplex stainless steels fails. In this study, the cracking mode and path of specimens of duplex stainless steels were investigated. Zeron 100 specimens were heat treated to different times cooled down and pulled to failure. The fracture surface was investigated by scanning electron microscopy (SEM) concentrating on the cracking mechanism, path, and origin. Cracking mechanisms were studied for those grains either as ferrite or austenite grains identified according to fracture surface features. Cracks propagated through the ferrite and the austenite two phases were investigated. Cracks arrested at the grain boundary were studied as well. For specimens aged for 100h, the ferrite phase was noted to crack by cleavage along well-defined planes while austenite ridges were clearly observed within the ferrite grains. Some grains were observed to fail with topographic features that were not clearly identifiable as ferrite cleavage or austenite tearing. Transgranular cracking was observed taking place in the ferrite phase on well-defined planes. No intergranular cracks were observed for the tested material. The austenite phase was observed to serve as a crack bridge and crack arrester.

Keywords: austenite ductile tear off, cracking mode, ferrite cleavage, stainless steels failure

Procedia PDF Downloads 143
280 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction

Authors: Renzhi Qi, Zhaoping Zhong

Abstract:

Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.

Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction

Procedia PDF Downloads 82
279 Iron Oxide Reduction Using Solar Concentration and Carbon-Free Reducers

Authors: Bastien Sanglard, Simon Cayez, Guillaume Viau, Thomas Blon, Julian Carrey, Sébastien Lachaize

Abstract:

The need to develop clean production processes is a key challenge of any industry. Steel and iron industries are particularly concerned since they emit 6.8% of global anthropogenic greenhouse gas emissions. One key step of the process is the high-temperature reduction of iron ore using coke, leading to large amounts of CO2 emissions. One route to decrease impacts is to get rid of fossil fuels by changing both the heat source and the reducer. The present work aims at investigating experimentally the possibility to use concentrated solar energy and carbon-free reducing agents. Two sets of experimentations were realized. First, in situ X-ray diffraction on pure and industrial powder of hematite was realized to study the phase evolution as a function of temperature during reduction under hydrogen and ammonia. Secondly, experiments were performed on industrial iron ore pellets, which were reduced by NH3 or H2 into a “solar furnace” composed of a controllable 1600W Xenon lamp to simulate and control the solar concentrated irradiation of a glass reactor and of a diaphragm to control light flux. Temperature and pressure were recorded during each experiment via thermocouples and pressure sensors. The percentage of iron oxide converted to iron (called thereafter “reduction ratio”) was found through Rietveld refinement. The power of the light source and the reduction time were varied. Results obtained in the diffractometer reaction chamber show that iron begins to form at 300°C with pure Fe2O3 powder and 400°C with industrial iron ore when maintained at this temperature for 60 minutes and 80 minutes, respectively. Magnetite and wuestite are detected on both powders during the reduction under hydrogen; under ammonia, iron nitride is also detected for temperatures between400°C and 600°C. All the iron oxide was converted to iron for a reaction of 60 min at 500°C, whereas a conversion ratio of 96% was reached with industrial powder for a reaction of 240 min at 600°C under hydrogen. Under ammonia, full conversion was also reached after 240 min of reduction at 600 °C. For experimentations into the solar furnace with iron ore pellets, the lamp power and the shutter opening were varied. An 83.2% conversion ratio was obtained with a light power of 67 W/cm2 without turning over the pellets. Nevertheless, under the same conditions, turning over the pellets in the middle of the experiment permits to reach a conversion ratio of 86.4%. A reduction ratio of 95% was reached with an exposure of 16 min by turning over pellets at half time with a flux of 169W/cm2. Similar or slightly better results were obtained under an ammonia reducing atmosphere. Under the same flux, the highest reduction yield of 97.3% was obtained under ammonia after 28 minutes of exposure. The chemical reaction itself, including the solar heat source, does not produce any greenhouse gases, so solar metallurgy represents a serious way to reduce greenhouse gas emission of metallurgy industry. Nevertheless, the ecological impact of the reducers must be investigated, which will be done in future work.

Keywords: solar concentration, metallurgy, ammonia, hydrogen, sustainability

Procedia PDF Downloads 138
278 The Ameliorative Effects of Nanoencapsulated Triterpenoids from Petri-Dish Cultured Antrodia cinnamomea on Reproductive Function of Diabetic Male Rats

Authors: Sabri Sudirman, Yuan-Hua Hsu, Zwe-Ling Kong

Abstract:

Male reproductive dysfunction is predominantly due to insulin resistance and hyperglycemia result in inflammation and oxidative stress. Furthermore, nanotechnology provides an alternative approach to improve the bioavailability of natural active food ingredients. Therefore, the aim of this study were to investigate nanoencapsulated triterpenoids from petri-dish cultured Antrodia cinnamomea (PAC) nanoparticles whether it could increase the bioavailability; in addition, the anti-inflammatory and anti-oxidative effects could more effectively ameliorate the reproductive function of diabetic male rats. First, PAC encapsulated in chitosan-silica nanoparticles (Nano-PAC) were prepared by biosilicification method. Scanning electron micrographs confirm the average particle size is about 30 nm, and the encapsulation efficiency is 83.7% by HPLC. Diabetic male Sprague-Dawley rats were induced by high fat diet (40% kcal from fat) and streptozotocin (35 mg/kg). Nano-PAC was administered by oral gavage in three doses (4, 8 and 20 mg/kg) for 6 weeks. Besides, metformin (300 mg/kg) and nanoparticles (Nano) were treated as the positive and negative control respectively. Results indicated that 4 mg/kg Nano-PAC administration for 6 weeks improved hyperglycemia, insulin resistance, and also reduced advanced glycation end products in plasma. In addition, 8 mg/kg Nano-PAC ameliorated morphological of testicular seminiferous tubules, sperm morphology and motility, reactive oxygen species production and mitochondrial membrane potential. Moreover, 20 mg/kg Nano-PAC restored reproductive endocrine system function and increased KiSS-1 level in plasma. In plasma or testis anti-oxidant superoxide dismutase, glutathione peroxidase and catalase were increased whereas malondialdehyde, as well as pro-inflammatory cytokines tumor necrosis factor-α, interleukin-6, and interferon-gamma, decreased. Most importantly, 8 mg/kg Nano-PAC down-regulated the oxidative stress induced c-Jun N-terminal kinase (JNK) signaling pathway. Our study successfully nanoencapsulated PAC to form nanoparticles and low-dose Nano-PAC improved diabetes-induced hyperglycemia, inflammation and oxidative stress to ameliorate the reproductive function of diabetic male rats.

Keywords: Antrodia cinnamomea, diabetes mellitus, male reproduction, nanoparticles

Procedia PDF Downloads 222
277 Product Separation of Green Processes and Catalyst Recycling of a Homogeneous Polyoxometalate Catalyst Using Nanofiltration Membranes

Authors: Dorothea Voß, Tobias Esser, Michael Huber, Jakob Albert

Abstract:

The growing world population and the associated increase in demand for energy and consumer goods, as well as increasing waste production, requires the development of sustainable processes. In addition, the increasing environmental awareness of our society is a driving force for the requirement that processes must be as resource and energy efficient as possible. In this context, the use of polyoxometalate catalysts (POMs) has emerged as a promising approach for the development of green processes. POMs are bifunctional polynuclear metal-oxo-anion cluster characterized by a strong Brønsted acidity, a high proton mobility combined with fast multi-electron transfer and tunable redox potential. In addition, POMs are soluble in many commonly known solvents and exhibit resistance to hydrolytic and oxidative degradation. Due to their structure and excellent physicochemical properties, POMs are efficient acid and oxidation catalysts that have attracted much attention in recent years. Oxidation processes with molecular oxygen are worth mentioning here. However, the fact that the POM catalysts are homogeneous poses a challenge for downstream processing of product solutions and recycling of the catalysts. In this regard, nanofiltration membranes have gained increasing interest in recent years, particularly due to their relative sustainability advantage over other technologies and their unique properties such as increased selectivity towards multivalent ions. In order to establish an efficient downstream process for the highly selective separation of homogeneous POM catalysts from aqueous solutions using nanofiltration membranes, a laboratory-scale membrane system was designed and constructed. By varying various process parameters, a sensitivity analysis was performed on a model system to develop an optimized method for the recovery of POM catalysts. From this, process-relevant key figures such as the rejection of various system components were derived. These results form the basis for further experiments on other systems to test the transferability to serval separation tasks with different POMs and products, as well as for recycling experiments of the catalysts in processes on laboratory scale.

Keywords: downstream processing, nanofiltration, polyoxometalates, homogeneous catalysis, green chemistry

Procedia PDF Downloads 89
276 Silver-Curcumin Nanoparticle Eradicate Enterococcus faecalis in Human ex vivo Dentine Model

Authors: M. Gowri, E. K. Girija, V. Ganesh

Abstract:

Background and Significance: Among the dental infections, inflammation and infection of the root canal are common among all age groups. Currently, the management of root canal infections involves cleaning the canal with powerful irrigants followed by intracanal medicament application. Though these treatments have been in vogue for a long time, root canal failures do occur. Treatment for root canal infections is limited due to the anatomical complexity in terms of small micrometer volumes and poor penetration of drugs. Thus, infections of the root canal seem to be a challenge that demands development of new agents that can eradicate E. faecalis. Methodology: In the present study, we synthesized and screened silver-curcumin nanoparticle against E. faecalis. Morphological cell damage and antibiofilm activity of silver-curcumin nanoparticle on E. faecalis was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model. Results: Screening data showed that silver-curcumin nanoparticle was active against E. faecalis. silver-curcumin nanoparticle exerted time kill effect. Further, SEM images of E. faecalis showed that silver-curcumin nanoparticle caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, the antifungal activity of silver-curcumin nanoparticle was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed eradication of E. faecalis and reduction in colony forming unit (CFU) after 24 h treatment in the infected tooth samples in this model. Further, silver-curcumin nanoparticle was found to be hemocompatible, not cytotoxic to normal mammalian NIH 3T3 cells and non-mutagenic. Conclusion: The results of this study can pave the way for developing new antibacterial agents with well deciphered mechanisms of action and can be a promising antibacterial agent or medicament against root canal infection.

Keywords: ex vivo dentine model, inhibition of biofilm formation, root canal infection, silver-curcumin nanoparticle

Procedia PDF Downloads 189
275 Molecular Farming: Plants Producing Vaccine and Diagnostic Reagent

Authors: Katerina H. Takova, Ivan N. Minkov, Gergana G. Zahmanova

Abstract:

Molecular farming is the production of recombinant proteins in plants with the aim to use the protein as a purified product, crude extract or directly in the planta. Plants gain more attention as expression systems compared to other ones due to the cost effective production of pharmaceutically important proteins, appropriate post-translational modifications, assembly of complex proteins, absence of human pathogens to name a few. In addition, transient expression in plant leaves enables production of recombinant proteins within few weeks. Hepatitis E virus (HEV) is a causative agent of acute hepatitis. HEV causes epidemics in developing countries and is primarily transmitted through the fecal-oral route. Presently, all efforts for development of Hepatitis E vaccine are focused on the Open Read Frame 2 (ORF2) capsid protein as it contains epitopes that can induce neutralizing antibodies. For our purpose, we used the CMPV-based vector-pEAQ-HT for transient expression of HEV ORF2 in Nicotiana benthamina. Different molecular analysis (Western blot and ELISA) showed that HEV ORF2 capsid protein was expressed in plant tissue in high-yield up to 1g/kg of fresh leaf tissue. Electron microscopy showed that the capsid protein spontaneously assembled in low abundance virus-like particles (VLPs), which are highly immunogenic structures and suitable for vaccine development. The expressed protein was recognized by both human and swine HEV positive sera and can be used as a diagnostic reagent for the detection of HEV infection. Production of HEV capsid protein in plants is a promising technology for further HEV vaccine investigations. Here, we reported for a rapid high-yield transient expression of a recombinant protein in plants suitable for vaccine production as well as a diagnostic reagent. Acknowledgments -The authors’ research on HEV is supported with grants from the Project PlantaSYST under the Widening Program, H2020 as well as under the UK Biotechnological and Biological Sciences Research Council (BBSRC) Institute Strategic Programme Grant ‘Understanding and Exploiting Plant and Microbial Secondary Metabolism’ (BB/J004596/1). The authors want to thank Prof. George Lomonossoff (JIC, Norwich, UK) for his contribution.

Keywords: hepatitis E virus, plant molecular farming, transient expression, vaccines

Procedia PDF Downloads 151
274 Investigation for Pixel-Based Accelerated Aging of Large Area Picosecond Photo-Detectors

Authors: I. Tzoka, V. A. Chirayath, A. Brandt, J. Asaadi, Melvin J. Aviles, Stephen Clarke, Stefan Cwik, Michael R. Foley, Cole J. Hamel, Alexey Lyashenko, Michael J. Minot, Mark A. Popecki, Michael E. Stochaj, S. Shin

Abstract:

Micro-channel plate photo-multiplier tubes (MCP-PMTs) have become ubiquitous and are widely considered potential candidates for next generation High Energy Physics experiments due to their picosecond timing resolution, ability to operate in strong magnetic fields, and low noise rates. A key factor that determines the applicability of MCP-PMTs in their lifetime, especially when they are used in high event rate experiments. We have developed a novel method for the investigation of the aging behavior of an MCP-PMT on an accelerated basis. The method involves exposing a localized region of the MCP-PMT to photons at a high repetition rate. This pixel-based method was inspired by earlier results showing that damage to the photocathode of the MCP-PMT occurs primarily at the site of light exposure and that the surrounding region undergoes minimal damage. One advantage of the pixel-based method is that it allows the dynamics of photo-cathode damage to be studied at multiple locations within the same MCP-PMT under different operating conditions. In this work, we use the pixel-based accelerated lifetime test to investigate the aging behavior of a 20 cm x 20 cm Large Area Picosecond Photo Detector (LAPPD) manufactured by INCOM Inc. at multiple locations within the same device under different operating conditions. We compare the aging behavior of the MCP-PMT obtained from the first lifetime test conducted under high gain conditions to the lifetime obtained at a different gain. Through this work, we aim to correlate the lifetime of the MCP-PMT and the rate of ion feedback, which is a function of the gain of each MCP, and which can also vary from point to point across a large area (400 $cm^2$) MCP. The tests were made possible by the uniqueness of the LAPPD design, which allows independent control of the gain of the chevron stacked MCPs. We will further discuss the implications of our results for optimizing the operating conditions of the detector when used in high event rate experiments.

Keywords: electron multipliers (vacuum), LAPPD, lifetime, micro-channel plate photo-multipliers tubes, photoemission, time-of-flight

Procedia PDF Downloads 177
273 Immiscible Polymer Blends with Controlled Nanoparticle Location for Excellent Microwave Absorption: A Compartmentalized Approach

Authors: Sourav Biswas, Goutam Prasanna Kar, Suryasarathi Bose

Abstract:

In order to obtain better materials, control in the precise location of nanoparticles is indispensable. It was shown here that ordered arrangement of nanoparticles, possessing different characteristics (electrical/magnetic dipoles), in the blend structure can result in excellent microwave absorption. This is manifested from a high reflection loss of ca. -67 dB for the best blend structure designed here. To attenuate electromagnetic radiations, the key parameters i.e. high electrical conductivity and large dielectric/magnetic loss are targeted here using a conducting inclusion [multiwall carbon nanotubes, MWNTs]; ferroelectric nanostructured material with associated relaxations in the GHz frequency [barium titanate, BT]; and a loss ferromagnetic nanoparticles [nickel ferrite, NF]. In this study, bi-continuous structures were designed using 50/50 (by wt) blends of polycarbonate (PC) and polyvinylidene fluoride (PVDF). The MWNTs was modified using an electron acceptor molecule; a derivative of perylenediimide, which facilitates π-π stacking with the nanotubes and stimulates efficient charge transport in the blends. The nanoscopic materials have specific affinity towards the PVDF phase. Hence, by introducing surface-active groups, ordered arrangement can be tailored. To accomplish this, both BT and NF was first hydroxylated followed by introducing amine-terminal groups on the surface. The latter facilitated in nucleophilic substitution reaction with PC and resulted in their precise location. In this study, we have shown for the first time that by compartmentalized approach, superior EM attenuation can be achieved. For instance, when the nanoparticles were localized exclusively in the PVDF phase or in both the phases, the minimum reflection loss was ca. -18 dB (for MWNT/BT mixture) and -29 dB (for MWNT/NF mixture), and the shielding was primarily through reflection. Interestingly, by adopting the compartmentalized approach where in, the lossy materials were in the PC phase and the conducting inclusion (MWNT) in PVDF, an outstanding reflection loss of ca. -57 dB (for BT and MWNT combination) and -67 dB (for NF and MWNT combination) was noted and the shielding was primarily through absorption. Thus, the approach demonstrates that nanoscopic structuring in the blends can be achieved under macroscopic processing conditions and this strategy can further be explored to design microwave absorbers.

Keywords: barium titanate, EMI shielding, MWNTs, nickel ferrite

Procedia PDF Downloads 447
272 Switching Studies on Ge15In5Te56Ag24 Thin Films

Authors: Diptoshi Roy, G. Sreevidya Varma, S. Asokan, Chandasree Das

Abstract:

Germanium Telluride based quaternary thin film switching devices with composition Ge15In5Te56Ag24, have been deposited in sandwich geometry on glass substrate with aluminum as top and bottom electrodes. The bulk glassy form of the said composition is prepared by melt quenching technique. In this technique, appropriate quantity of elements with high purity are taken in a quartz ampoule and sealed under a vacuum of 10-5 mbar. Then, it is allowed to rotate in a horizontal rotary furnace for 36 hours to ensure homogeneity of the melt. After that, the ampoule is quenched into a mixture of ice - water and NaOH to get the bulk ingot of the sample. The sample is then coated on a glass substrate using flash evaporation technique at a vacuum level of 10-6 mbar. The XRD report reveals the amorphous nature of the thin film sample and Energy - Dispersive X-ray Analysis (EDAX) confirms that the film retains the same chemical composition as that of the base sample. Electrical switching behavior of the device is studied with the help of Keithley (2410c) source-measure unit interfaced with Lab VIEW 7 (National Instruments). Switching studies, mainly SET (changing the state of the material from amorphous to crystalline) operation is conducted on the thin film form of the sample. This device is found to manifest memory switching as the device remains 'ON' even after the removal of the electric field. Also it is found that amorphous Ge15In5Te56Ag24 thin film unveils clean memory type of electrical switching behavior which can be justified by the absence of fluctuation in the I-V characteristics. The I-V characteristic also reveals that the switching is faster in this sample as no data points could be seen in the negative resistance region during the transition to on state and this leads to the conclusion of fast phase change during SET process. Scanning Electron Microscopy (SEM) studies are performed on the chosen sample to study the structural changes at the time of switching. SEM studies on the switched Ge15In5Te56Ag24 sample has shown some morphological changes at the place of switching wherein it can be explained that a conducting crystalline channel is formed in the device when the device switches from high resistance to low resistance state. From these studies it can be concluded that the material may find its application in fast switching Non-Volatile Phase Change Memory (PCM) Devices.

Keywords: Chalcogenides, Vapor deposition, Electrical switching, PCM.

Procedia PDF Downloads 377
271 Process Performance and Nitrogen Removal Kinetics in Anammox Hybrid Reactor

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a promising and cost effective alternative to conventional treatment systems that facilitates direct oxidation of ammonium nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of any external carbon sources. The present study investigates the process kinetics of laboratory scale anammox hybrid reactor (AHR) which combines the dual advantages of attached and suspended growth. The performance & behaviour of AHR was studied under varying hydraulic retention time (HRTs) and nitrogen loading rate (NLRs). The experimental unit consisted of 4 numbers of 5L capacity anammox hybrid reactor inoculated with mixed seed culture containing anoxic and activated sludge. Pseudo steady state (PSS) ammonium and nitrite removal efficiencies of 90.6% and 95.6%, respectively, were achieved during acclimation phase. After establishment of PSS, the performance of AHR was monitored at seven different HRTs of 3.0, 2.5, 2.0, 1.5, 1.0, 0.5 and 0.25 d with increasing NLR from 0.4 to 4.8 kg N/m3d. The results showed that with increase in NLR and decrease in HRT (3.0 to 0.25 d), AHR registered appreciable decline in nitrogen removal efficiency from 92.9% to 67.4 %, respectively. The HRT of 2.0 d was considered optimal to achieve substantial nitrogen removal of 89%, because on further decrease in HRT below 1.5 days, remarkable decline in the values of nitrogen removal efficiency were observed. Analysis of data indicated that attached growth system contributes an additional 15.4 % ammonium removal and reduced the sludge washout rate (additional 29% reduction). This enhanced performance may be attributed to 25% increase in sludge retention time due to the attached growth media. Three kinetic models, namely, first order, Monod and Modified Stover-Kincannon model were applied to assess the substrate removal kinetics of nitrogen removal in AHR. Validation of the models were carried out by comparing experimental set of data with the predicted values obtained from the respective models. For substrate removal kinetics, model validation revealed that Modified Stover-Kincannon is most precise (R2=0.943) and can be suitably applied to predict the kinetics of nitrogen removal in AHR. Lawrence and McCarty model described the kinetics of bacterial growth. The predicted value of yield coefficient and decay constant were in line with the experimentally observed values.

Keywords: anammox, kinetics, modelling, nitrogen removal, sludge wash out rate, AHR

Procedia PDF Downloads 314
270 Sedimentological and Petrographical Studies on the Cored samples from Bentiu Formation Muglad Basin

Authors: Yousif M. Makeen

Abstract:

This study presents the results of the sedimentological and petrographical analyses on the cored samples from the Bentiu Formation. The cored intervals consist of thick beds of sandstone, which are sometimes intercalated with beds of fine-grained sandstone and, in a minor case, with a siltstone bed. Detailed sedimentological facies analysis revealed the presence of six facies types, which can be clarified in order of their great percentage occurrences as follows: (i) Massive sandstone, (ii) Planar cross-bedded sandstone, (iii) Trough cross-bedded sandstone, (iv) Fine laminated sandstone (v) Fine laminated siltstone and (vi) Horizontally parted sandstone. The petrographical analyses under the plane polarized microscope and the scanning electron microscope (SEM) for the sandstone lithofacies types that exist within the cored intervals allowed classifying these lithofacies into Kaolinitic Subfeldspathic Arenites. Among the detrital components, quartz grains are the most abundant (mainly monocrystalline quartz), followed by feldspars, micas, detrital and authigenic clays, and carbonaceous debris. However, traces of lithic fragments, iron oxides and heavy minerals were observed in some of the analyzed samples, where they occur in minor amounts. Kaolinite is present mainly as an authigenic component in most of the analyzed samples, while quartz overgrowths occur in variable amounts in most of the investigated samples. Carbonates (calcite & siderite) are present in considerable amounts. The grain roundness in most of the investigated sandstone samples ranges from well-rounded to round, and, in fewer samples, is sub-angular to angular. Most of the sandstone samples are moderately compacted and display point, concavo-convex and long grain contacts, whereas the sutured grain contacts, which reflect a higher degree of compaction, are relatively observed in lesser amounts, while the float grain contact has also been observed in minor quantity. Pore types in the analyzed samples are dominantly primary and secondary interparticle forms. Point-counted porosity values range from 19.6% to 30%. Average pore sizes are highly variable and range from 20 to 350 microns. Pore interconnectivity ranges from good to very good.

Keywords: sandstone, sedimentological facies, porosity, quartz overgrowths

Procedia PDF Downloads 48
269 Influence of Cryo-Grinding on Particle Size Distribution of Proso Millet Bran Fraction

Authors: Maja Benkovic, Dubravka Novotni, Bojana Voucko, Duska Curic, Damir Jezek, Nikolina Cukelj

Abstract:

Cryo-grinding is an ultra-fine grinding method used in the pharmaceutical industry, production of herbs and spices and in the production and handling of cereals, due to its ability to produce powders with small particle sizes which maintain their favorable bioactive profile. The aim of this study was to determine the particle size distributions of the proso millet (Panicum miliaceum) bran fraction grinded at cryogenic temperature (using liquid nitrogen (LN₂) cooling, T = - 196 °C), in comparison to non-cooled grinding. Proso millet bran is primarily used as an animal feed, but has a potential in food applications, either as a substrate for extraction of bioactive compounds or raw material in the bakery industry. For both applications finer particle sizes of the bran could be beneficial. Thus, millet bran was ground for 2, 4, 8 and 12 minutes using the ball mill (CryoMill, Retsch GmbH, Haan, Germany) at three grinding modes: (I) without cooling, (II) at cryo-temperature, and (III) at cryo-temperature with included 1 minute of intermediate cryo-cooling step after every 2 minutes of grinding, which is usually applied when samples require longer grinding times. The sample was placed in a 50 mL stainless steel jar containing one grinding ball (Ø 25 mm). The oscillation frequency in all three modes was 30 Hz. Particle size distributions of the bran were determined by a laser diffraction particle sizing method (Mastersizer 2000) using the Scirocco 2000 dry dispersion unit (Malvern Instruments, Malvern, UK). Three main effects of the grinding set-up were visible from the results. Firstly, grinding time at all three modes had a significant effect on all particle size parameters: d(0.1), d(0.5), d(0.9), D[3,2], D[4,3], span and specific surface area. Longer grinding times resulted in lower values of the above-listed parameters, e.g. the averaged d(0.5) of the sample (229.57±1.46 µm) dropped to 51.29±1.28 µm after 2 minutes grinding without LN₂, and additionally to 43.00±1.33 µm after 4 minutes of grinding without LN₂. The only exception was the sample ground for 12 minutes without cooling, where an increase in particle diameters occurred (d(0.5)=62.85±2.20 µm), probably due to particles adhering to one another and forming larger particle clusters. Secondly, samples with LN₂ cooling exhibited lower diameters in comparison to non-cooled. For example, after 8 minutes of non-cooled grinding d(0.5)=46.97±1.05 µm was achieved, while the LN₂ cooling enabled collection of particles with average sizes of d(0.5)=18.57±0.18 µm. Thirdly, the application of intermediate cryo-cooling step resulted in similar particle diameters (d(0.5)=15.83±0.36 µm, 12 min of grinding) as cryo-milling without this step (d(0.5)=16.33±2.09 µm, 12 min of grinding). This indicates that intermediate cooling is not necessary for the current application, which consequently reduces the consumption of LN₂. These results point out the potential beneficial effects of millet bran grinding at cryo-temperatures. Further research will show if the lower particle size achieved in comparison to non-cooled grinding could result in increased bioavailability of bioactive compounds, as well as protein digestibility and solubility of dietary fibers of the proso millet bran fraction.

Keywords: ball mill, cryo-milling, particle size distribution, proso millet (Panicum miliaceum) bran

Procedia PDF Downloads 145
268 Morphological and Chemical Characterization of the Surface of Orthopedic Implant Materials

Authors: Bertalan Jillek, Péter Szabó, Judit Kopniczky, István Szabó, Balázs Patczai, Kinga Turzó

Abstract:

Hip and knee prostheses are one of the most frequently used medical implants, that can significantly improve patients’ quality of life. Long term success and biointegration of these prostheses depend on several factors, like bulk and surface characteristics, construction and biocompatibility of the material. The applied surgical technique, the general health condition and life-quality of the patient are also determinant factors. Medical devices used in orthopedic surgeries have different surfaces depending on their function inside the human body. Surface roughness of these implants determines the interaction with the surrounding tissues. Numerous modifications have been applied in the recent decades to improve a specific property of an implant. Our goal was to compare the surface characteristics of typical implant materials used in orthopedic surgery and traumatology. Morphological and chemical structure of Vortex plate anodized titanium, cemented THR (total hip replacement) stem high nitrogen REX steel (SS), uncemented THR stem and cup titanium (Ti) alloy with titanium plasma spray coating (TPS), cemented cup and uncemented acetabular liner HXL and UHMWPE and TKR (total knee replacement) femoral component CoCrMo alloy (Sanatmetal Ltd, Hungary) discs were examined. Visualization and elemental analysis were made by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Surface roughness was determined by atomic force microscopy (AFM) and profilometry. SEM and AFM revealed the morphological and roughness features of the examined materials. TPS Ti presented the highest Ra value (25 ± 2 μm, followed by CoCrMo alloy (535 ± 19 nm), Ti (227 ± 15 nm) and stainless steel (170 ± 11 nm). The roughness of the HXL and UHMWPE surfaces was in the same range, 147 ± 13 nm and 144 ± 15 nm, respectively. EDS confirmed typical elements on the investigated prosthesis materials: Vortex plate Ti (Ti, O, P); TPS Ti (Ti, O, Al); SS (Fe, Cr, Ni, C) CoCrMo (Co, Cr, Mo), HXL (C, Al, Ni) and UHMWPE (C, Al). The results indicate that the surface of prosthesis materials have significantly different features and the applied investigation methods are suitable for their characterization. Contact angle measurements and in vitro cell culture testing are further planned to test their surface energy characteristics and biocompatibility.

Keywords: morphology, PE, roughness, titanium

Procedia PDF Downloads 125
267 Investigation of Antimicrobial Activity of Dielectric Barrier Discharge Oxygen Plasma Combined with ZnO NPs-Treated Cotton Fabric Coated with Natural Green Tea Leaf Extracts

Authors: Fatma A. Mohamed, Hend M. Ahmed

Abstract:

This research explores the antimicrobial effects of dielectric barrier discharge (DBD) oxygen plasma treatment combined with ZnO NPs on the cotton fabric, focusing on various treatment durations (5, 10, 15, 20, and 30 minutes) and discharge powers (15.5–17.35 watts) at flow rate 0.5 l/min. After treatment with oxygen plasma and ZnO NPs, the fabric was printed with green tea (Camellia sinensis) at five different concentrations. The study evaluated the treatment's effectiveness by analyzing surface wettability, specifically through wet-out time and hydrophilicity, as well as measuring contact angles. To investigate the chemical changes on the fabric's surface, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy was employed to identify the functional groups formed as a result of the plasma treatment. This comprehensive approach aims to understand how DBD oxygen plasma treatment and ZnO nanoparticles change cotton fabric properties and enhance its antimicrobial potential, paving the way for innovative applications in textiles. In addition to the chemical analysis, the surface morphology of the O₂ plasma/ZnO NPs-treated cotton fabric was examined using scanning electron microscopy (SEM). FTIR analysis revealed an increase in polar functional groups (-COOH, -OH, and -C≡O) on the fabric's surface, contributing to enhanced hydrophilicity and functionality. The antimicrobial properties were evaluated using qualitative and quantitative methods, including agar plate assays and modified Hoenstein tests against Staphylococcus aureus and Escherichia coli. The results indicated a significant improvement in antimicrobial effectiveness for the cotton fabric treated with plasma and coated with natural extracts, maintaining this efficacy even after four washing cycles. This research demonstrates that utilizing oxygen DBD plasma/ZnO NPs treatment, combined with the absorption of tea and tulsi leaf extracts, presents a promising strategy for developing natural antimicrobial textiles. This approach is particularly relevant given the increasing medical and healthcare demands for effective antimicrobial materials. Overall, the method not only enhances the absorption of plant extracts but also significantly boosts antimicrobial efficacy, offering valuable insights for future textile applications.

Keywords: cotton, ZnO NPs, green tea leaf, antimicrobial avtivity, DBD oxygen plasma

Procedia PDF Downloads 9
266 Utilization of Sludge in the Manufacturing of Fired Clay Bricks

Authors: Anjali G. Pillai, S. Chadrakaran

Abstract:

The extensive amount of sludge generated throughout the world, as a part of water treatment works, have caused various social and economic issues, such as a demand on landfill spaces, increase in environmental pollution and raising the waste management cost. With growing social awareness about toxic incinerator emissions and the increasing concern over the disposal of sludge on the agricultural land, the recovery of sewage sludge as a building and construction raw material can be considered as an innovative approach to tackle the sludge disposal problem. The proposed work aims at studying the recycling ability of the sludge, generated from the water treatment process, by incorporating it into the fired clay brick units. The work involves initial study of the geotechnical characteristics of the brick-clay and the sludge. Chemical compatibility of both the materials will be analyzed by X-ray fluorescence technique. The variation in the strength aspects with varying proportions of sludge i.e. 10%, 20%, 30% and 40% in the sludge-clay mix will also be determined by the proctor density test. Based on the optimum moisture content, the sludge-clay bricks will be manufactured in a brick manufacturing plant and the modified brick units will be tested to determine the variation in compressive strength, bulk density, firing shrinkage, shrinkage loss and initial water absorption rate with respect to the conventional clay bricks. The results will be compared with the specifications given in Indian Standards to arrive at the potential use of the new bricks. The durability aspect will be studied by conducting the leachate analysis test using atomic adsorption spectrometry. The lightweight characteristics of the sludge modified bricks will be ascertained with the scanning electron microscope technique which will be indicative of the variation in pore structure with the increase in sludge content within the bricks. The work will determine the suitable proportion of the sludge – clay mix in the brick which can then be effectively implemented. The feasibility aspect of the work will be determined for commercial production of the units. The work involves providing a strategy for conversion of waste to resource. Moreover, it provides an alternative solution to the problem of growing scarcity of brick-clay for the manufacturing of fired clay bricks.

Keywords: eco-bricks, green construction material, sludge amended bricks, sludge disposal, waste management

Procedia PDF Downloads 305
265 Lactate Biostimulation for Remediation of Aquifers Affected by Recalcitrant Sources of Chloromethanes

Authors: Diana Puigserver Cuerda, Jofre Herrero Ferran, José M. Carmona Perez

Abstract:

In the transition zone between aquifers and basal aquitards, DNAPL-pools of chlorinated solvents are more recalcitrant than at other depths in the aquifer. Although degradation of carbon tetrachloride (CT) and chloroform (CF) occurs in this zone, this is a slow process, which is why an adequate remediation strategy is necessary. The working hypothesis of this study is that the biostimulation of the transition zone of an aquifer contaminated by CT and CF can be an effective remediation strategy. This hypothesis has been tested in a site on an unconfined aquifer in which the major contaminants were CT and CF of industrial origin and where the hydrochemical background was rich in other compounds that can hinder natural attenuation of chloromethanes. Field studies and five laboratory microcosm experiments were carried out at the level of groundwater and sediments to identify: i) the degradation processes of CT and CF; ii) the structure of microbial communities; and iii) the microorganisms implicated on this degradation. For this, concentration of contaminants and co-contaminants (nitrate and sulfate), Compound Specific Isotope Analysis, molecular techniques (Denaturing Gradient Gel Electrophoresis) and clone library analysis were used. The main results were: i) degradation processes of CT and CF occurred in groundwater and in the lesser conductive sediments; ii) sulfate-reducing conditions in the transition zone were high and similar to those in the source of contamination; iii) two microorganisms (Azospira suillum and a bacterium of the Clostridiales order) were identified in the transition zone at the field and lab experiments that were compatible with the role of carrying out the reductive dechlorination of CT, CF and their degradation products (dichloromethane and chloromethane); iv) these two microorganisms were present at the high starting concentrations of the microcosm experiments (similar to those in the source of DNAPL) and continued being present until the last day of the lactate biostimulation; and v) the lactate biostimulation gave rise to the fastest and highest degradation rates and promoted the elimination of other electron acceptors (e.g. nitrate and sulfate). All these results are evidence that lactate biostimulation can be effective in remediating the source and plume, especially in the transition zone, and highlight the environmental relevance of the treatment of contaminated transition zones in industrial contexts similar to that studied.

Keywords: Azospira suillum, lactate biostimulation of carbon tetrachloride and chloroform, reductive dechlorination, transition zone between aquifer and aquitard

Procedia PDF Downloads 176
264 Validation of Asymptotic Techniques to Predict Bistatic Radar Cross Section

Authors: M. Pienaar, J. W. Odendaal, J. C. Smit, J. Joubert

Abstract:

Simulations are commonly used to predict the bistatic radar cross section (RCS) of military targets since characterization measurements can be expensive and time consuming. It is thus important to accurately predict the bistatic RCS of targets. Computational electromagnetic (CEM) methods can be used for bistatic RCS prediction. CEM methods are divided into full-wave and asymptotic methods. Full-wave methods are numerical approximations to the exact solution of Maxwell’s equations. These methods are very accurate but are computationally very intensive and time consuming. Asymptotic techniques make simplifying assumptions in solving Maxwell's equations and are thus less accurate but require less computational resources and time. Asymptotic techniques can thus be very valuable for the prediction of bistatic RCS of electrically large targets, due to the decreased computational requirements. This study extends previous work by validating the accuracy of asymptotic techniques to predict bistatic RCS through comparison with full-wave simulations as well as measurements. Validation is done with canonical structures as well as complex realistic aircraft models instead of only looking at a complex slicy structure. The slicy structure is a combination of canonical structures, including cylinders, corner reflectors and cubes. Validation is done over large bistatic angles and at different polarizations. Bistatic RCS measurements were conducted in a compact range, at the University of Pretoria, South Africa. The measurements were performed at different polarizations from 2 GHz to 6 GHz. Fixed bistatic angles of β = 30.8°, 45° and 90° were used. The measurements were calibrated with an active calibration target. The EM simulation tool FEKO was used to generate simulated results. The full-wave multi-level fast multipole method (MLFMM) simulated results together with the measured data were used as reference for validation. The accuracy of physical optics (PO) and geometrical optics (GO) was investigated. Differences relating to amplitude, lobing structure and null positions were observed between the asymptotic, full-wave and measured data. PO and GO were more accurate at angles close to the specular scattering directions and the accuracy seemed to decrease as the bistatic angle increased. At large bistatic angles PO did not perform well due to the shadow regions not being treated appropriately. PO also did not perform well for canonical structures where multi-bounce was the main scattering mechanism. PO and GO do not account for diffraction but these inaccuracies tended to decrease as the electrical size of objects increased. It was evident that both asymptotic techniques do not properly account for bistatic structural shadowing. Specular scattering was calculated accurately even if targets did not meet the electrically large criteria. It was evident that the bistatic RCS prediction performance of PO and GO depends on incident angle, frequency, target shape and observation angle. The improved computational efficiency of the asymptotic solvers yields a major advantage over full-wave solvers and measurements; however, there is still much room for improvement of the accuracy of these asymptotic techniques.

Keywords: asymptotic techniques, bistatic RCS, geometrical optics, physical optics

Procedia PDF Downloads 258
263 Anti-Inflammatory Effect of Carvedilol 1% Ointment in Topical Application to the Animal Model

Authors: Berina Pilipović, Saša Pilipović, Maja Pašić-Kulenović

Abstract:

Inflammation is the body's response to impaired homeostasis caused by infection, injury or trauma resulting in systemic and local effects. Inflammation causes the body's response to injury and is characterized by a series of events including inflammatory response, response to pain receptors and the recovery process. Inflammation can be acute and chronic. The inflammatory response is described in three different phases. Free radical is an atom or molecule that has the unpaired electron and is therefore generally very reactive chemical species. Biologically important example of reaction with free radicals is called Lipid peroxidation (LP). Lipid peroxidation reactions occur in biological membranes, and if at the outset is not stopped with the action of antioxidants, it will bring damage to the membrane, which results in partial or complete loss of their physiological functions. Calcium antagonists and beta-adrenergic receptor antagonists are known drugs, and for many years and widely used in the treatment of cardiovascular diseases. Some of these compounds also show antioxidant activity. The mechanism of antioxidant activities of calcium antagonists and beta-blockers is unknown, since their structure varies widely. This research investigated the possible local anti-inflammatory activity of ointments containing 1% carvedilol in the white petrolatum USP. Ear inflammation was induced by 3% croton oil acetone solution, in quantity of 10 µl on both mouse ears. Albino Swiss mouse (n = 8) are treated with 2.5 mg/ear ointment, and control group was treated on the same way as previous with hydrocortisone 1% ointment (2.5 mg/ear). The other ear of the same animal was used as control one. Ointments were administered once per day, on the left ear. After treatment, ears were observed for three days. After three days, we measured mass (mg) of 6 mm ear punch of treated and controlled ears. The results of testing anti-inflammatory effects of ointments with carvedilol in the mouse ear model show stronger observed effect than ointment with 1% hydrocortisone in the same basis. Identical results were confirmed by the difference between the mass of 6 mm ears punch. The results were also confirmed by histological examination. Ointments with carvedilol showed significant reduction of the inflammation process caused by croton oil on the mouse inflammation model.

Keywords: antioxidant, carvedilol, inflammation, mouse ear

Procedia PDF Downloads 234
262 Optimizing the Field Emission Performance of SiNWs-Based Heterostructures: Controllable Synthesis, Core-Shell Structure, 3D ZnO/Si Nanotrees and Graphene/SiNWs

Authors: Shasha Lv, Zhengcao Li

Abstract:

Due to the CMOS compatibility, silicon-based field emission (FE) devices as potential electron sources have attracted much attention. The geometrical arrangement and dimensional features of aligned silicon nanowires (SiNWs) have a determining influence on the FE properties. We discuss a multistep template replication process of Ag-assisted chemical etching combined with polystyrene (PS) spheres to fabricate highly periodic and well-aligned silicon nanowires, then their diameter, aspect ratio and density were further controlled via dry oxidation and post chemical treatment. The FE properties related to proximity and aspect ratio were systematically studied. A remarkable improvement of FE propertiy was observed with the average nanowires tip interspace increasing from 80 to 820 nm. On the basis of adjusting SiNWs dimensions and morphology, addition of a secondary material whose properties complement the SiNWs could yield a combined characteristic. Three different nanoheterostructures were fabricated to control the FE performance, they are: NiSi/Si core-shell structures, ZnO/Si nanotrees, and Graphene/SiNWs. We successfully fabricated the high-quality NiSi/Si heterostructured nanowires with excellent conformality. First, nickle nanoparticles were deposited onto SiNWs, then rapid thermal annealing process were utilized to form NiSi shell. In addition, we demonstrate a new and simple method for creating 3D nanotree-like ZnO/Si nanocomposites with a spatially branched hierarchical structure. Compared with the as-prepared SiNRs and ZnO NWs, the high-density ZnO NWs on SiNRs have exhibited predominant FE characteristics, and the FE enhancement factors were attributed to band bending effect and geometrical morphology. The FE efficiency from flat sheet structure of graphene is low. We discussed an effective approach towards full control over the diameter of uniform SiNWs to adjust the protrusions of large-scale graphene sheet deposited on SiNWs. The FE performance regarding the uniformity and dimensional control of graphene protrusions supported on SiNWs was systematically clarified. Therefore, the hybrid SiNWs/graphene structures with protrusions provide a promising class of field emission cathodes.

Keywords: field emission, silicon nanowires, heterostructures, controllable synthesis

Procedia PDF Downloads 273