Search results for: attribute reduction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5052

Search results for: attribute reduction

2292 Effects of Aerobic Training on MicroRNA Let-7a Expression and Levels of Tumor Tissue IL-6 in Mice With Breast Cancer

Authors: Leila Anoosheh

Abstract:

Aim: The aim of this study was to assess The effects of aerobic training on microRNA let-7a expression and levels of tumor tissue IL-6 in mice with breast cancer. Method: Twenty BALB/c c mice (4-5 weeks,17 gr mass) were cancerous by injection of estrogen-dependent receptor breast cancer cells MC4-L2 and divided into two groups: tumor-training(TT) and tumor-control(TC) group. Then TT group completed aerobic training for 6 weeks, 5 days per week (14-18 m/min). After tumor emersion, tumor width and length were measured by digital caliper every week. 48 hours after the last exercise subjects were killed. Tissue sampling were collected and stored in -70ᵒ. Tumor tissue was homogenized and let-7a expression and IL-6 levels were accounted with Real time-PCR and ELISA Kit respectively. Statistical analysis of let-7a was conducted by the REST software. Repeated measures and independent tests were used to assess tumor size and IL-6, respectively. Results: Tumor size and IL-6 levels were significantly decreased in TT group compare with TC group (p<0.05). microRNA let-7a was increased significantly in TT against control group respectively (p=0/000). Conclusion: Reduction in tumor size, followed by aerobic exercise can be attributed to the loss of inflammatory factors such as IL-6; It seems that regarding to up regulation effects of aerobic exercise training on let-7a and down regulation effects of that on IL-6 in mice with breast cancer, This type of training can be used as adjuvant therapy in conjunction with other therapies for breast cancer.

Keywords: breast cancer, aerobic training, microRNA let-7a, IL-6

Procedia PDF Downloads 415
2291 The Effect of Proper Drainage on the Cost of Building and Repairing Roads

Authors: Seyed Abbas Tabatabaei, Saeid Amini, Hamid Reza Ghafouri

Abstract:

One of the most important factors in flexible pavement failure is the lack of proper drainage along the roads. Water on the Paving Systems is one of the main parameters of pavement failure. Though, if water is discharged without delay and prior to discharge in order to prevent damaging the pavement the lifetime of the pavement will be considerably increased. In this study, duration of water stay and materials properties in pavement systems and the effects of aggregate gradation, and hydraulic conductivity of the drainage rate and Effects of subsurface drainage systems, drainage and reduction in the lifetime of the pavement have been studied. The study conducted in accordance with the terms offered can be concluded as under. The more hydraulic conductivity the less drainage time and the use of sub-surface drainage system causes two to three times of the pavement lifetime. In this research it has been tried by study and calculate the drained and undrained pavements lifetime by considering the effectiveness of water and drainage coefficient on flexible materials modulus and by using KENLAYER software to compare the present value cost of these pavements has been paid for a 20 year lifetime design. In this study, 14 pavement sections have been considered, of which 7 sections have been drained and 7 other not. Results show that drained pavements have more initial costs but the failure severity is so little in them and have longer lifetime for a 20 year lifetime design, the drained pavements seem so economic.

Keywords: drainage, base and sub-base, elasticity modulus, aggregation

Procedia PDF Downloads 351
2290 Evaluation of the Effectiveness of the Argon Plasma Jet on Healing Process of the Wagner Grade 2 Diabetic Foot Ulcer

Authors: M. Khaledi Pour, P. Akbartehrani, M. Amini, M. Khani, M. Mohajeri Tehrani, R. Radi, B. Shokri

Abstract:

Diabetic Foot Ulcer (DFU) is one of the costly severe complications of diabetes. Neuropathy and Peripheral Arterial Disease (PAD) due to diabetes are significant causes of this complication. In 10 years the patients with DFUs are twice as likely to die as patients without DFUs. Cold Atmospheric Plasma (CAP) is a promising tool for medical purposes. CAP generate reactive species at room temperature and are effective in killing bacteria and fibroblast proliferation. These CAP-based tools produce NO, which has bactericidal and angiogenesis properties. It also showed promising effects in the DFUs surface reduction and the time to wound closure. In this paper, we evaluated the effect of the Argon Plasma Jet (APJ) on the healing process of the Wagner Grade 2 DFUs in a randomized clinical trial. The 20 kHz sinusoidal voltage frequency derives the APJ. Patients (n=20) were randomly double-blinded assigned into two groups. These groups receive the standard care (SC, n=10) and the standard care with APJ treatment (SC+APJ, n=10) for five sessions in four weeks. The results showed that the APJ treatment along standard care could reduce the wound surface by 20 percent more than the standard care. Also, It showed a more influential role in controlling wound infection.

Keywords: argon plasma jet, cold atmospheric plasma, diabetes, diabetic foot ulcer

Procedia PDF Downloads 182
2289 In vivo Anti-inflammatory, Analgesic, and Antipyretic Activities of Aqueous Extract of Leaves of Brocchia cinerea (Vis.)

Authors: Nisrine Chlif, Mohammed Diouri, Amar Bentayeb

Abstract:

Background: The Leaves of Brocchia cinerea (Vis.) (Asteraceae) is used traditionally and ethnomedicinally to alleviate pain, fever, and inflammation conditions. Objective: The current study investigates the anti-inflammatory, analgesic, and antipyretic activities of aqueous extract of the leaves of Brocchia cinerea (LBC). Material and methods: The extract was screened for anti-inflammatory (carrageenan-induced paw edema) and analgesic (acetic acid-induced writhing) activities in Wistar rats. Before acetic acid or carrageenan injection, rats were orally fed LBC (200 and 400 mg/ kg), Indomethacin (10 mg/kg), or Aspirin (100 mg/kg). The antipyretic effect was studied in brewer’s yeast-induced pyrexia model in rats using Paracetamol (100 mg/kg) as a standard drug. Results: The crude extract tested significantly prevented the increase in paw volume as compared to the control at 200 mg/kg and 400 mg/kg. The LBC treatment significantly inhibited pain at 400 mg/kg with a percent inhibition of 55.82%, as well as showing a significant reduction in hyperpyrexia in rats at 400 mg/kg. LBC extract produced a comparable activity to paracetamol at 100 mg/kg (p <0.01). Conclusion: The results of the present study that the leaves of B. cinerea extract exhibited strongly anti-inflammatory, analgesic, and antipyretic properties and justify the traditional use of this plant in inflammation, pain, and fever.

Keywords: analgesic, anti-inflammation, antipyretic, brocchia cinerea

Procedia PDF Downloads 142
2288 Experimental Analysis of Structure Borne Noise in an Enclosure

Authors: Waziralilah N. Fathiah, A. Aminudin, U. Alyaa Hashim, T. Vikneshvaran D. Shakirah Shukor

Abstract:

This paper presents the experimental analysis conducted on a structure borne noise in a rectangular enclosure prototype made by joining of sheet aluminum metal and plywood. The study is significant as many did not realized the annoyance caused by structural borne-noise. In this study, modal analysis is carried out to seek the structure’s behaviour in order to identify the characteristics of enclosure in frequency domain ranging from 0 Hz to 200 Hz. Here, numbers of modes are identified and the characteristic of mode shape is categorized. Modal experiment is used to diagnose the structural behaviour while microphone is used to diagnose the sound. Spectral testing is performed on the enclosure. It is acoustically excited using shaker and as it vibrates, the vibrational and noise responses sensed by tri-axis accelerometer and microphone sensors are recorded respectively. Experimental works is performed on each node lies on the gridded surface of the enclosure. Both experimental measurement is carried out simultaneously. The modal experimental results of the modal modes are validated by simulation performed using MSC Nastran software. In pursuance of reducing the structure borne-noise, mitigation method is used whereby the stiffener plates are perpendicularly placed on the sheet aluminum metal. By using this method, reduction in structure borne-noise is successfully made at the end of the study.

Keywords: enclosure, modal analysis, sound analysis, structure borne-noise

Procedia PDF Downloads 416
2287 Problems of Water Resources : Vulnerability to Climate Change, Modeling with Software WEAP 21 (Upper and Middle Cheliff)

Authors: Mehaiguene Madjid, Meddi Mohamed

Abstract:

The results of applying the model WEAP 21 or 'Water Evaluation and Planning System' in Upper and Middle Cheliff are presented in cartographic and graphic forms by considering two scenarios: -Reference scenario 1961-1990, -Climate change scenarios (low and high) for 2020 and 2050. These scenarios are presented together in the results and compared them to know the impact on aquatic systems and water resources. For the low scenario for 2050, a decrease in the rate of runoff / infiltration will be 81.4 to 3.7 Hm3 between 2010 and 2050. While for the high scenario for 2050, the reduction will be 87.2 to 78.9 Hm3 between 2010 and 2050. Comparing the two scenarios, shows that the water supplied will increase by 216.7 Hm3 to 596 Hm3 up to 2050 if we do not take account of climate change. Whereas, if climate change will decrease step by step: from 2010 to 2026: for the climate change scenario (high scenario) by 2050, water supplied from 346 Hm3 to 361 Hm3. That of the reference scenario (1961-1990) will increase to 379.7 Hm3 in 2050. This is caused by the increased demand (increased population, irrigated area, etc ). The balance water management basin is positive for the different Horizons and different situations. If we do not take account of climate change will be the outflow of 5881.4 Hm3. This excess at the basin can be used as part of a transfer for example.

Keywords: balance water, management basin, climate change scenario, Upper and Middle Cheliff

Procedia PDF Downloads 295
2286 Thermodynamics of Random Copolymers in Solution

Authors: Maria Bercea, Bernhard A. Wolf

Abstract:

The thermodynamic behavior for solutions of poly (methyl methacrylate-ran-t-butyl methacrylate) of variable composition as compared with the corresponding homopolymers was investigated by light scattering measurements carried out for dilute solutions and vapor pressure measurements of concentrated solutions. The complex dependencies of the Flory Huggins interaction parameter on concentration and copolymer composition in solvents of different polarity (toluene and chloroform) can be understood by taking into account the ability of the polymers to rearrange in a response to changes in their molecular surrounding. A recent unified thermodynamic approach was used for modeling the experimental data, being able to describe the behavior of the different solutions by means of two adjustable parameters, one representing the effective number of solvent segments and another one accounting for the interactions between the components. Thus, it was investigated how the solvent quality changes with the composition of the copolymers through the Gibbs energy of mixing as a function of polymer concentration. The largest reduction of the Gibbs energy at a given composition of the system was observed for the best solvent. The present investigation proves that the new unified thermodynamic approach is a general concept applicable to homo- and copolymers, independent of the chain conformation or shape, molecular and chemical architecture of the components and of other dissimilarities, such as electrical charges.

Keywords: random copolymers, Flory Huggins interaction parameter, Gibbs energy of mixing, chemical architecture

Procedia PDF Downloads 269
2285 Harmonic Analysis to Improve Power Quality

Authors: Rumana Ali

Abstract:

The presence of nonlinear and power electronic switching devices produce distorted output and harmonics into the system. This paper presents a technique to analyze harmonics using digital series oscilloscope (DSO). In power distribution system further measurements are done by DSO, and the waveforms are analyzed using FFT program. The results of this proposed work are helpful for the investigator to install an appropriate compensating device to mitigate the harmonics, in turn, improve the power quality. This case study is carried out at AIT Chikmagalur. It is done as a starting step towards the improvement of energy efficiency at AIT Chikmagalur, and with an overall aim of reducing the electricity bill with a complete energy audit of the institution. Strategies were put forth to reach the above objective: The following strategies were proposed to be implemented to analyze the power quality in EEE department of the institution. Strategy 1: The power factor has to be measured using the energy meter. Power factor improvement may reduce the voltage drop in lines. This brings the voltages at the socket in the labs closer to the nominal voltage of 230V, and thus power quality improves. Strategy 2: The harmonics at the power inlet has to be measured by means of a DSO. The DSO waveform is analyzed using FFT to know the percentage harmonic up to the 13th harmonics of 50Hz. Reduction in the harmonics in the inlet of the EEE department may reduce line losses and therefore reduces energy bill to the institution.

Keywords: harmonic analysis, energy bill, power quality, electronic switching devices

Procedia PDF Downloads 292
2284 Usage of Channel Coding Techniques for Peak-to-Average Power Ratio Reduction in Visible Light Communications Systems

Authors: P. L. D. N. M. de Silva, S. G. Edirisinghe, R. Weerasuriya

Abstract:

High peak-to-average power ratio (PAPR) is a concern of orthogonal frequency division multiplexing (OFDM) based visible light communication (VLC) systems. Discrete Fourier Transform spread (DFT-s) OFDM is an alternative single carrier modulation scheme which would address this concern. Employing channel coding techniques is another mechanism to reduce the PAPR. Previous research has been conducted to study the impact of these techniques separately. However, to the best of the knowledge of the authors, no study has been done so far to identify the improvement which can be harnessed by hybridizing these two techniques for VLC systems. Therefore, this is a novel study area under this research. In addition, channel coding techniques such as Polar codes and Turbo codes have been tested in the VLC domain. However, other efficient techniques such as Hamming coding and Convolutional coding have not been studied too. Therefore, the authors present the impact of the hybrid of DFT-s OFDM and Channel coding (Hamming coding and Convolutional coding) on PAPR in VLC systems using Matlab simulations.

Keywords: convolutional coding, discrete Fourier transform spread orthogonal frequency division multiplexing, hamming coding, peak-to-average power ratio, visible light communications

Procedia PDF Downloads 140
2283 Probabilistic Seismic Loss Assessment of Reinforced Concrete (RC) Frame Buildings Pre- and Post-Rehabilitation

Authors: A. Flora, A. Di Lascio, D. Cardone, G. Gesualdi, G. Perrone

Abstract:

This paper considers the seismic assessment and retrofit of a pilotis-type RC frame building, which was designed for gravity loads only, prior to the introduction of seismic design provisions. Pilotis-type RC frame buildings, featuring an uniform infill throughout the height and an open ground floor, were, and still are, quite popular all over the world, as they offer large open areas very suitable for retail space at the ground floor. These architectural advantages, however, are of detriment to the building seismic behavior, as they can determine a soft-storey collapse mechanism. Extensive numerical analyses are carried out to quantify and benchmark the performance of the selected building, both in terms of overall collapse capacity and expected losses. Alternative retrofit strategies are then examined, including: (i) steel jacketing of RC columns and beam-column joints, (ii) steel bracing and (iv) seismic isolation. The Expected Annual Loss (EAL) of the selected case-study building, pre- and post-rehabilitation, is evaluated, following a probabilistic approach. The breakeven time of each solution is computed, comparing the initial cost of the retrofit intervention with expected benefit in terms of EAL reduction.

Keywords: expected annual loss, reinforced concrete buildings, seismic loss assessment, seismic retrofit

Procedia PDF Downloads 229
2282 Effect of Variation of Injection Timing on Performance and Emission Characteristics of Compression Ignition Engine: A CFD Approach

Authors: N. Balamurugan, N. V. Mahalakshmi

Abstract:

Compression ignition (CI) engines are known for their high thermal efficiency in comparison with spark-ignited (SI) engines. This makes CI engines a potential candidate for the future prime source of power for transportation sector to reduce greenhouse gas emissions and to shrink carbon footprint. However, CI engines produce high levels of NOx and soot emissions. Conventional methods to reduce NOx and soot emissions often result in the infamous NOx-soot trade-off. The injection parameters are one of the most important factors in the working of CI engines. The engine performance, power output, economy etc., is greatly dependent on the effectiveness of the injection parameters. The injection parameter has their direct impact on combustion process and pollutant formation. The injection parameter’s values are required to be optimised according to the application of the engine. Control of fuel injection mode is one method for reduction of NOx and soot emissions that is achievable. This study aims to assess, compare and analyse the influence of the effect of injection characteristics that is SOI timing studied on combustion and emissions in in-cylinder combustion processes with that of conventional DI Diesel Engine system using the commercial Computational Fluid Dynamic (CFD) package STAR- CD ES-ICE.

Keywords: variation of injection timing, compression ignition engine, spark-ignited, Computational Fluid Dynamic

Procedia PDF Downloads 277
2281 Microalgae Applied to the Reduction of Biowaste Produced by Fruit Fly Drosophila melanogaster

Authors: Shuang Qiu, Zhipeng Chen, Lingfeng Wang, Shijian Ge

Abstract:

Biowastes are a concern due to the large amounts of commercial food required for model animals during the biomedical research. Searching for sustainable food alternatives with negligible physiological effects on animals is critical to solving or reducing this challenge. Microalgae have been demonstrated as suitable for both human consumption and animal feed in addition to biofuel and bioenergy applications. In this study, the possibility of using Chlorella vulgaris and Senedesmus obliquus as a feed replacement to Drosophila melanogaster, one of the fly models commonly used in biomedical studies, was investigated to assess the fly locomotor activity, motor pattern, lifespan, and body weight. Compared to control, flies fed on 60% or 80% (w/w) microalgae exhibited varied walking performance including travel distance and apparent step size, and flies treated with 40% microalgae had shorter lifespans and decreased body weight. However, the 20% microalgae treatment showed no statistical differences in all parameters tested with respect to the control. When partially including 20% microalgae in the standard food, it can annually reduce the food waste (~ 202 kg) by 22.7 % and save $ 7,200 of the food cost, offering an environmentally superior and cost-effective food alternative without compromising physiological performance.

Keywords: animal feed, Chlorella vulgaris, Drosophila melanogaster, food waste, microalgae

Procedia PDF Downloads 150
2280 Numerical Modelling and Soil-structure Interaction Analysis of Rigid Ballast-less and Flexible Ballast-based High-speed Rail Track-embankments Using Software

Authors: Tokirhusen Iqbalbhai Shaikh, M. V. Shah

Abstract:

With an increase in travel demand and a reduction in travel time, high-speed rail (HSR) has been introduced in India. Simplified 3-D finite element modelling is necessary to predict the stability and deformation characteristics of railway embankments and soil structure interaction behaviour under high-speed design requirements for Indian soil conditions. The objective of this study is to analyse the rigid ballast-less and flexible ballast-based high speed rail track embankments for various critical conditions subjected to them, viz. static condition, moving train condition, sudden brake application, and derailment case, using software. The input parameters for the analysis are soil type, thickness of the relevant strata, unit weight, Young’s modulus, Poisson’s ratio, undrained cohesion, friction angle, dilatancy angle, modulus of subgrade reaction, design speed, and other anticipated, relevant data. Eurocode 1, IRS-004(D), IS 1343, IRS specifications, California high-speed rail technical specifications, and the NHSRCL feasibility report will be followed in this study.

Keywords: soil structure interaction, high speed rail, numerical modelling, PLAXIS3D

Procedia PDF Downloads 97
2279 Theoretical Insight into Ligand Free Manganese Catalyzed C-O Coupling Protocol for the Synthesis of Biaryl Ethers

Authors: Carolin Anna Joy, Rohith K. R, Rehin Sulay, Parvathy Santhoshkumar, G.Anil Kumar, Vibin Ipe Thomas

Abstract:

Ullmann coupling reactions are gaining great relevance owing to their contribution in the synthesis of biologically and pharmaceutically important compounds. Palladium and many other heavy metals have proven their excellent ability in coupling reaction, but the toxicity matters. The first-row transition metal also possess toxicity, except in the case of iron and manganese. The suitability of manganese as a catalyst is achieving great interest in oxidation, reduction, C-H activation, coupling reaction etc. In this presentation, we discuss the thermo chemistry of ligand free manganese catalyzed C-O coupling reaction between phenol and aryl halide for the synthesis of biaryl ethers using Density functional theory techniques. The mechanism involves an oxidative addition-reductive elimination step. The transition state for both the step had been studied and confirmed using Intrinsic Reaction Coordinate (IRC) calculation. The barrier height for the reaction had also been calculated from the rate determining step. The possibility of other mechanistic way had also been studied. To achieve further insight into the mechanism, substrate having various functional groups is considered in our study to direct their effect on the feasibility of the reaction.

Keywords: Density functional theory, Molecular Modeling, ligand free, biaryl ethers, Ullmann coupling

Procedia PDF Downloads 130
2278 Thermodynamic Cycle Analysis for Overall Efficiency Improvement and Temperature Reduction in Gas Turbines

Authors: Jeni A. Popescu, Ionut Porumbel, Valeriu A. Vilag, Cleopatra F. Cuciumita

Abstract:

The paper presents a thermodynamic cycle analysis for three turboshaft engines. The first is the cycle is a Brayton cycle, describing the evolution of a classical turboshaft, based on the Klimov TV2 engine. The other two cycles aim at approaching an Ericsson cycle, by replacing the Brayton cycle adiabatic expansion in the turbine by quasi-isothermal expansion. The maximum quasi-Ericsson cycles temperature is set to a lower value than the maximum Brayton cycle temperature, equal to the Brayton cycle power turbine inlet temperature, in order to decrease the engine NOx emissions. Also, the power distribution over the stages of the gas generator turbine is maintained the same. In the first of the two considered quasi-Ericsson cycle, the efficiencies of the gas generator turbine stage. Also, the power distribution over the stages of the gas generator turbine is maintained the same. In the first of the two considered quasi-Ericsson cycle, the efficiencies of the gas generator turbine stages are maintained the same as for the reference case, while for the second, the efficiencies are increased in order to obtain the same shaft power as in the reference case. It is found that in the first case, both the shaft power and the thermodynamic efficiency of the engine decrease, while in the second, the power is maintained, and even a slight increase in efficiency can be noted.

Keywords: combustion, Ericsson, thermodynamic analysis, turbine

Procedia PDF Downloads 593
2277 Utilization of Composite Components for Land Vehicle Systems: A Review

Authors: Kivilcim Ersoy, Cansu Yazganarikan

Abstract:

In recent years, composite materials are more frequently utilized not only in aviation but also in automotive industry due to its high strength to weight ratio, fatigue and corrosion resistances as well as better performances in specific environments. The market demand also favors lightweight design for wheeled and tracked armored vehicles due to the increased demand for land and amphibious mobility features. This study represents the current application areas and trends in automotive, bus and armored land vehicles industries. In addition, potential utilization areas of fiber composite and hybrid material concepts are being addressed. This work starts with a survey of current applications and patent trends of composite materials in automotive and land vehicle industries. An intensive investigation is conducted to determine the potential of these materials for application in land vehicle industry, where small series production dominates and challenging requirements are concerned. In the end, potential utilization areas for combat land vehicle systems are offered. By implementing these light weight solutions with alternative materials and design concepts, it is possible to achieve drastic weight reduction, which will enable both land and amphibious mobility without unyielding stiffness and survivability capabilities.

Keywords: land vehicle, composite, light-weight design, armored vehicle

Procedia PDF Downloads 446
2276 Remote Sensing Approach to Predict the Impacts of Land Use/Land Cover Change on Urban Thermal Comfort Using Machine Learning Algorithms

Authors: Ahmad E. Aldousaria, Abdulla Al Kafy

Abstract:

Urbanization is an incessant process that involves the transformation of land use/land cover (LULC), resulting in a reduction of cool land covers and thermal comfort zones (TCZs). This study explores the directional shrinkage of TCZs in Kuwait using Landsat satellite data from 1991 – 2021 to predict the future LULC and TCZ distribution for 2026 and 2031 using cellular automata (CA) and artificial neural network (ANN) algorithms. Analysis revealed a rapid urban expansion (40 %) in SE, NE, and NW directions and TCZ shrinkage in N – NW and SW directions with 25 % of the very uncomfortable area. The predicted result showed an urban area increase from 44 % in 2021 to 47 % and 52 % in 2026 and 2031, respectively, where uncomfortable zones were found to be concentrated around urban areas and bare lands in N – NE and N – NW directions. This study proposes an effective and sustainable framework to control TCZ shrinkage, including zero soil policies, planned landscape design, manmade water bodies, and rooftop gardens. This study will help urban planners and policymakers to make Kuwait an eco–friendly, functional, and sustainable country.

Keywords: land cover change, thermal environment, green cover loss, machine learning, remote sensing

Procedia PDF Downloads 209
2275 A Brief Exploration on the Green Urban Design for Carbon Neutrality

Authors: Gaoyuan Wang, Tian Chen

Abstract:

China’s emission peak and carbon neutrality strategies lead to the transformation of development patterns and call for new green urban design thinking. This paper begins by revealing the evolution of green urban design thinking during the periods of carbon enlightenment, carbon dependency, and carbon decoupling from the perspective of the energy transition. Combined with the current energy situation, national strengths, and technological trends, the emergence of green urban design towards carbon neutrality becomes inevitable. Based on the preliminary analysis of its connotation, the characteristics of the new type of green urban design are generalized as low-carbon orientation, carbon-related objects, carbon-reduction means, and carbon-control patterns. Its theory is briefly clarified in terms of the human-earth synergism, quality-energy interconnection, and form-flow interpromotion. Then, its mechanism is analyzed combined with the core tasks of carbon neutrality, and the scope of design issues is defined, including carbon flow mapping, carbon source regulation, carbon sink construction, and carbon emission management. Finally, a multi-scale spatial response system is proposed across the region, city, cluster, and neighborhood level. The discussion aims to provide support for the innovation of green urban design theories and methods in the context of peak neutrality.

Keywords: carbon neutrality, green urban design, energy transition, theoretical exploration

Procedia PDF Downloads 157
2274 Analysis of Thermal Damage Characteristics of High Pressure Turbine Blade According to Off-Design Operating Conditions

Authors: Seon Ho Kim, Minho Bang, Seok Min Choi, Young Moon Lee, Dong Kwan Kim, Hyung Hee Cho

Abstract:

Gas turbines are heat engines that convert chemical energy into electrical energy through mechanical energy. Since their high energy density per unit volume and low pollutant emissions, gas turbines are classified as clean energy. In order to obtain better performance, the turbine inlet temperature of the current gas turbine is operated at about 1600℃, and thermal damage is a very serious problem. Especially, these thermal damages are more prominent in off-design conditions than in design conditions. In this study, the thermal damage characteristics of high temperature components of a gas turbine made of a single crystal material are studied numerically for the off-design operating conditions. The target gas turbine is configured as a reheat cycle and is operated in peak load operation mode, not normal operation. In particular, the target gas turbine features a lot of low-load operation. In this study, a commercial code, ANSYS 18.2, was used for analyzing the thermal-flow coupling problems. As a result, the flow separation phenomenon on the pressure side due to the flow reduction was remarkable at the off-design condition, and the high heat transfer coefficient at the upper end of the suction surface due to the tip leakage flow was appeared.

Keywords: gas turbine, single crystal blade, off-design, thermal analysis

Procedia PDF Downloads 202
2273 Activation of Mitophagy and Autophagy in Familial Forms of Parkinson's Disease, as a Potential Strategy for Cell Protection

Authors: Nafisa Komilova, Plamena Angelova, Andrey Abramov, Ulugbek Mirkhodjaev

Abstract:

Parkinson’s disease (PD) is a progressive neurodegenerative disorder which is induced by the loss of dopaminergic neurons in the midbrain. The mechanism of neurodegeneration is associated with the aggregation of misfolded proteins, oxidative stress, and mitochondrial disfunction. Considering this, the process of removal of unwanted organelles or proteins by autophagy is vitally important in neurons, and activation of these processes could be protective in PD. Short-time acidification of cytosol can activate mitophagy and autophagy, and here we used sodium pyruvate and sodium lactate in human fibroblasts with PD mutations (Pink1, Pink1/Park2, α-syn triplication, A53T) to induce changes in intracellular pH. We have found that both lactate and pyruvate in millimolar concentrations can induce short-time acidification of cytosol in these cells. It induced activation of mitophagy and autophagy in control and PD fibroblasts and protected against cell death. Importantly, the application of lactate to acute brain slices of control and Pink1 knockout mice also induced a reduction of pH in neurons and astrocytes that increase the level of mitophagy. Thus, acidification of cytosol by compounds which play important role in cell metabolism also can activate mitophagy and autophagy and protect cells in the familial form of PD.

Keywords: Parkinson's disease, mutations, mitophagy, autophagy

Procedia PDF Downloads 175
2272 Polymer-Ceramic Composite Film Fabrication and Characterization for Harsh Environment Applications

Authors: Santiranjan Shannigrahi, Mohit Sharma, Ivan Tan Chee Kiang, Yong Anna Marie

Abstract:

Polymer-ceramics composites are gaining importance due to their high specific strength, corrosion resistance, and high mechanical properties, as well as low cost. As a result, polymer composites are suitable for various industrial applications, like automobiles, aerospace, and biomedical areas. The present work comprises the development of polymer-ceramic composite films and is tested for the harsh environment including weatherability and UV barrier property. The polymer composite films are kept in weather chamber for a fixed period of time followed by tested for their physical, mechanical and chemical properties. The composite films are fabricated using compounding followed by hot pressing. UV-visible spectroscopy results reveal that the pure polymer polyethylene (PE) films are transparent in the visible range and do not absorb UV. However, polymer ceramic composite films start absorbing UV completely even at very low filler loading amount of 5 wt.%. The changes in tensile properties of the various composite films before and after UV illuminations for 40 hrs at 60 degC are analyzed. The tensile strength of neat PE film has been observed 8% reduction, whereas the remarkable increase in tensile strength has been observed (18% improvement for 10 wt. % filled composites films). The UV exposure leads to strengthen the crosslinking among PE polymer chains in the filled composite films, which contributes towards the incremented tensile strength properties.

Keywords: polymer ceramic composite, processing, harsh environment, mechanical properties

Procedia PDF Downloads 367
2271 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia

Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan

Abstract:

In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.

Keywords: cushion coarse-grained sediments (CCS), expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale

Procedia PDF Downloads 298
2270 Bio-Electro Chemical Catalysis: Redox Interactions, Storm and Waste Water Treatment

Authors: Michael Radwan Omary

Abstract:

Context: This scientific innovation demonstrate organic catalysis engineered media effective desalination of surface and groundwater. The author has developed a technology called “Storm-Water Ions Filtration Treatment” (SWIFTTM) cold reactor modules designed to retrofit typical urban street storm drains or catch basins. SWIFT triggers biochemical redox reactions with water stream-embedded toxic total dissolved solids (TDS) and electrical conductivity (EC). SWIFTTM Catalysts media unlock the sub-molecular bond energy, break down toxic chemical bonds, and neutralize toxic molecules, bacteria and pathogens. Research Aim: This research aims to develop and design lower O&M cost, zero-brine discharge, energy input-free, chemical-free water desalination and disinfection systems. The objective is to provide an effective resilient and sustainable solution to urban storm-water and groundwater decontamination and disinfection. Methodology: We focused on the development of organic, non-chemical, no-plugs, no pumping, non-polymer and non-allergenic approaches for water and waste water desalination and disinfection. SWIFT modules operate by directing the water stream to flow freely through the electrically charged media cold reactor, generating weak interactions with a water-dissolved electrically conductive molecule, resulting in the neutralization of toxic molecules. The system is powered by harvesting sub-molecular bonds embedded in energy. Findings: The SWIFTTM Technology case studies at CSU-CI and CSU-Fresno Water Institute, demonstrated consistently high reduction of all 40 detected waste-water pollutants including pathogens to levels below a state of California Department of Water Resources “Drinking Water Maximum Contaminants Levels”. The technology has proved effective in reducing pollutants such as arsenic, beryllium, mercury, selenium, glyphosate, benzene, and E. coli bacteria. The technology has also been successfully applied to the decontamination of dissolved chemicals, water pathogens, organic compounds and radiological agents. Theoretical Importance: SWIFT technology development, design, engineering, and manufacturing, offer cutting-edge advancement in achieving clean-energy source bio-catalysis media solution, an energy input free water and waste water desalination and disinfection. A significant contribution to institutions and municipalities achieving sustainable, lower cost, zero-brine and zero CO2 discharges clean energy water desalination. Data Collection and Analysis Procedures: The researchers collected data on the performance of the SWIFTTM technology in reducing the levels of various pollutants in water. The data was analyzed by comparing the reduction achieved by the SWIFTTM technology to the Drinking Water Maximum Contaminants Levels set by the state of California. The researchers also conducted live oral presentations to showcase the applications of SWIFTTM technology in storm water capture and decontamination as well as providing clean drinking water during emergencies. Conclusion: The SWIFTTM Technology has demonstrated its capability to effectively reduce pollutants in water and waste water to levels below regulatory standards. The Technology offers a sustainable solution to groundwater and storm-water treatments. Further development and implementation of the SWIFTTM Technology have the potential to treat storm water to be reused as a new source of drinking water and an ambient source of clean and healthy local water for recharge of ground water.

Keywords: catalysis, bio electro interactions, water desalination, weak-interactions

Procedia PDF Downloads 49
2269 The Impact of Resource-oriented Music Listening on Oversea Dispatch Employees Work Stress Relief

Authors: Wei Yaming

Abstract:

Objective: In order to compare the stress of employees sent overseas with (GRAS) before and after, we used the resource-oriented music listening intervention in this study. We also collected pertinent experimental data. Methods: The experiment involved 47 employees who were sent abroad by the Chinese side. They completed the stress scale test and documented it before the intervention. They tested for stress after five interventions and performed one-on-one interviews. Quantitative data and SPSS software were used to analyze relationships between stress reduction and resource-oriented music listening, as well as Pearson's correlation, multiple regression levels, and ANOVA. For the qualitative analysis, content analysis of one-on-one interviews was performed. Results: A comparison of data from before and after demonstrates how resource-focused music listening activities can lessen and relieve stress in remote workers. In the qualitative study, stress is broken down into six categories: relationship stress, health stress, emotional stress, and frustration stress. External pressures include work pressure and cultural stress. And it has been determined that listening to music that is resource-oriented can better ease internal stress (health, emotion, and dissatisfaction). Conclusion: The Guide Resource-oriented Music Listening (GROML) Program appears to have had some effect on the participants' stress levels. The resources that the participants encountered while listening to music are bravery, calm, letting go, and relaxing.

Keywords: resource-oriented, music listening, oversea dispatch employees, work stress

Procedia PDF Downloads 78
2268 Graphene-Reinforced Silicon Oxycarbide Composite with Lamellar Structures Prepared by the Phase Transfer Method

Authors: Min Yu, Olivier T. Picot, Theo Graves Saunders, Ivo Dlouhy, Amit Mahajan, Michael J. Reece

Abstract:

Graphene was successfully introduced into a polymer-derived silicon oxycarbide (SiOC) matrix by phase transfer of graphene oxide (GO) from an aqueous (GO dispersed in water) to an organic phase (copolymer as SiOC precursor in diethyl ether). With GO concentrations increasing up to 2 vol%, graphene-containing flakes self-assembled into a lamellar structure in the matrix leading to composite with the anisotropic property. Spark plasma sintering (SPS) was applied to densify the composites with four different GO concentrations (0, 0.5, 1 and 2 vol%) up to ~2.3 g/cm3. The fracture toughness of SiOC-2 vol% GO composites was significantly increased by ~91% (from 0.70 to 1.34 MPa·m¹/²), at the expense of a decrease in the flexural strength (from 85MPa to 55MPa), compared to SiOC-0 vol% GO composites. Moreover, the electrical conductivity in the perpendicular direction (σ┴=3×10⁻¹ S/cm) in SiOC-2 vol% GO composite was two orders of magnitude higher than the parallel direction (σ║=4.7×10⁻³ S/cm) owing to the self-assembled lamellar structure of graphene in the SiOC matrix. The composites exhibited increased electrical conductivity (σ┴) from 8.4×10⁻³ to 3×10⁻¹ S/cm, with the increasing GO content from 0.5 to 2 vol%. The SiOC-2 vol% GO composites further showed the better electrochemical performance of oxygen reduction reaction (ORR) than pure graphene, exhibiting a similar onset potential (~0.75V vs. RHE) and more positive half-wave potential (~0.6V vs. RHE).

Keywords: composite, fracture toughness, flexural strength, electrical conductivity, electrochemical performance

Procedia PDF Downloads 154
2267 Decolorization and Degradation of Ponceau Red P4R in Aqueous Solution by Ferrate (Vi)

Authors: Chaimaan Benhsinat, Amal Tazi, Mohammed Azzi

Abstract:

Synthetic azo-dyes are widely used in food industry, they product intense coloration, high toxicity and mutagenicity for wastewater; Causing serious damage to aquatic biota and risk factors for humans. The treatment of these effluents remains a major challenge especially for third world countries that have not yet all possibilities to integrate the concept of sustainable development. These aqueous effluents require specific treatment to preserve natural environments. For these reasons and in order to contribute to the fight against this danger, we were interested in this study to the degradation of the dye Ponceau Red E124 'C20H11N2Na3O10S3' 'used in a food industry Casablanca-Morocco, by the super iron ferrate (VI) K3FexMnyO8; Synthesized in our laboratory and known for its high oxidizing and flocculants. The degradation of Ponceau red is evaluated with the objectives of chemical oxygen demand (COD), total organic carbon (TOC) and discoloration reductions. The results are very satisfying. In fact, we achieved 90% reduction of COD and 99% of discoloration. The recovered floc are subject to various techniques for spectroscopic analysis (UV-visible and IR) to identify by-products formed after the degradation. Moreover, the results will then be compared with those obtained by the application of ferrous sulfate (FeSO4, 7H2O) used by the food industry for the degradation of P4R. The results will be later compared with those obtained by the application of ferrous sulfate (FeSO4, 7H2O) used by the food industry, in the degradation of the P4R.

Keywords: COD removal, color removal, dye ponceau 4R, oxydation by ferrate (VI)

Procedia PDF Downloads 321
2266 Conceptualizing Notions of Poverty in Graduate Social Work Education: Contextualizing the Formation of the ‘Social Worker’ Subjectivity

Authors: Emily Carrothers

Abstract:

This research takes a critical look at the development of the social worker subjectivity, particularly in Canada. Through an interrogation of required graduate course texts, this paper explicates the discursive formation, orientation, and maintenance of the social worker subject and the conceptualizations of poverty in graduate social work education. This research aims to advance understandings of power and ideology in social work graduate texts and formations of particular dominant constructions of poverty and social worker subjectivity. Guiding questions for this inquiry include: What are social workers being oriented to? What are social workers being oriented away from? How is poverty theorized, discussed and/or attached to social location in social work education? And, how are social workers implicated in contesting or reinforcing poverty? Using critical discourse analysis, 6 texts were analyzed with a particular focus on ways in which notions of poverty are discursively represented and ways in which notions of the formation of the social worker were approached. This revealed that discursively underpinning social work in anti-oppressive practice (AOP) can work to reify hierarchal structures of power that orient social workers away from structural poverty reduction strategies and towards punitive interactions with those that experience poverty and multiple forms of marginalization. This highlights that the social worker subjectivity is formed in opposition to the client, with graduate texts constructing the social worker as an expert in client’s lives and experiences even more so than the client.

Keywords: Canada, education, social work, subjectivity

Procedia PDF Downloads 149
2265 Effects of Various Wavelet Transforms in Dynamic Analysis of Structures

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history dynamic analysis of structures is considered as an exact method while being computationally intensive. Filtration of earthquake strong ground motions applying wavelet transform is an approach towards reduction of computational efforts, particularly in optimization of structures against seismic effects. Wavelet transforms are categorized into continuum and discrete transforms. Since earthquake strong ground motion is a discrete function, the discrete wavelet transform is applied in the present paper. Wavelet transform reduces analysis time by filtration of non-effective frequencies of strong ground motion. Filtration process may be repeated several times while the approximation induces more errors. In this paper, strong ground motion of earthquake has been filtered once applying each wavelet. Strong ground motion of Northridge earthquake is filtered applying various wavelets and dynamic analysis of sampled shear and moment frames is implemented. The error, regarding application of each wavelet, is computed based on comparison of dynamic response of sampled structures with exact responses. Exact responses are computed by dynamic analysis of structures applying non-filtered strong ground motion.

Keywords: wavelet transform, computational error, computational duration, strong ground motion data

Procedia PDF Downloads 365
2264 A Case Study on the Numerical-Probability Approach for Deep Excavation Analysis

Authors: Komeil Valipourian

Abstract:

Urban advances and the growing need for developing infrastructures has increased the importance of deep excavations. In this study, after the introducing probability analysis as an important issue, an attempt has been made to apply it for the deep excavation project of Bangkok’s Metro as a case study. For this, the numerical probability model has been developed based on the Finite Difference Method and Monte Carlo sampling approach. The results indicate that disregarding the issue of probability in this project will result in an inappropriate design of the retaining structure. Therefore, probabilistic redesign of the support is proposed and carried out as one of the applications of probability analysis. A 50% reduction in the flexural strength of the structure increases the failure probability just by 8% in the allowable range and helps improve economic conditions, while maintaining mechanical efficiency. With regard to the lack of efficient design in most deep excavations, by considering geometrical and geotechnical variability, an attempt was made to develop an optimum practical design standard for deep excavations based on failure probability. On this basis, a practical relationship is presented for estimating the maximum allowable horizontal displacement, which can help improve design conditions without developing the probability analysis.

Keywords: numerical probability modeling, deep excavation, allowable maximum displacement, finite difference method (FDM)

Procedia PDF Downloads 110
2263 Insufficiency Fracture of Femoral Head in Patients Treated With Intramedullary Nailing for Proximal Femur Fracture

Authors: Jai Hyung Park, Eugene Kim, Jin Hun Park, Min Joon Oh

Abstract:

Introduction: Subchondral insufficiency fracture of the femoral head (SIF) is a rare complication; however, it has been recognized to cause femoral head collapse. Subchondral insufficiency fracture (SIF) is caused by normal or physiological stress without any trauma. It has been reported in osteoporotic patients after the fixation of the proximal femur with an Intramedullary nail. Case presentation: We reported 5 cases with SIF of the femoral head after proximal femur fracture fixation with Intra-medullary nail. All patients had osteoporosis as an underlying disease. Good reduction was achieved in all 5 patients. SIF was found from about 3 months to 4 years after the initial operation, and all the fractures were solidly united at the final diagnosis. We investigated retrospectively the feature of those cases and several factors that affected the occurrence of SIF. Discussion: There are a few discussions regarding the SIF of the femoral head. These discussions may include the predisposing risk factors, how to diagnose the SIF in osteoporotic patients, and the peri-operative factors to prevent SIF. Conclusion: Subchondral insufficiency fracture of the femoral head is a considerable complication after the internal fixation of the proximal femur. There are several factors that can be modified. If they could be controlled in the peri-operative period, SIF could be prevented or handled in advance. Other options related to arthroplasty can be considered in old osteoporotic patients.

Keywords: insufficiency fracture of femoral head, intra-medullary nail, osteoporosis, proximal femur fracture

Procedia PDF Downloads 108